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In Memoriam

Professor Andrzej Stepnowski

1940 – 2024

Professor Andrzej Stepnowski was born in Biała
Podlaska on 4 January 1940, the son of a lawyer cou-
ple who settled in Gdańsk after the war. Between 1958
and 1964, he studied at the then Faculty of Communi-
cations of Gdańsk University of Technology, and was
a prominent member of the board of the Polish Stu-
dents’ Association. In 1964, he earned his master’s de-
gree in electronics with a focus on radiolocation, and
became an assistant at the Department of Radionav-
igation, where he conducted hydroacoustics research.
This research resulted in the development of a world-
class computer-based system for fish stock estimation,
which was installed aboard the RV Profesor Siedlecki

as part of the FAO research programme. Professor An-
drzej Stepnowski was awarded the title of Master of
Polish Technology for his work. After passing his doc-
toral examination with distinction in 1974, he went on
to obtain his habilitation degree (postdoctoral degree)
in 1992. His research in both cases was related to the
hydroacoustics of fishing. In 2004, he was awarded
the title of professor.

Between 1983 and 1985, he was the head of the De-
partment of Hydroacoustics, and from 1994 to 1999,
he chaired the Department of Environmental Acous-
tics, and then became the head of the Department of
Telemonitoring Systems and Department of Geoinfor-
matics Systems – he held these positions until 2011.

From 1996 to 1999, he was the Vice-Dean for Research
at the Faculty of Electronics, Telecommunications and
Informatics, and served as the Vice-President for re-
search of the Gdańsk University of Technology between
2002 and 2005.

Professor Stepnowski was a world-renowned expert
on underwater acoustics, and participated in research
internship programmes at the Massachusetts Institute
of Technology in the US and the IRPeM Research In-
stitute of the National Research Council of Italy in
Ancona. He was also a visiting professor at four uni-
versities around the world – in the US, Canada, Turkey
and Indonesia – he also served as a UN expert on food
security and agriculture, editor for the Acta Acustica

journal and vice president for Europe of the IEEE Na-
tional Security Committee.

In the 2000s, Professor Stepnowski’s research inter-
ests also included geoinformatics, an important aspect
of which is the collection of data using hydroacoustic
methods. He was the founder and later also the chair
of the supervisory board of C-Map Poland, the coun-
try’s pioneering geoinformatics business, which be-
came Jeppesen Poland, part of the Boeing corporation,
in 2007.

Professor Stepnowski’s scholarly achievements in-
clude two monographs, more than 250 research papers,
eight patents and more than 30 successful research and

https://acoustics.ippt.pan.pl/index.php/aa/index
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implementation projects. He was the advisor for seven
successful doctoral students, three of whom would go
on to earn habilitation degrees (postdoctoral degrees).
The mobile satellite urban navigation system for the
visually impaired, Voice Maps, developed under his su-
pervision, was awarded a gold medal at the Technolog-
ical Innovation Fair in Brussels in 2014.

Professor Stepnowski was also a prominent contrib-
utor to several scientific societies. He was a member of
the Acoustics Committee of the Polish Academy of Sci-

ences and a member and secretary general of the Polish
Acoustics Society, as well as organiser of the Hydroa-
coustics Symposia and various international acoustics
conferences.

He was awarded a Knight’s Cross and an Officer’s
Cross of the Order of Polonia Restituta, a Medal of
the Commission of National Education and a Medal
of Merit for the Gdańsk University of Technology.

Professor Roman Salamon
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Speech Emotion Recognition Using a Multi-Time-Scale Approach

to Feature Aggregation and an Ensemble of SVM Classifiers
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Faculty of Computer Science, Białystok University of Technology
Białystok, Poland
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Due to its relevant real-life applications, the recognition of emotions from speech signals constitutes a popu-
lar research topic. In the traditional methods applied for speech emotion recognition, audio features are typically
aggregated using a fixed-duration time window, potentially discarding information conveyed by speech at vari-
ous signal durations. By contrast, in the proposed method, audio features are aggregated simultaneously using
time windows of different lengths (a multi-time-scale approach), hence, potentially better utilizing information
carried at phonemic, syllabic, and prosodic levels compared to the traditional approach. A genetic algorithm
is employed to optimize the feature extraction procedure. The features aggregated at different time windows
are subsequently classified by an ensemble of support vector machine (SVM) classifiers. To enhance the gener-
alization property of the method, a data augmentation technique based on pitch shifting and time stretching
is applied. According to the obtained results, the developed method outperforms the traditional one for the
selected datasets, demonstrating the benefits of using a multi-time-scale approach to feature aggregation.

Keywords: speech emotion recognition; feature aggregation; ensemble classification.

Copyright © 2024 The Author(s).

This work is licensed under the Creative Commons Attribution 4.0 International CC BY 4.0
(https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Since the publication of Picard’s seminal report
in 1995 (Picard, 1995), “affective computing”, which
concerns the identification, modelling, and reacting
to human emotions by machines, has played an in-
creasingly important role in the development of ar-
tificial intelligence algorithms. A growing interest of
researchers in the area of affective computing is driven
by the demands for emotion-aware applications. For
example, the algorithms processing human emotions
could be applied in health and safety systems, call
centers, marketing recommenders, and forensic soft-
ware. While human emotions could be recognized us-
ing a variety of methods, including facial recogni-
tion (Jain et al., 2019), analysis of body movements
(Zacharatos et al., 2021), or through the exploration
of physiological data (Yang et al., 2023), the scope of
this paper is limited to the identification of emotions
based solely on speech signals.

The methods applied to computational emotions
recognition can be divided into the following two

groups. The first one consists of the algorithms us-
ing the audio feature extractors combined with the
classical machine learning algorithms. The second one
is based on modern deep learning algorithms such as
the convolutional neural networks. The performance
of the speech emotion recognition methods has recently
greatly improved, primarily due to the incorporation of
the aforementioned deep learning techniques (Khalil
et al., 2019; Pandey et al., 2019). The main advan-
tage of deep learning techniques, over the traditional
methods, is that they normally do not require any fea-
ture extraction procedure, typically engineered manu-
ally by domain experts. The speech signals are either
fed to the inputs of the deep learning algorithms di-
rectly (Tzirakis et al., 2018) or indirectly through
some form of intermediate transformations, most no-
tably spectrograms (Eskimez et al., 2018; Choi et al.,
2018; Zhao et al., 2018; 2019; Zhang et al., 2020;
Guizzo et al., 2020; Tang et al., 2021). Nevertheless,
the methods based on the deep learning approach still
exhibit some limitations. For example, they require rel-
atively large data sets for training. Moreover, they may

https://acoustics.ippt.pan.pl/index.php/aa/index
https://orcid.org/0000-0002-3205-974X
mailto:s.zielinski@pb.edu.pl
https://creativecommons.org/licenses/by/4.0/
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suffer from over-learning during memorization of layer-
wise information (Khalil et al., 2019). Furthermore,
due to their relatively high computational complexity,
the optimization of the deep learning algorithms typ-
ically consumes more electric energy compared to the
traditional techniques (the aspect of energy-efficiency
of machine learning algorithms is often overlooked
in the scientific literature (García-Martín et al.,
2019)). Hence, the traditional algorithms should not
yet be considered as obsolete.

In this paper, we present an improved version of the
traditional method applied to speech emotion recogni-
tion. In traditional speech emotion recognition algo-
rithms, input signals are analyzed using a time win-
dow of a constant duration (Omman, Eldho, 2022;
Seknedy, Fawzi, 2022; Shahin, 2020). Such an ap-
proach is based on an implicit assumption that the
features analyzed using a fixed-duration time window
capture sonic information equally well at a microscopic
level (allophones, phones, syllables) and a macrosco-
pic level (words, sentences). However, the way certain
emotions affect the articulation of phonemes may be
different from the way they influence the pronuncia-
tion of words or sentences (prosodic characteristics).
The above assumption motivated these authors to de-
sign a method that explicitly takes into account infor-
mation at multiple time scales. Such a strategy could
be referred to as a multi-time-scale (MTS) approach
to feature aggregation.

In machine audition, MTS methods are not new.
For example, they proved to be effective in the area of
respiratory sound classification (Monaco et al., 2020).
More recently, Guizzo et al. (2020) have redesigned
a standard convolutional neural network to take into
account multiple time scales, demonstrating the su-
periority of such an approach compared to the stan-
dard convolutional networks when applied to speech
emotion recognition. However, to the best of the au-
thors’ knowledge, no one has attempted to introduce
MTS techniques to the “traditional” classification al-
gorithms in the field of speech emotion recognition.

The main contribution of this work is to demon-
strate that the performance of the traditional meth-
ods can be improved by aggregating features concur-
rently using time windows of different lengths (MTS
approach). Such an approach could be likened to tak-
ing pictures with a camera equipped with a set of
different focal lenses, allowing a photographer to si-
multaneously acquire both micro- and macroscopic
views of a photographed scene. The additional nov-
elty of this work is the application of a genetic algo-
rithm to optimize the parameters of the feature ex-
tractors. In machine learning, genetic algorithms are
typically exploited for the purpose of feature “selec-
tion” (Sayed et al., 2019; Jadhav et al., 2018). Ap-
plication of genetic algorithms for tuning feature ex-
tractors is very rare. In this study, a genetic algorithm

was used to optimize the feature extractor responsible
for the derivation of the Mel-frequency cepstral coeffi-
cients (MFCC). Although the research indicates that
the parameters employed in the MFCC extraction al-
gorithm should be optimized for a given task (Sahoo,
Routray, 2016), undertaking a comprehensive opti-
mization of MFCC extractors still constitutes an un-
common practice. Unlike most of the researchers, in
this study, the authors decided to optimize 13 param-
eters of the MFCC extraction algorithm. Due to a rel-
atively large number of parameters to be optimized,
a popular grid-search optimization technique turned
out to be impractical. While a genetic algorithm is
commonly regarded as computationally demanding, in
this study it proved to be more resourceful compared
to the aforementioned grid-search technique.

