Nonsingular Meshless Method in an Acoustic Indoor Problem
DOI:
https://doi.org/10.24425/118082Keywords:
architectural acoustics, meshless method, radial bases functions, impedance boundary conditionAbstract
An efficiency of the nonsingular meshless method is analyzed in an acoustic indoor problem. The solution is assumed in the form of the series of radial bases functions. The Hardy’s multiquadratic functions, as the bases, are taken into account. The room acoustic field with uniform, impedance walls is considered. The representative, rectangular cross section of the room is chosen. Practical combinations of acoustic boundary conditions, expressed through absorption coefficient values, are considered. The classical formulation of the boundary problem is used. It is established any coefficient in the multiquadratic functions depend on the number of influence points, the frequency and the absorption coefficient. All approximate results are calculated in relation to the exact ones. This way, it is proved that the meshless method based on the multiquadratic functions is simple and efficient method in the description of the complicated acoustic boundary problems for the low and medium ranges of frequency.References
Atluri S.N. (2004), The meshless method (MLPG) for domain & BIE discretization, Tech Science Press, Forsyth, GA, USA.
Beer G., Smith I., Duenser C. (2008), The boundary element method with programming, Springer-Verlag Wien-N.Y.
Borkowski M. ( 2015), 2D capacitance extraction with direct boundary methods, Engineering Analysis with Boundary Elements, 58, 195–201, doi: 10.1016/j.enganabound.2015.04.017.
Brański A., Borkowska D. (2015a), Effectiveness of nonsingular solutions of the boundary problems based on Trefftz methods, Engineering Analysis with Boundary Elements, 59, 97104, doi: 10.1016/j.enganabound.2015.04.016.
Brański A., Borkowska D. (2015b), Galerkin versions of nonsingular Trefftz methods derived from variational formulations for 2D Laplace problem, Acta Physica Polonica A, 128, 1, 5055, doi: 10.12693/APhysPolA.128.A-50.
Brański A., Borkowski M., Borkowska D. (2012), A comparison of boundary methods based on inverse variational formulation, Engineering Analysis with Boundary Elements, 36, 4, 505–510, doi: 10.1016/j.enganabound.2011.11.004.
Brański A., Kocan A., Prędka E. (2016), An exact solution of the two dimensional acoustic boundary problem with impedance boundary conditions, to appear in Archives of Acoustics.
Brański A., Prędka E. (2014), Description of the room acoustic field with meshfree method, E-book Forum Acusticum, www.fa2014.agh.edu.pl/fa2014_cd.
Buhman M.D. (2004), Radial basic functions, Cambridge University Press.
Chen C.S., Hon Y.C., Schaback R.A. (2007), Scientific Computing with Radial Basis Functions, http://num.math.uni-goettingen.de/schaback/SCwRBF.pdf.
Chen J.T., Kuo S.R., Chen K.H., Cheng Y.C. (2000), Comments on vibration analysis of arbitrary shaped membranes using nondimesional dynamic influence function, Journal of Sound and Vibration, 235, 156–171, doi:10.1006/jsvi.1999.287.
Chen W., Fu Z., Zhang C.Z. (2013), Recent advances on radial function collocation methods, Springer, Berlin.
Cheng A.H.-D. (2000), Particular solutions of Laplacian, Helmholtz-type, and polyharmonic operators involving higher order radial basis functions, Engineering Analysis with Boundary Elements, 24, 531–538, doi: 10.1016/S0955-7997(00)00033-3.
Ciskowski R.D., Brebbia C.A. (1991), Boundary element methods in acoustics, Comp. Mech. Publ., McGraw-Hill Book Company, Southampton.
Dobrucki A., Żółtogórski B., Pruchnicki P., Bolejko R. (2010), Sound-absorbing and insulating enclosures for ultrasonic range, Archives of Acoustics, 35, 2, 157–164, doi: 10.2478/v10168-010-0014-4.
Duchon J. (1976), Splines minimizing rotation invariant semi-morms in Sobolev spaces, Lecture Notes in Mathematics, N.Y. Springer, 571, 85–110, doi: 10.1007/BFb0086566.
Fasshauer G.E. (2010), Meshfree method, from http://amadeus.csam.iit.edu/~fass/MeshfreeNano.pdf.
Fish J., Belytschko T. (2007), A first course in finite element elements, John Wiley & Sons.
Franke C., Schaback R. (1998), Solving partial differential equations by collocation using radial basis functions, Applied Mathematics and Computations, 93, 73–82, doi: 10.1016/S0096-3003(97)10104-7.
Franke R. (1982), Scattered data interpolation: tests of some methods, Mathematics of Computation, 38, 181–200.
Fu Z.-J., Chen W., Chen J.-T., Qu W.-Z. (2014), Singular Boundary Method: Three Regularization Approaches and Exterior Wave Applications, Computer Modeling in Engineering & Sciences, 0, 0, 1–26.
Gerai M. (1993), Measurement of the sound absorption coefficients in situ: the reflection method using periodic pseudo-random sequences of maximum length, Applied Acoustics, 39, 119–139, doi: 10.1016/0003-682X(93)90032-2.
Hardy R.L. (1971), Multiquadric equations of topography and other irregular surfaces, Journal of Geophysical Research, 76, 8, 1905–1915, doi: 10.1029/JB076i008p01905.
Kamisiński T. (2012), Correction of Acoustics in Historic Opera Theatres with the Use of Schroeder Diffuser, Archives of Acoustics, 37, 3, 349–354, doi: 10.2478/v10168-012-0044-1.
