Abstract
When seeking an explanation for the molecular mechanism of acoustic wave propagation in liquids it was stated that theoretical considerations applying the Lennard—Jones type expression for energy can not serve this purpose. A certain molecular interpretation of the ABL principle is proposed as a solution. On this path we obtain an expression for propagation velocity of an acoustic wave in terms of space filling a relationship between sound velocity and coefficient of viscosity and an expression for intermolecular compressibility.References
[1] F. C. COLLINS, M. H. NAVIDI, The calculations of the free volumes of liquids from measurements of sonic velocity, J. Chem. Phys., 22, 1254-1255 (1954).
[2] R. A. AZIZ, D. H. BOWMAN, C. C. LIM, An examination of the relationship between sound velocity and density in liquide, Canadian Journal of Physics 50, 646 654 (1972).
[3] K. JELLINEK, Lehrbuch der physikalischen Chemie, Ferdinand Enke Verlag, Stuttgart t: 1, 497, 1928.
[4] A. J. BATSCHINSKI, Untersuchungen über die innere Reibung der Flüssigkeiten, Z. phys. Chem. 84, 643-706 (1913).
[2] R. A. AZIZ, D. H. BOWMAN, C. C. LIM, An examination of the relationship between sound velocity and density in liquide, Canadian Journal of Physics 50, 646 654 (1972).
[3] K. JELLINEK, Lehrbuch der physikalischen Chemie, Ferdinand Enke Verlag, Stuttgart t: 1, 497, 1928.
[4] A. J. BATSCHINSKI, Untersuchungen über die innere Reibung der Flüssigkeiten, Z. phys. Chem. 84, 643-706 (1913).