To enhance the generalization property of the
method, a data augmentation technique based on pitch
shifting and time stretching was applied. In general,
applying pitch shifting and time stretching effects to
a speech signal may distort the overall prosody of the
utterance, weakening its emotional expression. How-
ever, according to the research in the area of speech
emotion recognition, the original emotional charac-
teristics of speech signals may still be preserved if
the above modulation processes are applied conser-
vatively (Mohino-Herranz et al., 2014; Tao et al.,
2023). Therefore, care was taken by the authors in em-
ploying pitch shifting and time stretching algorithms
to maintain the original emotional characteristics of
the speech recordings.

The proposed method was evaluated using five
publicly available speech corpora, namely: CREMA-D
(Cao et al., 2014), eNTERFACE (Martin et al., 2006),
RAVDESS (Livingstone, Russo, 2018), SAVEE
(Haq, Jackson, 2011), and TESS (Pichora-Ful-
ler, Dupuis, 2020). The method was tested both un-
der speaker-dependent and speaker-independent con-
ditions. Moreover, its generalization property was also
evaluated using cross-corpus tests. According to the
obtained results, the developed method outperforms
or it is comparable to the traditional ones for the se-
lected datasets, demonstrating the benefits of using the
MTS approach to feature aggregation.

The paper is organized as follows. In the next sec-
tion we give an overview of the work of other re-
searchers in the area of speech emotions recognition.
In Sec. 3 we explain the methodology applied in our
study. The obtained results are described in Sec. 4.
The discussion of the obtained results and the conclu-
sions are provided in Secs. 5 and 6, respectively.

2. Related work

Since the pioneering work of Picard (1995), the
topic of the automatic speech emotion recognition
has been investigated by many scientists, resulting
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in a considerable body of research. Table 1 overviews in
chronological order the example studies in this area
published over the past thirteen years. They were arbi-
trarily selected by these authors. The studies presented
in the table are limited to the traditional algorithms as
they are pertinent to the work presented in this paper.
The methods based on deep learning techniques have
been omitted from the table. An interested reader is re-
ferred to papers by Khalil et al. (2019) and Pandey
et al. (2019), for comprehensive reviews of deep learn-
ing techniques and their applications to speech emotion
recognition.

In the traditional methods used for speech emotion
recognition, a classical two-stage machine-learning
topology is used. It consists of an audio feature
extractor followed by a classification algorithm. The
features derived in the feature extractor typically
include Mel-frequency cepstral coefficients (MFCC),
linear predictive coding (LPC) coefficients, signal en-

Table 1. Overview of the traditional methods used for speech emotions recognition since the year 2005
(in chronological order).

Reference Model Model input data Corpus
Number

of emotions

Reported
accuracy

[%]

Lin, Wei

(2005)

HMM
F0, energy, F1-4, MFCC1-2,
MBE1-5 with SFS selection DES 5

99.5

SVM MEDC 88.9

Majkowski et al.
(2016)

KNN RMS, energy, MFCC1-12,
delta features, ZCR, F0, SCG,
SF, SRO with SFS selection

Polish radio broadcasts 6

75.6

LDA 80.5

SVM 79.2

Ghaleb et al.
(2019)

SVM
low-level energy descriptors,

spectral, vocal delta coefficients

CREMA-D
6

56.2

eNTERFACE 55.9

Shahin

(2020)

HMM
(two-stage)

MFCC in Arabic 6

72.8

GMM 63.3

SVM 64.5

VQ 61.5

Abdel-Hamid

(2020)

SVM pitch, intensity, formants,
MFCC, LTAS, wavelet features

EYASE 4
66.8

KNN 61.7

Seknedy, Fawzi

(2021)

MLP

RMS, MFCC1-12, ZCR,
voicing probability, F0

RAVDESS 8

64.93

SVM 70.56

RF 59.31

LR 62.64

Seknedy, Fawzi

(2022)

MLP
MFCC1-40,

Mel-spectrogram1-128,
Chroma1-12, Tonnetz,

Contrast1-8, RMS

EYASE 4

62.4

SVM 50.6

RF 62.4

LR 62.9

MLP + SVM
+ RT + LR
(ensemble)

65.1

Omman, Eldho

(2022)
SVM (ensemble)

MFCC, ∆MFCC,
∆∆MFCC,

spectral subband centroids,
logfbank

RAVDESS 8 80.07

Cao et al.
(2022)

Hessian-based
subspace learning
+ domain adaption

MFCC, ∆MFCC,
∆∆MFCC, LPC, LAFC,

Philips fingerprint,
spectral entropy

EMO-DB, NNIME,
IEMOCAP,

MSP-IMPROV,
MSP-PODCAST

4 54.93

ergy, fundamental frequency (F0), and zero-crossing
rate (ZCR), as exemplified in the third column in
Table 1. The classical machine learning algorithms
are commonly utilized as classifiers, most notably
support vector machines (SVM), random forests (RF),
multilayer perceptrons (MLP), Gaussian mixture
models (GMM), techniques employing linear discrimi-
nant analysis (LDA), hidden Markov models (HMM),
dynamic time-warping (DT), and K-nearest neighbors
(KNN) (cf. the second column in Table 1). The most
recent studies in the area of speech emotion recogni-
tion have demonstrated that the performance of the
traditional methods could be improved by the incorpo-
ration of the ensemble of classifiers (Seknedy, Fawzi,
2022; Omman, Eldho, 2022). Moreover, evolutionary
algorithms, such as genetic algorithms, could be
successfully used to further enhance their performance
(Wang, Huo, 2019; Liu et al., 2018). However, as al-
ready emphasized in Sec. 1, the genetic algorithms are
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predominantly used for feature selection (Kanwal,
Asghar, 2021; Yildirim et al., 2021; Sidorov et al.,
2014), whereas in our study they were employed to
optimize the parameters of the feature extractors.

Note that the emotion recognition accuracy re-
ported by an early work of Lin and Wei (2005) (cf. top
row of Table 1) exceeds the accuracy levels reported by
many other authors, including the most recent work of
Cao et al. (2022) (cf. the bottom row of the table).
This observation highlights the difficulty in the direct
comparison across the studies, caused by the differen-
ces in the number of investigated emotions, differences
in speech corpora characteristics, or differences in test-
ing procedures (e.g., dissimilar proportions between
the train and test sets), just to mention a few factors.
Therefore, caution has to be exercised when compar-
ing the methods based on a single accuracy metric or
a particular testing procedure.

The speech corpora used for evaluation of the
methods can be divided into three groups according
to the way the emotions were evoked, namely: acted,
elicited, and natural. See the work of Basu et al. (2017)

Table 2. Overview of the speech corpora employed in this study.

Corpus Reference
Number

of speakers
Number

of utterances

Duration
of utterances

[s]
Emotion
categories

Emotion
types

Min. Mean Max

CREMA-D
Cao et al.

(2014)
92 7441 0.59 2.19 5.00

Happiness (1271)∗

Sadness (1270)
Fear (1271)

Anger (1271)
Disgust (1271)
Neutral (1087)

acted

RAVDESS
Livingstone, Russo

(2018)
24 1248 1.00 1.74 4.21

Happiness (192)
Sadness (192)
Surprise (192)

Fear (192)
Anger (192)
Disgust (192)
Neutral (96)

acted

SAVEE
Haq, Jackson

(2011)
4 480 0.86 3.22 7.14

Happiness (60)
Sadness (60)
Surprise (60)

Fear (60)
Anger (60)
Disgust (60)
Neutral (120)

acted

TESS
Pichora-Fuller, Dupuis

(2020)
2 2800 1.13 1.90 2.86

Happiness (400)
Sadness (400)
Surprise (400)

Fear (400)
Anger (400)
Disgust (400)
Neutral (400)

acted

eNTERFACE
Martin et al.

(2006)
10 1287 0.71 2.11 6.30

Happiness (212)
Sadness (215)
Surprise (215)

Fear (215)
Anger (215)
Disgust (215)

elicited

∗ Number of recordings representing a given emotion category.

for the differentiation between these three groups. The
speech corpora overviewed in Table 1 (fourth column)
predominantly represent acted emotions (Lin, Wei,
2005; Ghaleb et al., 2019; Abdel-Hamid, 2020;
Seknedy, Fawzi, 2021; 2022; Omman, Eldho, 2022;
Cao et al., 2022). In the studies of Ghaleb et al.
(2019) and Cao et al. (2022) in addition to the
datasets incorporating acted emotions, the corpora
employing elicited emotions were used as well. The
remaining studies presented in Table 1 used either
private corpora with an unknown type of emotions
or corpora in which types of emotions are mixed or
hard to verify (e.g., broadcasts). As mentioned earlier,
the differences in the characteristics between the
speech corpora could constitute a confounding factor
when comparing the results. Therefore, it is imperative
to employ several corpora when evaluating a given
method. One of the most challenging evaluation
scenarios involves testing new methods using corpora
that were not “seen” during the training procedure
(cross-corpus tests), including corpora representing
different demographic, social, cultural, or language
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characteristics (Su, Lee, 2021; Seknedy, Fawzi, 2021;
Tamulevičius et al., 2020; Milner et al., 2019;
Kaya, Karpov, 2018; Cao et al., 2022). In line with
the abovementioned observations, in the present study,
five following corpora were used, namely: CREMA-D
(7441 utterances, 44 female and 48 male speakers),
RAVDESS (1248 utterances, 12 female and 12 male
speakers), SAVEE (480 utterances, 4 male speakers),
TESS (2800 utterances, 2 female speakers), and eN-
TERFACE (1,287 utterances, 5 female and 5 male
speakers). All of these datasets were recorded in En-
glish. Only the eNTERFACE dataset contained record-
ings of elicited emotions, as the other four corpora
represented acted emotions obtained from amateur or
professional voice actors. Table 2 provides a detailed
overview of the five corpora used in this study. In ad-
dition to speaker-dependent and speaker-independent
tests, a cross-corpus test was also included in the eval-
uation procedure.