Kamisiński T., Kulowski A., Kinasz R. (2016), Can Historic Interiors with Large Cubature be Turned Acoustically Correct?, Archives of Acoustics, 41, 1, 3–14, doi: 10.1515/aoa-2016-0001.
Kansa E.J. (1990), Multiquadrics: A scattered data approximation scheme with applications to computational fluid dynamics, Computers & Mathematics with Applications, 19, 147–161.
Kansa E.J., Aldredge R.C., Ling L. (2009), Numerical simulation of two-dimensional combustion using mesh-free methods, Engineering Analysis with Boundary Elements, 33, 940–950, doi: 10.1016/j.enganabound.2009.02.008.
Kocan A. , Brański A. (2015), Fourier Method in 2D acoustic boundary problem with impedance boundary [in Polish: Metoda Fouriera w 2D akustycznym zagadnieniu brzegowym z warunkami impedancyjnymi], Progress of Acoustics, Polish Acoustical Society, Wroclaw Division, Wrocław–Świeradów, 477–482.
Kuttruff H. (2000), Fundamentals of Physical Acoustics, Room Acoustic, Wiley-Interscience, New York.
Li Z.-C., Lu T-T., Hu H-T., Cheng A.H.-D. (2008), Trefftz and collocation methods, WIT Press, Southampton, Boston.
Ling L. (2003), Radial basic functions in scientific computing, Simon Fraser University, PhD Thesis.
Manolis G.D., Polyzos D. (2009), Recent Advances in Boundary Element Methods, Springer Science+Business Media B.V., doi: 10.1007/978-1-4020-9710-2.
McLachlan N.W. (1955), Bessel Functions for Engineers, Clarendon Press, Oxford.
Meissner M. (2009), Computer modeling of coupled spaces: variations of eigenmodes frequency due to a change in coupling area, Archives of Acoustics, 34, 2, 157168.
Meissner M. (2013), Evaluation of decay times from noisy room responses with puretone excitation, Archives of Acoustics, 38, 1, 4754, doi: 10.2478/aoa-2013-0006.
Meissner M. (2016a), Improving acoustics of hard-walled rectangular room by ceiling treatment with absorbing material, Progress of Acoustics, Polish Acoustical Society, Warsaw Division, Warszawa-Białowieża, 413423.
Meissner M. (2016b), Wave-based method for simulating small room acoustics, Progress of Acoustics, Polish Acoustical Society, Warsaw Division, Warszawa–Białowieża, 425436.
Pawłowski S., (2009), Iterative boundary method in analysis of 3D quasi-stationary electrodynamics problems, Rzeszow University of Technology Publishers, Rzeszow.
Piechowicz J., Czajka I. (2012), Estimation of Acoustic Impedance for Surfaces Delimiting the Volume of an Enclosed Space, Archives of Acoustics, 37, 1, 97–102, doi: 10.2478/v10168-012-0013-8.
Pilch A., Kamisiński T. (2011), The Effect of Geometrical and Material Modification of Sound Diffusers on Their Acoustic Parameters, Archives of Acoustics, 36, 4, 955–966, doi: 10.2478/v10168-011-0065-1.
Powell M.J.D. (1992), The theory of radial basic function approximation, Advances in numerical analysis, Vol. II, Oxford University Press.
Prędka E. (2015), The influence of the impedance boundary conditions on the indoor acoustic field analyzing via MLM [in Polish: Wpływ impedancyjnych warunków brzegowych na pole akustyczne wnętrz w ujęciu MLM], Progress of Acoustics, Polish Acoustical Society, Wroclaw Division, Wrocław–Świeradów, 531–542.
Rao S.S. (2005), A finite element method in engineering, Elsevier Inc.
Rindel J.H. (2010), Room acoustic prediction modeling, XXIII Encontro Da Sociedade Brasileira Deacústica Salvador-Ba,18 A21 De Maio De.
Rubacha J., Pilch A., Zastawnik M. (2012), Measurements of the Sound Absorption Coefficient of Auditorium Seats for Various Geometries of the Samples, Archives of Acoustics, 37, 4, 483–488, doi: 10.2478/v10168-012-0060-1
Siltanen S., Lokki T., Savioja L. (2010), Rays or Waves? Understanding the Strengths and Weaknesses of Computational Room Acoustics Modeling Techniques, Proceedings of the International Symposium on Room Acoustics, ISRA, 29–31 August 2010, Melbourne, Australia.
Sladek V., Sladek J. (1998), Singular integrals and boundary element methods, Computational Mechanics Publications, Southampton, doi: 10.1016/S0045-7825(97)00239-9.
Sladek V., Sladek J., Tanaka M. (2000), Optimal transformations of the integration variables in computation of singular integrals in BEM, Journal for Numerical Method in Engineering, 47, 12631283, doi: 10.1002/(SICI)1097-0207(20000310)47:7<1263::AID-NME811>3.0.CO;2-I.
Wu C.S., Young D.L., Fan C.M. (2011), Frequency response analyses in vibroacoustics using the method of fundamental solutions, Computational Mechanics-Springer, 47, 519–533, doi: 10.1007/s00466-010-0558-1.
Young D.L., Chen K.H., Lee C.W. (2006), Singular meshless method using double layer potentials for exterior acoustics, The Journal of the Acoustical Society of America, 119, 96–107, doi: 10.1121/1.2141130.