Acoustic Estimation of Resonance Frequency and Sonodestruction of SonoVue Microbubbles

Downloads

Authors

  • Rytis JURKONIS Kaunas University of Technology, Biomedical Engineering Institute, Lithuania
  • Nerijus LAMANAUSKAS Vytautas Magnus University, Biophysical Research Group, Lithuania
  • Saulius SATKAUSKAS Vytautas Magnus University, Biophysical Research Group, Lithuania

Abstract

Acoustic properties of ultrasound (US) contrast agent microbubbles (MB) highly influence sonoporation efficiency and intracellular drug and gene delivery. In this study we propose an acoustic method to monitor passive and excited MBs in a real time. MB monitoring system consisted of two separate transducers. The first transducer delivered over an interval of 1 s US pulses (1 MHz, 1% duty cycle, 100 Hz repetition frequency) with stepwise increased peak negative pressure (PNP), while the second one continuously monitored acoustic response of SonoVue MBs. Pulse echo signals were processed according to the substitution method to calculate attenuation coefficient spectra and loss of amplitude. During US exposure at 50–100 kPa PNP we observed a temporal increase in loss of amplitude which coincided with the US delivery. Transient increase in loss of amplitude vanished at higher PNP values. At higher PNP values loss of amplitude decreased during the US exposure indicating MB sonodestruction. Analysis of transient attenuation spectra revealed that attenuation coefficient was maximal at 1.5 MHz frequency which is consistent with resonance frequency of SonoVue MB. The method allows evaluation of the of resonance frequency of MB, onset and kinetics of MB sonodestruction.

Keywords:

SonoVue, microbubble, loss of amplitude, attenuation coefficient, resonance frequency, sonodestruction.