3. Method

The conceptual topology of the proposed algorithm
is shown in Fig. 1a. It consists of an ensemble of the fea-
ture extractors (FE) coupled with the individual SVM
classifiers. The prediction of the emotion category is
undertaken using the ensemble voting model. The dis-
tinct aspect of the proposed method is that the feature
extraction procedure is concurrently undertaken using
long-term, mid-term, and short-term time windows, as
depicted in the figure. Their duration is adjusted adap-
tively, depending on the duration of the original ex-
cerpts, although it does not exceed 7 s for long-term
windows, 2.33 s for mid-term windows, and 0.7 s for
short-term windows.

The algorithm depicted in Fig. 1a is computation-
ally inefficient since for the long-term, mid-term, and
short-term windows, the same set of the “primary” fea-
tures has to be calculated. The phrase “primary featu-
res” is used in this paper to denote the metrics calcu-
lated in the feature extractors such as the zero-crossing
rate, whereas the expression “secondary features” rep-
resents the statistics derived from the primary featu-
res. A computationally optimized topology of the pro-
posed method is illustrated in Fig. 1b. It consists of
the single feature extractor (FE), providing a set of pri-
mary features, and the ensemble of the feature aggrega-
tors (FA) coupled with the individual SVM classifiers.
The role of the feature aggregators (FA) is to convert
specific parts of primary features into secondary sta-
tistical features.

In this study, a computationally optimized version
of the algorithm has been implemented (Fig. 1b). Its
constituent blocks are described in detail in the sub-
sequent sections. More information on the MTS ap-
proach proposed in this study is provided in Sub-
sec. 3.3.

a)

Predicted 
emotion 
category

Long-term window ∆tLT

SVM LTFELT

Mid-term windows  ∆tMT

SVM MT1FEMT1

SVM MT2FEMT2

SVM MT3FEMT3

Short-term windows ∆tST
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SVM ST2FEST2
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Speech 
signal

b)

Predicted 
emotion 
category

Long-term window ∆tLT

FA LT

Mid-term windows ∆tMT

FA MT1

FA MT2

FA MT3
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SVM MT2
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Fig. 1. Multi time-scale speech emotion classification
method: a) conceptual algorithm; b) computationally op-

timized algorithm.

The number of recognizable emotion classes de-
pended on the dataset used in the training stage. In
this work, the focus has been put on the Ekman ba-
sic emotion set, comprising such emotion categories as
anger, joy, disgust, sadness, fear, and surprise (Ek-
man, 1992), with the addition of the “neutral” emotion
class representing utterances that were not emotio-
nally charged, resulting in maximum of 7 classes in
total. In some evaluation cases, a subset of this basic
emotion set has been taken into consideration due to
the dataset limitations (but never being smaller than
5 emotion classes).

3.1. Feature extraction

Prior to undertaking the feature extraction proce-
dure, essential pre-processing tasks were carried out.
Namely, the leading and the trailing silence of every
recording was trimmed. The silence cutoff point in
each recording was the first sample of which the ab-
solute value exceeded 5% of the maximum absolute
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value of all samples in the recording. To equalize the
audio signals’ variance, each recording has been further
z-standardized. Since the sample rate in the proposed
algorithms was set to 44 100 Hz, all the audio record-
ings with a miss-matched sample rate were resampled
accordingly.

For each recording, the signal was divided into
time-frames of 1102 samples each, with an overlap of
827 samples. Such unusual values were adopted in this
study, since the employed genetic algorithm (described
in Subsec. 3.2) proved those values to be the best in
the context of this experiment. Since the sample rate
of the audio signals equaled 44 100 Hz, the duration of
a single time-frame amounted to approximately 25 ms
of which around 19 ms overlapped with the neighbor-
ing frame. The Hann window was applied to the sig-
nals in each frame. Similarly as before, the choice of the
window-type was determined by the genetic algorithm.
Finally, the features were extracted for each frame.

The following features have been taken into ac-
count: MFCC (20 coefficients), ZCR coefficient, fun-
damental frequency, and spectral flux, yielding 23
features in total. Additionally, the delta and delta-
delta values were computed for ZCR, fundamental fre-
quency, and spectral flux, respectively, as they provide
information on abrupt changes and transitions of those
features. Ultimately, for each audio frame, a prima-
ry feature vector of size 29 was computed. All of the
features were calculated using the Essentia toolbox
(Bogdanov et al., 2013). For all the configuration pa-
rameters unspecified in this paper, default values pro-
vided by the toolbox were used.

3.2. Genetic algorithm

While most of the features were relatively straight-
forward to calculate, the estimation of MFCC turned
out to be a more demanding task. The Essentia MFCC
extractor takes 13 different parameters, including the

Table 3. Parameters of the MFCC extraction algorithm optimized by the genetic algorithm.

Parameter Considered values Genetic algorithm results

Number of Mel coefficients 10, 13, 20, 40, 80, 120 20

Frame size (in samples) 512, 756, 1024, 1102 1102

Window type Hamming, Hann Hann

Mel scale implementation method
Auditory Toolbox (Slaney, 1998),
HTK toolkit (Young et al., 2006)

Auditory Toolbox

Logarithmic compression type Natural, power, magnitudes, logarithmic Magnitudes

Discrete cosine transform type II, III III

Normalization method Unit sum, unit triangle, unit max Unit triangle

The upper bound of the frequency range [Hz] 6000, 8000, 16 000, 20 000 16 000

The lower bound of the frequency range [Hz] 0, 50, 100, 200, 500 50

The number of Mel-bands in the filter 26, 128 128

Type of weighting function for determining triangle area Warping, linear Warping

Type of spectrum Magnitude, power Power

The liftering coefficient 0, 22, 10, 40, 100 40

number of Mel-frequency coefficients, the number of
Mel-frequency bands, upper and lower bounds of the
frequency range, discrete cosine transform type, type
of spectrum, and the liftering coefficient. Hence, man-
ual tuning proved to be a challenge and a need for an
appropriate optimization method arose. The complete
list of the optimized parameters is provided in Table 3.

While the popular greedy optimization algorithm
Grid Search is usually very effective for parameter tun-
ing, for this exact problem its computational complex-
ity turned out to be impractical. Therefore, an alter-
native optimization method was utilized, namely the
Genetic algorithm (Mitchel, 1996). In the context of
this study, it is more computationally efficient than
Grid Search as it avoids undertaking checks for every
possible solution. According to the literature, genetic
algorithms are most often utilized in the feature se-
lection process and classifier hyperparameter optimi-
zation (Kanwal, Asghar, 2021; Wang, Huo, 2019).
By contrast, in this study, a genetic algorithm has
been deployed to tune the parameters of the MFCC
extractor. The parameter values determined during
this search were subsequently used in the Essentia ex-
tractor to calculate the MFCC coefficients. The ge-
netic algorithm was implemented by the first author as
a multithreaded Python script. For reproducibility of
the research, the developed code is included in the pub-
licly available repository at GitHub (Stefanowska,
Zieliński, 2023).

The properties of the implemented genetic algo-
rithm are overviewed in Table 4. A specimen in this
problem is understood to be a specific parameter value
combination from the set of considered values for each
parameter. The fitness value for each specimen is calcu-
lated by extracting MFCC using its parameter values,
training a single SVM classifier with those extracted
coefficients, and checking its accuracy on a validation
set. All the fitness values were calculated using
the RAVDESS dataset (Livingstone, Russo, 2018)
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Table 4. Properties of the genetic algorithm.

Property Value

Maximum population size 10

Potential parent selection method 3-way tournament

Potential parent number 5

Crossover probability 0.7

Mutation probability 0.5

and then cached to save the computational power in
case of reoccurring specimens. The basic properties of
the genetic algorithm were picked based on how effec-
tively they seemed to perform in the few initial itera-
tions (Table 4). A relatively high mutation probability
proved to help with reaching more effective specimens
quicker.

For every parameter, a finite set of possible values
was specified (Table 3). Certain parameters were nu-
merical and their possible values were selected empir-
ically, others were categorical (e.g., the Mel scale im-
plementation method), and their possible values were
already provided by the toolbox. The best set of fi-
nal parameter values (see the last column in Table 3)
was determined after 120 iterations of the genetic al-
gorithm. A properly tuned MFCC extractor proved
to significantly increase the accuracy of the trained
model, as illustrated in Fig. 2.

Fig. 2. Example learning curve of the genetic algorithm.

3.3. Multi-time-scale approach to feature aggregation

The primary features calculated by the FE, as de-
scribed in the previous sections, are then processed us-
ing an ensemble of the FA. Each feature aggregator
takes a specific “slice” of the primary features, accord-
ing to the size of the corresponding time window. The
following statistics are calculated in the process of
the feature aggregation: mean values, standard devia-
tions, minimum and maximum values, as well as lower
and upper quartiles, yielding the set of 203 secondary
features at the output of each feature aggregator. In ac-
cordance with the typical practice in machine audi-
tion, the secondary features are further z-standardized
(Kreyszig, 1979).

According to the proposed topology, the algorithm
consists of the three blocks signified by the shaded ar-
eas in Fig. 1b, each utilizing a different time window
length. The top-most block comprises a single feature
aggregator FALT connected to its associated classi-
fier (SVMLT). A long-term window ∆tLT of the fea-
ture aggregation is used in this block. The duration
of the time-window is in this case set to the dura-
tion of the whole utterance, constrained to 7 s maxi-
mum. In other words, the primary features are ag-
gregated for the initial 7 s of each utterance. If the
recording exceeds that limit, it is trimmed to the maxi-
mum permissible length of 7 s. It is presumed that the
top-most block is responsible for capturing and pro-
cessing the prosodic features from the whole speech
utterance. Note that the way the signal is processed
using the top-block (in isolation from the remaining
two blocks) could be considered as the standard ap-
proach, commonly applied by the researchers in the
field of speech emotion recognition (Omman, Eldho,
2022; Seknedy, Fawzi, 2022; Abdel-Hamid, 2020;
Ghaleb et al., 2019). Therefore, in this study this part
of the algorithm is considered as the “baseline” method.

