Abstract
The paper formulates some objections to the results of the evaluation of uncertainty in noise measurement which are presented in two standards: PN-ISO 9612 (2004) and DIN 45 641 (1990). In particular, it focuses on an approximation of the equivalent sound level by a function which depends on the arithmetic average of sound levels. Depending on the nature of a random sample the exact value of the equivalent sound level may be significantly different from the approximate one, which might influence on the erroneous estimation of the uncertainty of noise indicators. The article presents an analysis of this problem and the adequacy of the solution depending on the type of the random sample.Keywords:
acoustics, noise measurement, uncertainty in measurement, probability distribution.References
1. Batko W. Bal R. (2014), Verification of the calculation assumptions applied to solutions of the acoustic measurements uncertainty, Archives of Acoustics, 39, 199–202.
2. Batko W. Bal R. (2010), Controlling of violations of the basic assumption of the recurrent assessment model of long-term noise indicators, Archives of Acoustics, 35, 361–369.
3. Batko W. Pawlik P. (2012), Uncertainty Evaluation in Modelling of Acoustic Phenomena with Uncertain Parameters Using Interval Arithmetic, Acta Physica Polonica A, 121, 151-155.
4. Batko W., Przysucha B. (2014), Statistical Analysis of the equivalent noise level, Archives of Acoustics, 39, 195-198 .
5. Batko W., Przysucha B. (2013), Identification of probability distribution form for results of sound level measurements, Mechanics and Control, 32, 6-11.
6. Batko W. Przysucha B. (2010), Determination of the probability distribution of the mean sound level, Archives of Acoustics, 35, 543–550.
7. Batko W. Stępień B. (2010), Application of the bootstrap estimator for uncertainty analysis of the long-term noise indicators, Acta Physica Polonica A, 118, 11–16.
8. DIN 45 641 (1990), Mittelung von Schallpegeln.
9. Gałuszka M. (2010), Statistic distributions of levels and energy in a road traffic noise, Environment Monitoring Conference, Krakow.
10. Guide to the Expression of Uncertainty Measurement, International Organization for Standardization (1995), ISBN 92-67-10188-9.
11. Kamisiński T. , Brawata K., Pilch A., Rubacha J., Zastawnik M. (2012), Test Signal Selection for Determining the Sound Scattering Coefficient in a Reverberation Chamber, Archives of Acoustics 37, 405-409.
12. Magiera R. (2005), Modele i Metody Statystyki Matematycznej [in Polish], Part I, Oficyna Wydawnicza GiS, Wroclaw.
13. PN-ISO 9612 (2004), Akustyka - Wytyczne do pomiarów i oceny ekspozycji na hałas w środowisku pracy.
14. Przysucha B. (2013), Uncertainty analysis in acoustic investigations, 6th International Conference of Young Scientists CSE-2013, p. 124-129, Lviv.
15. Szeląg A., Rubacha J., Kamisiński T. (2013), Narrow frequency range problem of sound reflector arrays, Acta Physica Polonica, 123, 1059–1063.
16. Wszołek T., Kłaczyński M. (2006)., Effect of traffic noise statistical distribution on {L_{Aeq, T}} measurement uncertainty, Archives of Acoustics, 31, 311–318.
2. Batko W. Bal R. (2010), Controlling of violations of the basic assumption of the recurrent assessment model of long-term noise indicators, Archives of Acoustics, 35, 361–369.
3. Batko W. Pawlik P. (2012), Uncertainty Evaluation in Modelling of Acoustic Phenomena with Uncertain Parameters Using Interval Arithmetic, Acta Physica Polonica A, 121, 151-155.
4. Batko W., Przysucha B. (2014), Statistical Analysis of the equivalent noise level, Archives of Acoustics, 39, 195-198 .
5. Batko W., Przysucha B. (2013), Identification of probability distribution form for results of sound level measurements, Mechanics and Control, 32, 6-11.
6. Batko W. Przysucha B. (2010), Determination of the probability distribution of the mean sound level, Archives of Acoustics, 35, 543–550.
7. Batko W. Stępień B. (2010), Application of the bootstrap estimator for uncertainty analysis of the long-term noise indicators, Acta Physica Polonica A, 118, 11–16.
8. DIN 45 641 (1990), Mittelung von Schallpegeln.
9. Gałuszka M. (2010), Statistic distributions of levels and energy in a road traffic noise, Environment Monitoring Conference, Krakow.
10. Guide to the Expression of Uncertainty Measurement, International Organization for Standardization (1995), ISBN 92-67-10188-9.
11. Kamisiński T. , Brawata K., Pilch A., Rubacha J., Zastawnik M. (2012), Test Signal Selection for Determining the Sound Scattering Coefficient in a Reverberation Chamber, Archives of Acoustics 37, 405-409.
12. Magiera R. (2005), Modele i Metody Statystyki Matematycznej [in Polish], Part I, Oficyna Wydawnicza GiS, Wroclaw.
13. PN-ISO 9612 (2004), Akustyka - Wytyczne do pomiarów i oceny ekspozycji na hałas w środowisku pracy.
14. Przysucha B. (2013), Uncertainty analysis in acoustic investigations, 6th International Conference of Young Scientists CSE-2013, p. 124-129, Lviv.
15. Szeląg A., Rubacha J., Kamisiński T. (2013), Narrow frequency range problem of sound reflector arrays, Acta Physica Polonica, 123, 1059–1063.
16. Wszołek T., Kłaczyński M. (2006)., Effect of traffic noise statistical distribution on {L_{Aeq, T}} measurement uncertainty, Archives of Acoustics, 31, 311–318.