References

1. Amararene J., Fowlkes B., Song J., Miller D. L. (2001) Relationships between scattered signals from ultrasonically activated contrast agents and cell membrane damage in vitro, Ultrasonics Symposium, IEEE, 2, 1751–1754.
2. Becher H., Burns P. N. (2000) Contrast agents for echocardiography: Principles and instrumentation, [in:] Handbook of contrast echocardiography: Left ventricular function and myocardial perfusion, Becher H., Burns P. N. [Eds.], pp.2-44, Springer, Heidelberg.
3. Biagi E., Breschi L., Masotti L. (2005) Transient subharmonic and ultraharmonic acoustic emission during dissolution of free gas bubbles, IEEE Trans Ultrason Ferroelectr Freq Control, 52(6), 1048-1054.
4. Bouakaz A., Frinking P. J., de Jong N., Bom N. (1999) Noninvasive measurement of the hydrostatic pressure in a fluid-filled cavity based on the disappearance time of micrometer-sized free gas bubbles, Ultrasound Med Biol., 25(9), 1407-1415.
5. Casciaro S., Palmizio E. R., Conversano F., Demitri C., Distante A. (2007) Experimental investigations of nonlinearities and destruction mechanisms of an experimental phospholipid-based ultrasound contrast agent, Invest. Radiol., 42(2), 95-104.
6. Chatterjee D., Jain P., Sarkar K. (2005) Ultrasound-mediated destruction of contrast microbubbles used for medical imaging and drug delivery, Phys. Fluids, 17, 100603-1-8.
7. Chen Q., Zagzebski J., Wilson T., Stiles T. (2002) Pressure-dependent attenuation in ultrasound contrast agents, Ultrasound Med. Biol., 28(8), 1041-1051.
8. de Jong N., Hoff L., Skotland T., Bom N. (1992) Absorption and scatter of encapsulated gas filled microspheres: theoretical considerations and some measurements, Ultrasonics, 30(2), 95-103.
9. Dicker S., Mleczko M., Siepmann M., Wallace N., Sunny Y., Bawiec C. R., Schmitz G., Lewin P., Wrenn S. P. (2013) Influence of shell composition on the resonance frequency of microbubble contrast agents, Ultrasound Med Biol., 39(7), 1292-1302.
10. Emmer M., Vos H. J., Goertz D. E., van Wamel A., Versluis M., de Jong N. (2009) Pressure-dependent attenuation and scattering of phospholipid-coated microbubbles at low acoustic pressures, Ultrasound Med Biol., 35(1), 102-111.
11. Escoffre J.M., Novell A., Piron J., Zeghimi A., Doinikov A., Bouakaz A. (2013) Microbubble Attenuation and Destruction: Are They Involved in Sonoporation Efficiency? IEEE Trans Ultrason Ferroelectr Freq Control, 60(1), 46-52.
12. Fan Z., Chen D., Deng C. X. (2014) Characterization of the dynamic activities of a population of microbubbles driven by pulsed ultrasound exposure in sonoporation, Ultrasound Med Biol., 40(6), 1260-1272.
13. Goertz D. E., Cherin E., Needles A., Karshafian R., Brown A. S., Burns P.N., Foster F. S. (2005) High Frequency Nonlinear B-Scan Imaging of Microbubble Contrast Agents, IEEE Trans Ultrason Ferroelectr Freq Control, 52(1), 65-79.
14. Goertz D. E., de Jong N., van der Steen A. F. (2007) Attenuation and size distribution measurements of Definity and manipulated Definity populations, Ultrasound Med. Biol., 33(9), 1376-1388.
15. Goertz D. E., Frijlink M. E., de Jong N., van der Steen A. F. (2006) High frequency nonlinear scattering from a micrometer to submicrometer sized lipid encapsulated contrast agent, Ultrasound Med Biol., 32(4), 569-677.
16. Krasovitski B., Kimmel E., Sapunar M., Adam D. (2004) Ultrasound attenuation by encapsulated microbubbles: time and pressure effects, Ultrasound Med Biol., 30(6), 793-802.
17. Lamanauskas N., Novell A., Escoffre J. M., Venslauskas M., Satkauskas S., Bouakaz A. (2013) Bleomycin delivery into cancer cells in vitro with ultrasound and SonoVue® or BR14® microbubbles, J. Drug Target, 21(4), 407-414.
18. Loreto B., Feril Jr., Takashi K., Qing-Li Z., Ryohei O., Katsuro T., Nobuki K., Shinichi F., Shinobu N. (2003) Enhancement of ultrasound-induced apoptosis and cell lysis by echo-contrast agents, Ultrasound Med. and Biol., 29(2), 331-337.
19. Luan Y., Faez T., Gelderblom E., Skachkov I., Geers B., Lentacker I., van der Steen T., Versluis M., de Jong N. (2012) Acoustical properties of individual liposome-loaded microbubbles, Ultrasound Med Biol., 38(12), 2174-2185.
20. Piron J., Escoffre J. M., Kaddur K., Novell A., Bouakaz A. (2012) Enhanced gene transfection using ultrasound and Vevo Micromarcer microbubbles, Ult. Sym. 10, 1109.
21. Postema M., Bouakaz A., de Jong N. (2004) Noninvasive microbubble-based pressure measurements: a simulation study, Ultrasonics, 42(1-9), 759-762.
22. Postema M., Schmitz G. (2007) Ultrasonic bubbles in medicine: influence of the shell, Ultrasonics Sonochemistry, 14(4), 438-444.
23. Sarkar K., Shi W.T., Chatterjee D., Forsberg F. (2005) Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation, J. Acoust. Soc. Am., 118(1), 539-550.
24. Stolz E., Allendörfer J., Jauss M., Traupe H., Kaps M. (2002) Sonographic harmonic grey scale imaging of brain perfusion: scope of a new method demonstrated in selected cases, Ultraschall. Med., 23(5), 320-324.
25. Tamosiunas M., Jurkonis R., Mir L. M., Lukosevicius A., Venslauskas M.S., Satkauskas S. (2012) Adjustment of ultrasound exposure duration to microbubble sonodestruction kinetics for optimal cell sonoporation in vitro, Technol. Cancer Res. Treat., 11(4), 375-387.
26. Tang M. X., Eckersley R. J. (2007) Frequency and pressure dependent attenuation and scattering by microbubbles, Ultrasound Med Biol., 33(1), 164-168.
27. Tang M. X., Eckersley R.J., Noble J.A. (2005) Pressure-dependent attenuation with microbubbles at low mechanical index, Ultrasound Med. Biol., 31(3), 377-384.
28. van Wamel A., Kooiman K., Harteveld M., Emmer M., ten Cate F.J., Versluis M., de Jong N. (2006) Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation, J. Control Release., 112(2), 149-155.