In the middle block depicted in Fig. 1b, the
long-term window is divided into the three overlap-
ping mid-term windows of maximum duration equal
to ∆tMT = 2.33 s each, with an overlap of approxi-
mately 0.1 s. These windows are responsible for divid-
ing all the primary features into the ones representing
the initial, middle, and ending part of each utterance,
respectively. The primary features from these three
mid-term time windows are then processed individu-
ally by the three feature aggregators. The statistics
calculated by the feature aggregators are the same as
the ones described above in the case of the long-term
window. In the next step, the secondary features de-
rived by the feature aggregators are fed to the three
SVM classifiers. Due to the shorter length of the win-
dow of analysis, it could be supposed that the middle
block would better utilize information conveyed by in-
dividual words.

The finest temporal resolution is exhibited by the
bottom-block shown in Fig. 1b. In this case the long-
term window of analysis is divided into ten overlap-
ping short-term windows. Consequently, the window
of analysis is further reduced down to ∆tST = 0.7 s at
most, with an overlap of 0.05 s. The primary features
encompassed by each of the ten short-term windows
are processed independently by the ten feature aggre-
gators, and then the ten classifiers. Out of the three
blocks included in the algorithm, the bottom one is the
most complex, as it consists of the ten feature aggrega-
tors combined with the ten associated SVM classifiers.
It could be hypothesized that the bottom-block would
be particularly efficient in capturing and processing in-
formation represented by short words or syllables. In
total, each speech utterance is concurrently analyzed
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and classified using 14 time windows (one long-term,
three mid-term, and ten short-term windows).

3.4. Classification algorithm

The support vector machine (SVM) classifier was
selected as the base model for the proposed method.
SVM is one of the most commonly used traditional
machine learning techniques, which despite being po-
tentially less effective than modern deep learning mod-
els, still prove advantageous in certain cases – es-
pecially when available datasets are sparse or too
small to train effective deep models (Omman, Eldho,
2022; Seknedy, Fawzi, 2022; Abdel-Hamid, 2020;
Ghaleb et al., 2019; Shahin, 2020). In the proposed
method, the SVM’s hyperparameters are optimized us-
ing the Grid Search algorithm. The parameters cho-
sen for tuning include the SVM’s C coefficient with
possible values of 0.1, 1, and 10; gamma coefficient
with possible values of 1

feature number
×0.1, 1

feature number
,

1

feature number
× 10; and the Kernel function that might

be chosen to be linear, polynomial of the 3rd degree,
or radial basis function (RBF).

Another parameter that gets optimized by the Grid
Search algorithm, yet does not belong to SVM’s hyper-
parameters, is the number of selected features that are
used as the final input vector. The list of possibilities
include: X = 100, 90, 50 or 25% of all the original fea-
tures. This optimized value is used at the feature selec-
tion stage, which consists of filtering out all the con-
stants and then utilizing the selection method based
on the ANOVAF statistic from the scikit-learn library
(Pedregosa et al., 2011). A rank of features is cre-
ated, of which only top X features with the best score
get selected (as mentioned previously, the X value is
determined by the optimization algorithm). The se-
quential process of parameter tuning, feature selection
and classifier training were managed with the use of
the pipeline tool from the scikit-learn toolbox (Pe-
dregosa et al., 2011).

3.5. Ensemble voting model

To make use of all the micro and macro informa-
tion contained in each of the statistical feature vectors
obtained as described in the previous sections, they
were used as inputs for separate SVM classifiers which
were then combined into an ensemble voting classifier
(cf. Fig. 1). The final assembling stage involved build-
ing the voting classifier. The soft voting method was
utilized. The winning class is the one with the great-
est total sum of probability of occurring in each com-
ponent classifier. Additionally, every probability was
weighted based on how well the classifier performed
on the validation dataset during the tuning phase. In
summary, the score for each class was calculated using
the equation:

sc =
N

∑
i=0

wi ∗ pc,i, (1)

where sc – score of the emotion class c; wi – voting
weight of the i-th classifier (its accuracy on the valida-
tion dataset during the tuning stage); pc,i – probability
of the emotion class c in the i-th classifier; N – num-
ber of classifiers.

The emotion class with the maximum score is con-
sidered to be the final ‘decision’ of the ensemble voting
classifier.

3.6. Data augmentation

In order to enhance the generalization property of
the classification model, all the speech recordings went
through the data augmentation process. Simple pitch
shifting and time stretching operations available in the
librosa toolbox (McFee et al., 2015) were applied to
enrich the existing datasets. Introducing pitch shift-
ing and time stretching effects to speech signals in-
fluences the overall prosody of the utterance. Conse-
quently, such processes may modify emotional expres-
sions. However, the authors assumed that the origi-
nal emotional characteristics of the speech recordings
would be preserved if these effects were applied cau-
tiously, that is using conservative pitch shifting and
time stretching limits. This assumption is in accor-
dance with the research in the area of speech emo-
tion recognition (Mohino-Herranz et al., 2014; Tao
et al., 2023). In line with the above considerations,
the pitch has been shifted up and then down by three
semitones whereas the audio signals have been sped
up and slowed down by 25%, respectively, resulting
in four new audio files for each existing audio file.
All the augmented recordings were further used only
in the training sets (the test sets comprised solely the
original recordings).

The developed method was implemented in Python.
The code was made publicly available at GitHub
repository (Stefanowska, Zieliński, 2023).

4. Results

The performance of the developed method was
evaluated in five experiments. The comparisons were
made both against the traditional algorithms as well
as the deep learning techniques, published recently in
the literature. Three different experimental method-
ologies have been considered, including speaker-depen-
dent tests, speaker-independent tests, and cross-corpus
tests.

4.1. Speaker-dependent tests

In this approach, recordings coming from the same
speakers can appear in validation, training, and test-
ing sets. The speaker-dependent tests were conducted
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for a single speaker using the TESS dataset. In
this case, only samples belonging to the younger ac-
tress were utilized. In total, 1400 audio recordings
were employed, representing seven emotion categories
(200 recordings per emotion). Moreover, additional
5 600 augmented excerpts were utilized in this ex-
periment. The tests followed the methodology from
the work of Chatterjee et al. (2021). The dataset
was split with a 65/15/20 percentage ratio in or-
der to obtain the training, validation, and test sub-
sets, respectively. For the sake of comparison, aside
from testing only the main proposed method utiliz-
ing an ensemble of SVM classifiers with the MTS ap-
proach and data augmentation (MTS+Aug), a variant
without data augmentation (MTS), as well as vari-
ants based on a single SVM classifier with augmenta-
tion (SVM+Aug) and without it (SVM), were tested
too, which resulted in four test cases. All the ex-
periments were repeated 30 times with different ran-
domization seeds and the final result was the mean
value of all the individual accuracy values obtained in
the repeated trials. Those results were presented on
the mean accuracy chart along with the correspond-
ing standard deviations (Fig. 3). It can be seen that
the proposed ensemble classifier with the MTS ap-
proach, labeled as MTS in the figure, outperformed
the method proposed by Chatterjee et al. (2021).
This outcome was statistically significant, based on the
one sample t-test (p-value was less than 10−4 for the
dependent t-test with a 0.05 alpha level). It also per-
formed better than the single SVM with the use of
augmented data (p < 10−4). Moreover, it outperformed
the standard SVM algorithm without data augmenta-
tion (p-value was approximately equal to 10−4). Hence,
the addition of the augmented data for the training
stages did not improve the accuracy for this case. Fig-
ure 4 shows the accuracy of recognition of the indi-
vidual emotions for the TESS dataset. It can be seen

CHATTERJEE et al.

Fig. 3. Accuracy chart for the TESS 65/15/20 split ratio
experiment with the speaker-dependent testing approach –
only younger actress’ samples were used. The results rep-
resent the mean accuracy values and associated standard

deviations.

Fig. 4. Accuracy of recognition of individual emotions for
the TESS 65/15/20 split ratio experiment with the speaker-
dependent testing approach – only younger actress’ samples
were used. The results represent the mean accuracy values

and associated standard deviations.

that all the emotions were identified with almost 100%
accuracy using the proposed MTS approach, except
for the “surprise” category, which was recognized with
98.67% (SD 1.7%) accuracy.

A separate experiment involving a speaker-depen-
dent test of the proposed MTS method was performed.
It was based on the 10-fold cross-validation procedure,
conducted using the RAVDESS dataset. It contained
192 recordings per emotion, apart from the neutral
state, which was represented by 96 excerpts, giving
1248 audio files in total (plus the addition of 4992 aug-
mented samples). The results showed that the class
that was relatively the hardest one to classify was
the neutral emotional state (Fig. 5a). It was often mis-
taken with sadness. Another class often mistaken with
sadness was fear. Classes that seemed to be the most
recognizable by the proposed method were anger and
disgust – they also tended to be mistaken with each
other more than with any other emotion.

4.2. Speaker-independent tests

In this experiment, the first test with the speaker-
independent constraint was a 10-fold cross-validation
and it was conducted using the eNTERFACE dataset
with 6 emotion classes. For this repository, each emo-
tion was represented by 215 recordings except happi-
ness which was exemplified by 212 audio excerpts. The
reported results are the average values of the accura-
cies from all the folds. Corresponding standard devia-
tions were also calculated. The literature reference was
a method based on a SVM classifier, utilizing mul-
timodal inputs (Ghaleb et al., 2019). For compari-
son purposes, solely audio-only average accuracy was
taken into account. The obtained results are presented
in Fig. 6. In this case, a single SVM classifier trained
with the aid of the augmented data (SVM+Aug) per-
formed better than a single SVM with no augmenta-
tion (p = 0.0045). Similarly, the proposed MTS model
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a)

b)

c)

Fig. 5. Classification accuracy tests results for the devel-
oped model presented as confusion matrices. Three differ-
ent testing approaches: a) speaker-dependent; b) speaker-

independent; c) corpus-independent.

GHALEP et al.

