Influence of Ultrasonic Cavitation on Botryococcus Braunii Growth
DOI:
https://doi.org/10.24425/aoa.2024.148800Keywords:
Botryococcus braunii, ultrasonic wave, cavitation, specific growth rate, bubble sizeAbstract
This study investigates ultrasonic energy’s impact on enhancing the growth of Botryococcus braunii (B. braunii) microalgae. Microalgae, known for their advantages in greenhouse gas mitigation and biomass conversion, were subjected to various stressors, including ultrasonic waves, to optimize productivity. Ultrasonic waves induce acoustic cavitation, increasing membrane permeability and substrate conversion. The study examined the impact of energy and maximum pressure resulting from bubble collapse on the relative specific growth rate of B. braunii microalgae. It was observed that reproduction showed a promotive trend until the energy surpassed 30 kJ. However, when ultrasonic energy reached 18.2 kJ, reproduction was inhibited due to the maximum pressure generated during bubble bursting, which reached 5.7 μN/μm^2, leading to the suppression of reproduction upon encountering bubble collapse events. Under specific ultrasonic conditions (15.1 kJ energy, maximum pressure of 45.5 × 10^5 Pa), a maximum specific growth rate of 0.329 ± 0.020 day^−1 in a two-day interval boosted B. braunii microalgae biomass productivity. These findings advance our understanding of ultrasonic wave effects on microalgae reproduction and underscore the potential for optimizing ultrasonic parameters to enhance biomass production.References
Antony O.A. (1963), Technical aspects of ultrasonic cleaning, Ultrasonics, 1(4): 194–198, doi: 10.1016/0041-624X(63)90167-7.
Brennen C. (2005), Fundamentals of Multiphase Flow, Cambridge University Press, pp. 345.
Chen J.T. et al. (2016), Preliminary assessment of Malaysian microalgae strains for the production of bio jet fuel, [in:] IOP Conference Series Materials Science and Engineering, 152: 012042, doi: 10.1088/1757-899X/152/1/012042.
Dilia P., Kalsum L., Rusdianasari R. (2018), Fatty acids from microalgae Botryococcus braunii for raw material of biodiesel, Journal of Physics: Conference Series, 1095: 012010, doi: 10.1088/1742-6596/1095/1/012010.
Enmak P. (2010), Influences of CO2 concentrations and salinity on acceleration of microalgal oil as raw material for biodiesel production, Journal of Biotechnology, 150: 19, doi: 10.1016/j.jbiotec.2010.08.063.
Fan Z., Kumon R.E., Deng C.X. (2014), Mechanisms of microbubble-facilitated sonoporation for drug and gene delivery, Therapeutic Delivery, 5(4): 467–486, doi: 10.4155/tde.14.10.
Fu L., Li Q., Yan G., Zhou D., Crittenden J.C. (2019), Hormesis effects of phosphorus on the viability of Chlorella regularis cells under nitrogen limitation, Biotechnology for Biofuels, 12: 121, doi: 10.1186/s13068-019-1458-z.
Gupte Y. (2012), Morpho-physiological characteristics of Botryococcus braunii (Kutzing, 1849) & its oil production from the species isolated from Thane, Maharashtra, India, Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 14(4): 523–526.
Hao X., Suo H., Peng H., Xu P., Gao X., Du S. (2021), Simulation and exploration of cavitation process during microalgae oil extracting with ultrasonic-assisted for hydrogen production, International Journal of Hydrogen Energy, 46(3): 2890–2898, doi: 10.1016/j.ijhydene.2020.06.045.
Joyce E., King P., Mason T. (2014), The effect of ultrasound on the growth and viability of microalgae cells, Environmental Biology of Fishes, 26: 1741–1748, doi: 10.1007/s10811-013-0202-5.
Kanthale P., Ashokkumar M., Grieser F. (2008), Sonoluminescence, sonochemistry (H2O2 yield) and bubble dynamics: Frequency and power effects, Ultrasonics Sonochemistry, 15(2): 143–150, doi: 10.1016/j.ultsonch.2007.03.003.
