A Dedispersion Transform Method for Extracting the Normal Modes of a Shallow Water Acoustic Signal in the Pekeris Waveguide
DOI:
https://doi.org/10.1515/aoa-2015-0002Keywords:
normal mode extraction, dedispersion transform, Pekeris waveguide, source ranging.Abstract
The normal modes cannot be extracted even in the Pekeris waveguide when the source-receiver distance is very close. This paper introduces a normal mode extraction method based on a dedispersion transform (DDT) to solve this problem. The method presented here takes advantage of DDT, which is based on the waveguide invariant such that the dispersion associated with all of the normal modes is removed at the same time. After performing DDT on a signal received in the Pekeris waveguide, the waveform of resulting normal modes is very close to the source signal, each with different position and amplitude. Each normal mode can be extracted by determining its position and amplitude parameters by applying particle swarm optimization (PSO). The waveform of the extracted normal mode is simply the waveform of the source signal; the real waveform of the received normal mode can then be recovered by applying dispersion compensation to the source signal. The method presented needs only one receiver and is verified with experimental data.References
BONNEL J., NICOLAS B., MARS J. I., WALKER S. C., (2010), Estimation of modal group velocities with a single receiver for geoacoustic inversion in shallow water, J. Acoust. Soc. Am., 128, 2, 719-727.
BONNEL J., GERVAISE C., ROUX P., NICOLAS B., MARS J. I., (2011), Modal depth function estimation using time-frequency analysis, J. Acoust. Soc. Am., 130, 1, 61-71.
BONNEL J., GERVAISE C., NICOLAS B., MARS J. I., (2012), Single-receiver geoacoustic inversion using modal reversal, J. Acoust. Soc. Am., 131, 1, 119-128.
DAUBECHIES I., LU J., WU H., (2011), Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool, Appl. Comput. Harmon. Anal., 30, 2, 243-261.
FRANCOIS R. E., GARRISON G. R., (1982), Sound absorption based on ocean measurements. Part II: Boric acid contribution and equation for total absorption, The Journal of the Acoustical Society of America, 72, 6, 1879-1890.
GAO D. Z., WANG N., WANG H. Z., (2010), A Dedispersion Transform for Sound Propagation in Shallow Water Waveguide, J. Comput. Acoust., 18, 3, 245-257.
HUANG N. E., SHEN Z., LONG S. R., et al., (1998), The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. Roy. Cos. Lond., 454, 1971, 903-995.
KENNEDY J., EBERHART R., (1995), Particle swarm optimization, Perth WA.
NEILSEN T. B., WESTWOOD E. K., UDAGAWA T., (1997), Mode function extraction from a VLA using singular value decomposition, J. Acoust. Soc. Am., 101, 5, 3025.
NEILSEN T. B., WESTWOOD E. K., (2002), Extraction of acoustic normal mode depth functions using vertical line array data, J. Acoust. Soc. Am., 111, 2, 748-756.
NICOLAS B., MARS J. I., LACOUME J., (2006), Source depth estimation using a horizontal array by matched-mode processing in the frequency-wavenumber domain, EURASIP J. Appl. Sig. P., 2006, 65901, 1-16.
RILLING G., FLANDRIN P., (2008), One or two frequencies? The empirical mode decomposition answers, IEEE T. Signal Proces., 56, 1, 85-95.
WALKER S. C., ROUX P., KUPERMAN W. A., (2005), Data-based mode extraction with a partial water column spanning array, J. Acoust. Soc. Am., 118, 3, 1518-1525.
WU H., FLANDRIN P., DAUBECHIES I., (2011), One or two frequencies? the synchrosqueezing answers, Adv. Adapt. Data Anal., 3, 01&02, 29-39.
ZHAO Z., WANG N., GAO D., WANG H., (2010), Broadband Source Ranging in Shallow Water Using the Ω-Interference Spectrum, Chin. Phys. Lett., 27, 6, 64301.