Fig. 6. Accuracy chart for the eNTERFACE cross-vali-
dation experiment with the speaker-independent testing
approach. The results represent the mean accuracy values

and associated standard deviations.

using the augmented data (MTS+Aug) performed
better than the same model not utilizing it (MTS)
(p = 0.0036). The advantage of using MTS model with
the augmented data over the literature example could
not be verified as the p-value for the one sample t-test
was equal to 0.0773, unlike the advantage of exploit-
ing a single SVM classifier with the use of the aug-
mented data (SVM+Aug) (p = 0.03). The reasons for
such a high accuracy of a single SVM classifier trained
using the augmented data could be attributed to prop-
erly tuned MFCC extractor and model’s hyperparam-
eters. For this amount of data, a properly tuned single
classifier proved to be sufficient. As the advantage of
the proposed MTS method over the literature example
could not be verified (p = 0.9227), the results were sta-
tistically comparable. According to both the results ob-
tained for the single SVM classification algorithm and
the MTS ensemble method, the chosen augmentation
procedure substantially improved the accuracy using
the selected dataset. Figure 7 shows the accuracy of

Fig. 7. Accuracy of recognition of individual emotions
for the eNTERFACE cross-validation experiment with the
speaker-independent testing approach. The results repre-
sent the mean accuracy values and associated standard de-

viations.
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recognition of the individual emotions for the eNTER-
FACE dataset. It can be seen that the anger category
is recognized with the highest accuracy, reaching al-
most 76%, whereas the fear and surprise categories are
identified with the lowest accuracy at a level ranging
from 41% to 53%.

The second test set was based on the same liter-
ature reference. In this case, it was conducted on the
CREMA-D dataset with 6 emotion classes. Due to time
constraints, in this experiment 996 samples were ran-
domly chosen from the complete dataset while main-
taining the original distribution of speakers and emo-
tions, which resulted in the repository of 166 utter-
ances per emotion class. The results are presented
in Fig. 8. It can be seen that a single SVM classi-
fier performed better with the aid of augmented data
(p = 0.0072) and that the MTS ensemble model with
the augmented data performed better than the same
model without it (p = 0.0002). The advantage of the lit-
erature example over the proposed method turned out
not to be statistically significant (p = 0.2385), therefore
two methods seem to be comparable. Figure 9 shows

GHALEP et al.

Fig. 8. Accuracy chart for the CREMA-D cross-validation
experiment with the speaker-independent testing approach.
The results represent the mean accuracy values and asso-

ciated standard deviations.

Fig. 9. Accuracy of recognition of individual emotions
for the CREMA-D cross-validation experiment with the
speaker-independent testing approach. The results repre-
sent the mean accuracy values and associated standard de-

viations.

the accuracy of recognition of the individual emo-
tions for the CREMA-D dataset. Similar to the previ-
ous experiment employing the eNTERFACE dataset,
the anger category is recognized with the highest accu-
racy, reaching 76%. The disgust and fear categories are
identified with the lowest accuracy at a level ranging
from 38 to 45%.

The third test set was based on the work of Guizzo
et al. (2020), who developed an advanced model em-
ploying convolutional neural networks. Their model
was trained on the RAVDESS dataset, comprising 192
recordings for each emotion (96 for neutral state), as
mentioned before. The results reported by the quoted
authors constitute the average accuracy values ob-
tained from a 4-fold cross-validation test. The cited
work also utilized the MTS approach by introducing
multiple convolution kernels and obtaining differently
scaled feature maps that were all used as the model
input. The dataset was split with an approximate ra-
tio of 70/20/10 into training, validation, and testing
subsets, respectively. In this study, the test was re-
peated 30 times, and the final result was estimated
as the mean value of all the individual accuracy val-
ues. According to the obtained results (see Fig. 10), the
MTS ensemble model performed better than the single
SVM classifier for the case without the use of the aug-
mented data (p = 8×10−4). The advantage of using the
augmentation process in this case could not be statisti-
cally verified. Importantly, the difference between the
result reached by Guizzo et al. (2020) and that ob-
tained using the proposed MTS method (MTS+Aug)
was not statistically significant (p = 0.2875). Conse-
quently, it could be concluded that the accuracy of
the proposed MTS method proved to be comparable
to the one reached using a state-of-the-art deep learn-
ing technique applied to the RAVDESS data set. Fig-
ure 11 shows the accuracy of recognition of the indi-
vidual emotions for the RAVDESS dataset. Similar to
the results obtained in the previous two experiments,

GUIZZO et al.

Fig. 10. Accuracy chart for the RAVDESS 70/20/10 split
ratio experiment with the speaker-independent testing ap-
proach. The results represent the mean accuracy values and

associated standard deviations.
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Fig. 11. Accuracy of recognition of individual emotions for
the RAVDESS 70/20/10 split ratio experiment with the
speaker-independent testing approach. The results repre-
sent the mean accuracy values and associated standard de-

viations.

the anger category was recognized with the highest ac-
curacy, reaching approximately 69%. The neutral cat-
egory was identified with the lowest accuracy at a level
ranging from 26 to 33%.

For the 10-fold speaker-independent cross-valida-
tion test using the RAVDESS dataset, similarly to
the previously discussed speaker-dependent evaluation
(see Subsec. 4.1), a neutral emotional state turned out
to be the class with the lowest accuracy (Fig. 5b). Like-
wise, it was often mistaken with sadness, although this
time even more frequently. As the overall accuracy is
substantially lower than that obtained for the speaker-
dependent case, the system mixes up emotional states
much more often. However, the anger emotion still ex-
hibits a relatively high recognition rate.

4.3. Cross-corpus tests

For the cross-corpus test of the proposed MTS
method, a leave-one-corpus-out cross-validation exper-
iment was conducted. For this purpose, the following
English datasets were used: CREMA-D, RAVDESS,
SAVEE, TESS, and eNTERFACE. The selected cor-
pora represented different but overlapping sets of emo-
tions and contained vastly different number of record-
ings (see Table 2). Due to the above factors, the
datasets were unified. Namely, the files with emotions
that were not present in every corpus were discarded
(neutral and surprise), which resulted in five common
emotional classes – happiness, sadness, fear, anger, and
disgust. The remaining recordings were sampled (while
maintaining the original distribution of emotions and
sexes) so that all the datasets were of the same size –
300 recordings each, which was the size of the small-
est dataset (SAVEE). Considering that each repository
was balanced in terms of the number of recordings rep-
resenting each emotion, the number of recordings ta-
ken from every dataset representing a given emotion
equaled 60. With the addition of the augmented files

(1200 for each corpus), the total number of files was
equal to 7500. In each iteration one corpus became
a testing set, another one was selected as a validation
dataset, whereas the remaining three datasets were
used for training.

Even with the reduced number of emotional classes,
the corpus-independent test turned out to give the low-
est overall accuracy so far, being equal to 32.33%. Nev-
ertheless, this value was still statistically greater than
the chance level, which in the experiment amounted
to 20% (p = 0.0035). Despite this outcome, sadness
turned out to be recognized comparatively often, with
the classification accuracy reaching as much as 48.33%.
As shown in Fig. 12, its recognition rate turned out
to be comparable to the recognition rate of sad-
ness in the speaker-independent test on a single corpus.
It was, however, often mistaken with fear and disgust
(Fig. 5c). Unlike in previous tests, for the cross-corpus
test, anger and disgust were the hardest emotions to
classify.

Fig. 12. Classification accuracy tests results obtained us-
ing the proposed MTS model under the three testing
conditions: speaker-dependent, speaker-independent, and
corpus-independent. Note that the corpus-independent ap-
proach applies only to five out of seven emotions considered

in the remaining tests (see the text for details).

5. Discussion

Out of the four experiments conducted in this
study, the two experiments proved that the multi-
time scale approach to feature aggregation yields
better classification results compared to the conven-
tional techniques. These two experiments were based
on the TESS and RAVDESS speech corpora, respec-
tively. Moreover, in one of the experiments, involv-
ing the RAVDESS corpus, the MTS method achieved
a very similar classification accuracy level compared to
the one obtained using the state-of-the-art deep learn-
ing technique (Guizzo et al., 2020), as illustrated in
Fig. 10. Furthermore, the acquired results highlight
the benefits of using a data augmentation technique
(Figs. 6 and 8).

There are two recent studies resembling our work
as they also employed the ensembles of classifiers.
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In the work by Seknedy and Fawzi (2022), an ensem-
ble of four different classification algorithms was used,
reaching a maximum classification accuracy of 65.1%.
In their work, they utilized an Arabic speech cor-
pus. Therefore, due to the linguistic mismatch, our
method cannot be directly (and fairly) compared to
the aforementioned one. In their recent work, Om-
man and Eldho (2022) have employed an ensemble of
20 SVM classifiers. They used a bootstrap aggregat-
ing technique to train their ensemble model, reaching
an accuracy of 80.07% when tested on the RAVDESS
corpus, outperforming our method by 3 percentage
points. While this outcome may indicate an inferiority
of our method, the cited authors did not provide suffi-
cient details regarding their testing methodology (e.g.,
whether the tests were speaker-independent), prevent-
ing other researchers from a rigorous comparison of the
results.

According to the results of the fifth experiment,
involving the cross-corpus test (Subsec. 4.3), the clas-
sification accuracy of the proposed method was sub-
stantially lower than the accuracy levels obtained
within the selected corpora using speaker-dependent
and speaker-independent tests, respectively. This out-
come does not invalidate the proposed method but in-
dicates that its generalization property needs to be im-
proved. Note, that the cross-corpus tests are still very
rare in the literature as they constitute the most rig-
orous way of testing the speech emotions recognition
systems (Tamulevičius et al., 2020). The recent study
by Cao et al. (2022) confirms that the average accu-
racy for this testing approach remains relatively low,
especially for the simpler methods.