Kudo N., Okada K., Yamamoto K. (2009), Sonoporation by single-shot pulsed ultrasound with microbubbles adjacent to cells, Biophysical Journal, 96(12): 4866–4876, doi: 10.1016/j.bpj.2009.02.072.
Lee A.K., Lewis D.M., Ashman P.J. (2012), Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements, Biomass and Bioenergy, 46: 89–101, doi: 10.1016/j.biombioe.2012.06.034.
Liu Y., Liu X., Cui Y., Yuan W. (2022), Ultrasound for microalgal cell disruption and product extraction: A review, Ultrasonics Sonochemistry, 87: 106054, doi: 10.1016/j.ultsonch.2022.106054.
Onyeaka H., Miri T., Obileke K., Hart A., Anumudu C., Al-Sharify Z.T. (2021), Minimizing carbon footprint via microalgae as a biological capture, Carbon Capture Science Technology, 1: 100007, doi: 10.1016/j.ccst.2021.100007.
Pereira R.N., Jaeschke D.P., Mercali G.D., Rech R., Marczak L.D.F. (2023), Impact of ultrasound and electric fields on microalgae growth: A comprehensive review, Brazilian Journal of Chemical Engineering, 40: 607–622, doi: 10.1007/s43153-022-00281-z.
Pitt W.G., Ross S.A. (2003), Ultrasound increases the rate of bacterial cell growth, Biotechnology Progress, 19(3): 1038–1044, doi: 10.1021/bp0340685.
Ren H.Y. et al. (2019), Ultrasonic enhanced simultaneous algal lipid production and nutrients removal from non-sterile domestic wastewater, Energy Conversion and Management, 180: 680–688, doi: 10.1016/j.enconman.2018.11.028.
Rubsai A. (2012), Isolation, growth characters and oil accumulation of green colonial microalgae, Botryococcus braunii, MS Degree, Walailak University.
Salaeh A., Boonphasuk S., Danworaphong S. (2017), Expediting growth rate of Botryococcus braunii using 37- and 80-kHz ultrasonic waves, [in:] Proceedings of 24th International Congress on Sound and Vibration 2017 (ICSV 24), pp. 1782.
Shakirov Z.S., Khalilov I.M., Khujamshukurov N.A. (2021), Stress factors’ effects on the induction of lipid synthesis of microalgae, Journal of Applied Biology and Biotechnology, 9(06): 149–153, doi: 10.7324/JABB.2021.96019-1.
Tasic M.B., Pinto L.F.R., Klein B.C., Veljkovic V.B., Filho R.M. (2016), Botryococcus braunii for biodiesel production, Renewable and Sustainable Energy Reviews, 64: 260–270, doi: 10.1016/j.rser.2016.06.009.
Topaz M. et al. (2005), Acoustic cavitation in phacoemulsification and the role of antioxidants, Ultrasound in Medicine Biology, 31(8): 1123–1129, doi: 10.1016/j.ultrasmedbio.2005.02.016.
Wang M., Yuan W. (2016), Modeling bubble dynamics and radical kinetics in ultrasound induced microalgal cell disruption, Ultrasonics Sonochemistry, 28: 7–14, doi: 10.1016/j.ultsonch.2015.06.025.
Wang S.K., Wang F., Stiles A.R., Guo C., Liu C.Z. (2014), Botryococcus braunii cells: Ultrasound-intensified outdoor cultivation integrated with in situ magnetic separation, Bioresource Technology, 167: 376–382, doi: 10.1016/j.biortech.2014.06.028.
Xu L., Wang S., Wang F., Guo C., Liu C.Z. (2014), Improved biomass and hydrocarbon productivity of Botryococcus braunii by periodic ultrasound stimulation, BioEnergy Research, 7: 986–992, doi: 10.1007/s12155-014-9441-9.
Zhang L., Li B., Wu Z., Gu L., Yang Z. (2016), Changes in growth and photosynthesis of Mixotrophic Ochromonas sp. in response to different concentrations of glucose, Journal of Applied Phycology, 28: 2671–2678, doi: 10.1007/s10811-016-0832-5.