The presented results indicate that the proposed
MTS method has an advantage over the baseline tech-
nique employing a single classifier with a fixed time-
window applied during the feature aggregation. It is,
however, more computationally complex, as it utilizes
multiple classifiers instead of one. For example, it took
2.73 ms for a single SVM model to classify one record-
ing. Compared to that, using the MTS model for clas-
sification took about 5.86 times longer (16 ms). There
was also a significant difference between the total du-
ration time of tuning and training. Namely, tuning and
training a single SVM classifier on 4160 training files
and 260 validation files took in total 8.37 s. In con-
trast, tuning and training an MTS model on the same
dataset took 8 min 33 s and, consequently, it requires
more resources. The training of a genetic algorithm it-
self to tune the feature extractor took 12 h 11 min 47 s,
which is the reason why it was not used as a part of
a training pipeline but constituted a separate proce-
dure conducted once. All the calculations were carried
out using parallel processing on 8 threads of the Intel
Core i5 1.6G Hz processor.

There are some limitations of this study that need
to be acknowledged. Firstly, the undertaken experi-

ments were based on only five datasets. Broader con-
clusions could be reached if more corpora were taken
into consideration. Secondly, due to the data storage
and computation constraints of the hardware used,
a subset of the CREMA-D corpus was employed, as
described in Subsec. 4.2. Thirdly, the feature extractor
tuning procedure was performed using a single speech
corpus (RAVDESS), potentially biasing the model to-
wards the selected data set. Fourthly, the duration of
the long-term window applied for the feature aggrega-
tion was limited to 7 s. In retrospect, the above con-
straint could be too short for some applications, po-
tentially causing the method to discard important in-
formation conveyed by the prosodic characteristics at
the ending parts of the sentences. In the present study,
this issue affected only one recording belonging to the
SAVEE repository (the audio excerpt was trimmed
as its duration exceeded the limit). Optimization of
the long-term window applied for the feature aggrega-
tion as well as the exploration of different optimization
strategies for the feature extraction may constitute the
subject of future work.

6. Conclusions

This study presents an improved method of speech
emotions recognition using an ensemble of SVM clas-
sification algorithms. The novelty of the proposed
method consists in using a MTS approach to the fea-
ture aggregation procedure. Another distinct aspect of
the proposed technique is the application of the ge-
netic algorithm to optimize the feature extraction pro-
cess. Out of the four experiments conducted in this
study, the two experiments support the hypothesis that
the MTS approach to feature aggregation yields bet-
ter classification results compared to the conventional
way of feature aggregation based on a fixed-duration
time window. This implies that the proposed MTS ap-
proach is not always superior compared to the con-
ventional technique. Nevertheless, it exhibits satisfac-
tory performance for the selected datasets, matching or
outperforming the recently published methods. Inter-
estingly, in one of the experiments conducted within
this study, the results obtained using the proposed
MTS method proved to be comparable to the ones
achieved by means of the state-of-the-art deep learn-
ing technique. This outcome indicates that a properly
developed traditional classification method could be
competitive to a deep learning algorithm. As a side
observation, the obtained results exemplified the ben-
efits of data augmentation. The technique of data aug-
mentation is commonly used for the training of deep
learning models (Milner et al., 2019). However, this
study demonstrated the advantages of applying such
a technique during the development of the traditional
model. Future work may be focused on testing the
MTS method using a broader scope of speech corpora,
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with the aim of gaining knowledge as to how to fur-
ther optimize the technique within individual data sets
while still maintaining a satisfactory cross-corpus gen-
eralization property.
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Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a common and high-risk sleep-related breathing
disorder. Snoring detection is a simple and non-invasive method. In many studies, the feature maps are obtained
by applying a short-time Fourier transform (STFT) and feeding the model with single-channel input tensors.
However, this approach may limit the potential of convolutional networks to learn diverse representations of
snore signals. This paper proposes a snoring sound detection algorithm using a multi-channel spectrogram
and convolutional neural network (CNN). The sleep recordings from 30 subjects at the hospital were col-
lected, and four different feature maps were extracted from them as model input, including spectrogram,
Mel-spectrogram, continuous wavelet transform (CWT), and multi-channel spectrogram composed of the three
single-channel maps. Three methods of data set partitioning are used to evaluate the performance of feature
maps. The proposed feature maps were compared through the training set and test set of independent subjects
by using a CNN model. The results show that the accuracy of the multi-channel spectrogram reaches 94.18%,
surpassing that of the Mel-spectrogram that exhibits the best performance among the single-channel spectro-
grams. This study optimizes the system in the feature extraction stage to adapt to the superior feature learning
capability of the deep learning model, providing a more effective feature map for snoring detection.

Keywords: obstructive sleep apnea-hypopnea syndrome; snoring; convolutional neural network; multi-channel
spectrogram.
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1. Introduction

Obstructive sleep apnea-hypopnea syndrome (OS-
AHS) is a sleep respiratory disease characterized by
the repeated collapse and blockage of the upper
airway during sleep, resulting in apnea or hypop-
nea (Strollo, Rogers, 1996). Obstructive breath-
ing leads to instinctive body responses, such as brain
arousal, sympathetic activation, and decreased blood
oxygen saturation. Seriously interrupted and non-
restorative sleep will occur, causing most patients
with OSAHS to suffer from morning headaches and
daytime somnolence. Long-term poor sleep can even
lead to a series of complications, such as abnormal
metabolism, neurocognitive dysfunction, and cardio-

vascular disease (Young et al., 2002). Surveys show
that the overall prevalence of OSAHS in the general
adult population ranges from 6 to 17%, with the preva-
lence increasing significantly with age (Senaratna
et al., 2017).

Polysomnography (PSG) is the gold standard for
diagnosing OSAHS patients (Ahmadi et al., 2009;
Mendonça et al., 2019). Subjects are required to wear
contact-type monitoring instruments throughout the
night. The PSG signal obtained from these instruments
is used by professional doctors to determine whether
the subjects suffer from OSAHS. Although reliable re-
sults can be obtained, patients may have to bear the
burden of expensive fees and endure discomfort from
physically attached sensors (Mendonça et al., 2019).

https://acoustics.ippt.pan.pl/index.php/aa/index
mailto:phjxpeng@scut.edu.cn
https://creativecommons.org/licenses/by/4.0/
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Therefore, there is an urgent need to seek a low-cost,
easy-to-operate, and non-contact method to assist in
the diagnosis of OSAHS. Snoring is the most distinc-
tive clinical feature of OSAHS, occurring in 70–90%
of patients with OSAHS (Karunajeewa et al., 2008;
Maimon, Hanly, 2010). The acoustic characteristics
of snoring reflect changes in the structure of the upper
airway. Moreover, snoring analysis offers the advan-
tages of being non-contact, simple, and reliable, mak-
ing it feasible to identify patients by analyzing the
acoustic characteristics of snoring (Won et al., 2012;
Fiz et al., 1996; Pevernagie et al., 2010; Beck et al.,
1995; Ip et al., 2002; Perez-Padilla et al., 1993;
Sola-Soler et al., 2003; Ng et al., 2008).

In order to improve the initial screening of OSAHS,
an increasing number of scientists are dedicated to de-
veloping new technologies that can achieve a more ac-
curate clinical diagnosis of OSAHS in a simpler manner
(Yadollahi, Moussavi, 2010; Ankişhan, Ari, 2011;
Ankışhan, Yılmaz, 2013). So far, there have been nu-
merous studies on the identification technology of OS-
AHS. Duckitt et al. (2006) extracted 39-dimensional
Mel-frequency cepstral coefficients (MFCC) from sleep
sound recordings of six subjects and classified the sig-
nals into snoring, breathing, duvet noise, and other
noises based on hidden Markov model (HMM). The
recognition rate for snoring can reach the range of
82–89%. Cavusoglu et al. (2007) selected recording
signals from 18 simple snorers and 12 OSAHS pa-
tients to cut the voiced segments by a double threshold
method. Then, the authors calculated the sub-band
energy distribution of the sound segments and used
principal component analysis (PCA) for feature reduc-
tion. Finally, robust linear regression was used to clas-
sify these sound segments into snoring and non-snoring
sounds with an accuracy of 90.2%.

Dafna et al. (2013) adopted a feature selection al-
gorithm to filter the 34 most discriminative features
from 127 time-domain and frequency-domain features,
and then used AdaBoost to construct a snoring recog-
nition model, obtaining an average detection rate of
98.2%, a sensitivity of 98%, and specificity of 98.3%
with a cross-validation method. In a study by Cheng
et al. (2022), a multi-input model based on long short-
term memory (LSTM) was proposed, which can accept
various audio features to synthesize information for
snoring identification. Furthermore, MFCC, Mel filter
banks (Fbanks), linear prediction coefficient (LPC),
and short-term energy were extracted as the input of
the model, finally achieving 95.3% accuracy. With the
development of the field of artificial intelligence, deep
learning models are gradually applied to the classifica-
tion task of snoring and non-snoring.

Khan (2019) developed a deep learning model for
snoring detection and transferred it to an embedded
system that can be connected to a smartphone app
using home Wi-Fi. In Khan’s study, 1000 sound sam-

ples were used to calculate the MFCC images, then
the images were fed into a convolutional neural net-
work (CNN) model, resulting in a snoring recognition
rate of 96%. The spectrogram, Mel-spectrogram, and
constant-Q transformation (CQT) spectrogram col-
lected from the recordings of 15 subjects were used
to classify snoring and non-snoring by Jiang et al.
(2020). The results indicated that the accuracy of Mel-
spectrogram in each group reached 95.07%. The ad-
vantage of the deep learning model is to learn increas-
ingly complex data samples. Previous studies (Khan,
2019; Jiang et al., 2020; Xie et al., 2021) used single-
channel spectrogram as input. However, it is important
to note that different feature maps only contain limited
frequency-domain information, which could potentially
restrict the model’s ability to learn diverse represen-
tations of audio recordings. Therefore, input features
should provide more information about snoring.

In our work, a multi-channel feature map based on
the fusion of Mel-spectrogram, spectrogram, and con-
tinuous wavelet transform (CWT) is proposed. Three
spectrograms of each sound signal are employed as
three channels of the red-green-blue (RGB) image to
construct the feature map. A CNN model is utilized
to perform the classification tasks. In addition, spectro-
gram, Mel-spectrogram, and CWT are used for com-
parative experiments. The comparison of the classifi-
cation performance between the multi-channel spec-
trogram with that of the single-channel spectrogram is
conducted to achieve higher resolution.

2. Methods

2.1. Data acquisition

This study was approved by the Ethics Committee
of Guangzhou Medical University (Reference Number
2019-73), and informed consent was obtained from all
participants.

Thirty subjects who underwent PSG at the First
Affiliated Hospital of Guangzhou Medical University
were selected to obtain snoring sounds throughout the
night. The recording time for each subject’s sleep snor-
ing sounds was not less than 6 hours. The most impor-
tant indicator for PSG detection to assess the severity
of OSAHS is the apnea-hypopnea index (AHI), which
is defined as the average number of sleep apnea or hy-
popnea per hour. It is divided into four categories: sim-
ple, mild, moderate, and severe, based on the follow-
ing ranges: AHI < 5, 5 ≤AHI <15, 15 ≤AHI <30, and
AHI ≥ 30 (Maimon, Hanly, 2010). Table 1 lists sta-
tistical information on the subjects’ gender, age, body
mass index (BMI), AHI, and the severity of OSAHS for
each participant. For recording snoring sounds, a digi-
tal audio recorder (Roland, Edirol R-44, Japan), with
a frequency response range of 40–20 000 Hz and a mi-
crophone (RODE, NTG-3, Sydney, Australia) hanging
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Table 1. Statistical information of subjects.

Parameter Data

Male/female 27/3

Age (years) 44± 13 (range: 23–70)

BMI [kg/m2] 26.7± 2.8 (range: 20.8–31.9)

AHI [events/h] 40.8± 28.3 (range: 3.2–91.1)

OSAHS [y/n] 28/2

vertically on the heads of patients, positioned about
45 cm above the mouth and nose were used. The orig-
inal sleep sound signals were recorded by the micro-
phone. PSG device (Alice-5, Pittsburgh, Pennsylvania,
USA) was used to monitor PSG signals. The recorded
sound was digitized at a sampling rate of 44 100 Hz
and a resolution of 16 bits.

2.2. Feature extraction

2.2.1. Spectrogram

A snoring sound is a one-dimensional time-domain
signal, making it challenging to observe the frequency
conversion pattern. While the frequency distribution of
the signal can be viewed by Fourier transform, time-
domain information is lost. Many time-frequency ana-
lysis methods have emerged to address this problem.
Short-time Fourier transform (STFT) is the most clas-
sical time-frequency analysis method in speech and au-
dio processing applications and offers minimal calcu-
lation and low cost. First, the audio signal is framed
into a short time window. In this work, the size of
windows is 25 ms with 50% overlap. Next, the Ham-
ming window is applied to each frame signal, and fol-
lowed by the fast Fourier transform (FFT) to obtain
its power spectrum (Rabiner et al., 1975). Each frame
is then spliced along the time dimension to form a two-
dimensional signal map called the spectrogram.

2.2.2. Mel-spectrogram

While the frequency of the spectrogram is linearly
distributed, the extracted features may not be useful
for signals with an inhomogeneous frequency distri-
bution. The Mel-scale filter banks are used to trans-
form the spectrogram into the Mel-spectrogram (Peng
et al., 2019; Winursito et al., 2018), where the Mel-
scale describes the nonlinear characteristics of human
ear frequency, and its relationship with frequency can
be approximately expressed by the equation:

Mel(f) = 2595 × log (1 + f

700
). (1)

In this study, features are calculated using frames
of 25 ms frame size with 50% overlap. The Mel-
spectrogram is computed using a group of 128 triangu-
lar filters in the Mel-scale based on the STFT, and the
logarithm of the filtered signal is determined. Figure 1
shows the triangular filter banks used in this study.

Frequency [Hz]

Am
pl

itu
de

Fig. 1. 128 triangular filters in the Mel-scale applied to the
STFT for obtaining the Mel-spectrogram.

2.2.3. Continuous wavelet transform

The time and frequency resolutions of STFT are
determined by the size and time shift of the window.
A small window size can lead to poorer frequency res-
olution. Compared to STFT, CWT has the character-
istics of window adaptation, enabling high-frequency
values to have high-frequency resolution and low time
resolution (Qian et al., 2019).

CWT uses wavelet basis functions to decompose
signals, and is defined as:

CWT(τs) = 1√
s

+∞

∫
−∞

x(t)ψ ( t − τ
s
) dt, (2)

where x(t) is the audio signal, ψ(x) is the mother
wavelet (Morlet wavelet in this study), and τ and s,

respectively, represent displacement and scale.
Usually, when analyzing time series, it is expected

to obtain smooth and continuous wavelet amplitude,
so a non-orthogonal wavelet function is more suitable.
In addition, to include the information of both ampli-
tude and phase of the time series, a complex-valued
wavelet should be selected, because the complex-va-
lued wavelet has an imaginary part and can express
the phase very well. The Morlet wavelet is not only
non-orthogonal, but also exponential complex-valued
wavelet, so it is used in this experiment to obtain the
information of both amplitude and phase.

2.2.4. Multi-channel spectrogram

Multi-channel spectrogram has been used in speech
recognition with beneficial effects (Adavanne et al.,
2018; Xu et al., 2018; Arias-Vergara et al., 2021).

The spectrogram, Mel-spectrogram, and CWT,
each with a size of 224× 224× 3, were extracted from
each audio segment. Figure 2 shows the above three
feature maps of a snore signal. Subsequently, they
are normalized to fall between −1 and 1, serving as
three channels of the RGB image to construct the
multi-channel spectrogram with a size of 224× 224× 3.
In this construction, the spectrogram is the first chan-
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Fig. 2. Feature maps of a snore segment from an OSAHS
patient: a) spectrogram; b) Mel-spectrogram; c) CWT.

Input Convolutional and pooling layers

Target

Dense layer

Fig. 3. Process of feeding the multi-spectrogram to a deep learning model (CNN).

Table 2. Structure of CNN.

Layer (type) Input shape Output shape Params

Conv2D (None, 224, 224, 32) (None, 222, 222, 32) 896

MaxPooling2D (None, 222, 222, 32) (None, 111, 111, 32) 0

Conv2D (None, 111, 111, 32) (None, 109, 109, 64) 18 496

MaxPooling2D (None, 109, 109, 64) (None, 54, 54, 64) 0

Conv2D (None, 54, 54, 64) (None, 52, 52, 128) 73 856

MaxPooling2D (None, 52, 52, 128) (None, 26, 26, 128) 0

Flatten (None, 26, 26, 128) (None, 86 528) 0

Dense (None, 86 528) (None, 128) 11 075 712

Dense (None, 128) (None, 2) 258

nel, the CWT is the second channel, and the Mel-
spectrogram is the third channel. When the input data
contains multiple channels, the number of input chan-
nels of the convolutional kernel in the model is the
same as that of the input data. In this way, the convo-
lutional kernel of different channels can perform cross-
correlation operations with the input data of differ-
ent channels, and the multi-channel input will enable
CNN to supplement information from two other time-
frequency representations.

2.3. Model architecture

In order to obtain reasonable results, the classifier
must be matched with a suitable input representation.
Manual features such as MFCC were used with the
traditional machine learning model, which effectively
decorrelates features (Adavanne et al., 2018). On the
contrary, the advantage of CNN lies in their ability
to learn spectral time characteristics of the spectrum
through weight sharing and pooling technology. Pre-
vious studies have applied CNN to speech recognition
with good effects (Abdel-Hamid et al., 2012; 2014).
For this experiment, a CNN model was designed, con-
taining an input layer, three convolution layers with
rectified linear unit (ReLu) activation functions. The
size of the convolution kernel was multiplied layer by
layer, leading to 256 neurons activated by ReLu, and
the output layer was activated by a softmax function.
The incorporated dropout layer will randomly discard
some weights in the training process to suppress over-
fitting, and the dropout ratio is 0.5 (Hinton et al.,
2012). Figure 3 shows the process of feeding the multi-
channel spectrogram into the CNN. The model param-
eters are presented in Table 2.
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For excellent training results, the Adam optimizer
is used for training, with a learning rate of CNN set to
0.0001. In our experiments, categorical cross-entropy
was chosen as the loss function, and each model was
trained for 200 epochs on an NVIDIA GTX 1080Ti
with a batch size of 128.

2.4. Validation method

In this study, the adaptive threshold method is used
to segment the audio sounds from all recording sub-
jects to obtain sound fragments that are subsequently
labeled as either snoring or non-snoring under the guid-
ance of ear-nose-throat (ENT) experts. Only sound
segments less than 4 seconds long are retained, and
two adjacent sound segments less than 0.02 seconds
apart are merged. A total of 59 293 sound segments
are obtained, consisting of 29 789 snore segments, and
29 504 non-snoring segments, which included sounds
of footsteps, speech, breathing, coughing, door closing,
and other environmental sounds. In order to evaluate
the performance of different spectra, three experiments
were designed: independent split training set and test
set, leave-one-subject-out cross-validation (LOSOCV),
and training set and test set containing all subjects.
Table 3 shows the details of the data partition.

Experiment 1 : the dataset of 30 subjects was di-
vided into a validation set with 4 subjects, a test set
with 4 subjects, and training set with the remaining
22 subjects, and the subjects in the training set, the
test set, and the validation set were independent. For
the purpose of eliminating the contingency of the ex-
periment, five different partition methods were applied
to the data set, and the model was trained on each
divided dataset. Finally, the average and standard de-
viation were taken as the results.

Experiment 2 : in a dataset containing 30 subjects,
an independent test set and training set were con-
structed for each participant using the LOSOCV strat-
egy. The data of one subject was selected as the test
set, and the data of the remaining 29 subjects were
used as the training set. This process is repeated 30
times and the average accuracy is calculated. This
maximizes the use of data while ensuring that the sub-
jects in the training set and the test set are from dif-
ferent independent subjects.

Experiment 3 : the sound clips of all subjects are
combined into a whole dataset, which is then divided
into training, validation and test set, with a ratio
of 6:1:3.

Table 3. Data distribution of training, validation, and test sets in experiments.

Experiment 1 Experiment 2 Experiment 3

Train Validation Test Train Test Train Validation Test

Subject 22 4 4 29 1 30

Snore 23 767 3117 2905 LOSOCV 19 133 2872 7784

No-snore 21 971 4094 3439 16 443 3057 10 004

2.5. Model evaluation

The classification effect of each feature map can
be evaluated by multiple indicators, including accu-
racy, precision, recall, F1-score, and the area under
the curve (AUC) calculated from the receiver operat-
ing characteristic (ROC). Accuracy is the proportion of
correct samples to the total number of samples. Pre-
cision relates to the ratio of the number of positive
samples correctly classified by the classifier to the num-
ber of all positive samples classified by the classifier.
Recall rate refers to the ratio of the number of posi-
tive samples correctly classified by the classifier to the
number of all positive samples. F1-score is the harmo-
nic mean of precision rate and recall rate. The AUC
is meant by the area under the ROC curve, represent-
ing the probability that the predicted positive cases
rank higher than the negative ones, ranging from 0.5
to 1. The calculation equation is:

Accuracy =
TP +TN

TP +TN +FP +FN
, (3)

Precision =
TP

TP +FP , (4)

Recall =
TP

TP +FN , (5)

F1score =
2Precision ⋅Recall
Precision +Recall , (6)

where TP, TN, FP, and FN represent true positive,
true negative, false positive, and false negative, respec-
tively.

3. Results

To evaluate the classification performance, four
different feature maps are imported into the model
to compare which feature map is more discriminative
for snoring. The CNN model is established by the
validation set and evaluated on the test set. According
to the data set division rules of experiment 1, the
classification results are presented in Table 4. In terms
of single-channel spectrograms, the classification per-
formance of Mel-spectrogram was superior to those of
spectrogram and CWT, with an accuracy of 91.58%,
precision of 92.09%, sensitivity of 86.57%, F1-score of
88.85%, and AUC of 0.9614. The PPV of the spec-
trogram and Mel-spectrogram reached more than 90%,
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Table 4. Classification results of experiment 1.

Map type Accuracy [%] Precision [%] Recall [%] F1-score [%] AUC

Mel-spectrogram 91.58 92.09 86.57 88.85 0.9614

Spectrogram 88.33 91.23 81.56 85.56 0.9448

CWT 85.24 81.78 85.10 83.00 0.9192

Multi-channel spectrogram 94.16 92.64 93.35 92.93 0.9730

indicating that the recognition of the snore fragments
was reliable.

Figure 4 shows that the classification of the multi-
channel spectrogram is significantly improved com-
pared to that of the single-channel spectrogram, and
it has an accuracy of 94.16%, which was 2.58% higher
than that of Mel-spectrogram with the best effect in
single-channel spectrograms. Other classification in-
dexes were increased, respectively, by 0.55% (PPV),
6.78% (Recall), and 4.08% (F1-score). Although there
was little difference in PPV between the two fea-
ture maps, the Recall of the multi-channel spectro-
gram classification was significantly higher than that
of the Mel-spectrogram, which is beneficial for detect-
ing the snoring segments of the patients throughout
the entire night and further evaluating the severity of
OSAHS patients.

Accuracy

[%
]

Precision Recall F1-score

Multi-channel spectogram
Mel-spectogram

Fig. 4. Comparison histogram of Mel-spectrogram
and multi-spectrogram in experiment 1.

Table 5. Classification results of experiment 2.

Map type Accuracy [%] Precision [%] Recall [%] F1-score [%] AUC

Mel-spectrogram 90.51 90.83 93.08 91.94 0.9511

Spectrogram 89.36 93.18 88.85 90.97 0.9599

CWT 85.38 89.51 84.82 87.10 0.9191

Multi-channel spectrogram 93.10 92.28 96.66 94.42 0.9774

Table 6. Classification results of experiment 3.

Map type Accuracy [%] Precision [%] Recall [%] F1-score [%] AUC

Mel-spectrogram 93.67 98.28 91.44 94.74 0.9817

Spectrogram 91.76 93.03 93.34 93.19 0.9717

CWT 88.99 91.74 89.84 90.78 0.9569

Multi-channel spectrogram 97.80 97.14 99.18 98.15 0.9979

Tables 5 and 6 show the classification results
for experiments 2 and 3. The results show that the
recognition effect of the multi-channel spectrogram
is consistently better than that of the single-channel
spectrogram when using different dataset partitioning
methods.

4. Discussion

In this study, the performance of Mel-spectrogram,
spectrogram, CWT, and multi-channel spectrogram in
classifying snoring and the non-snoring sound was in-
vestigated. The results show that the Mel-spectrogram
has the best recognition effect when the single-channel
spectrograms were used as input, which is in agreement
with the results of the study by Jiang (2020). The en-
ergy peak frequency of the snoring sounds mentioned
in the study is 250 Hz, and most of the energy is dis-
tributed below 1000 Hz, while the energy of respiratory
sounds and other noise is distributed above 1000 Hz
(Pevernagie et al., 2010; Jiang et al., 2020). The fre-
quency of the spectrogram is linear distribution, which
leads to the insufficient frequency resolution in the low-
frequency part, making it challenging to detect some
weak snoring changes. The Mel-spectrogram converts
the linear frequency into the Mel frequency, offering
detailed representation of the low-frequency informa-
tion and rough representation of the high-frequency
information, which aligns with the energy distribution
of the snoring spectrogram.

Apart from Spectrogram and Mel-spectrogram, which
are computed based on STFT, the CWT commonly
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used in speech recognition is also imported into the
same CNN model. A study by Huzaifah (2017) proved
that CWT performs significantly worse than spectro-
gram and Mel-spectrogram when employed in a CNN
to classify various environmental sounds. The same re-
sult was obtained when the three feature maps were
applied to snoring and non-snoring sound classifica-
tion. It means that CWT cannot provide more snoring
sounds details in the low frequency compared to the
other two maps. However, it is premature to conclude
that CWT is always inferior to the feature maps based
on STFT, because the experiment may be influenced
by parameter settings for map extraction and model
structure.

It should be pointed out that the peak energy fre-
quency of snoring sound among different people is not
consistent, and even the snoring of the same person
is different. Jiang et al. (2020) analyzed the energy
distributions in snoring and non-snoring sub-bands of
subjects and found that 60% of the snoring spectral en-
ergy was distributed between 100 and 300 Hz, and 40%
of it was also distributed in each frequency band above
300 Hz. The information contained in a single-channel
input may be restricted, which can limit the poten-
tial of the deep learning model to learn more compli-
cated representations from snoring sound signals. The
multi-channel map was used to overcome the limita-
tion of a single-channel input in speech recognition.
Various methods were used to construct multi-channel
maps in such studies. Adavanne et al. (2018) proposed
a method where multi-channel could be extracted from
the same signal recorded by different microphones. An-
other approach by Fu et al. (2017) involved comput-
ing the real and imaginary parts of the STFT to form
a 2D-channel spectrogram.

Arias-Vergara et al. (2021) computed CWT, Mel-
spectrogram, and gammatone spectrogram from the
audio signal and combined them into a 3D-channel

Table 7. Summary of previous studies on snoring detection.

Author Subjects Datasets Features Methods Result [%]

Khan (2019) 1000 MFCC image CNN Accuracy: 96

Jiang et al. (2020) 15 12 457 Mel-spectrogram CNN+LSTM+DNN
Accuracy: 95.07
PPV: 94.62
Sensitivity: 95.42

Cheng et al. (2022) 43 15 520
MFCC, Fbanks,

Short-time average energy, LPC
A multi-input

model based on LSTM

Accuracy: 95.3
PPV: 95.7
Sensitivity: 94.9

Dafna et al. (2013) 67 281 953
Time-related features,

Spectral-related features
AdaBoost

Accuracy: 98.2
Sensitivity: 98.1

Cavusoglu et al. (2007) 30 9000
Average normalized energy

in each subband
Robust linear regression

Accuracy: 90.2
PPV: 98.7

Sun et al. (2022) 24 36 938
Bark sub-band feature,

MFCC, LPC, etc.
XGBoost

Accuracy: 87.22
PPV: 95.09
Sensitivity: 87.16

This work 30 59 293 Multi-spectrogram CNN
Accuracy: 94.16
PPV: 92.64
Sensitivity: 93.35

spectrogram. Compared with single-channel maps, the
performance of these multi-channel maps with a CNN
model was improved. In our work, when a multi-chan-
nel spectrogram was used as the model input to iden-
tify snoring sounds, the result was consistent with
the expectation, which was better than the Mel-
spectrogram with the best classification effect of sin-
gle-channel feature maps. This suggests that the multi-
channel spectrogram contains more spectrum infor-
mation than a single spectrum. The CNN model can
capture more feature information from the fusion map
than from a single-channel feature map through multi-
layer convolution layers.

Many researchers have proposed a variety of exper-
imental methods to classify snoring and non-snoring.
Table 7 compares the research methods in related fields
with the current experiment. Khan (2019) collected
online snoring resources as datasets, extracted MFCC
images, and input them into a CNN model training
and obtained a 96% accuracy. However, the number of
experimental samples was only 1000, and the source of
snoring sound was singular. In our experiment, 59 293
sound samples were extracted from 30 subjects with
better generalization ability, and three different verifi-
cation methods were used to evaluate the performance
of the feature map, resulting in the generalization of
the results. Jiang et al. (2020) used two classifiers,
CNNs-DNNs and CNNs-LSTMs-DNNs, to identify
snores from sound fragments, including spectrogram,
Mel-spectrogram, and CQT-spectrogram. The results
demonstrate that the combination of Mel spectrogram
and CNNs-LSTMs-DNNs was well suited for the task.
However, the input images contained limited infor-
mation from single-channel spectrogram. Moreover,
the data of the training set and the test set are not
independent and using this model to detect individual
snore fragments throughout entire night may lead to
deviation. Cheng et al. (2022) designed a multi-input
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model based on LSTM and extracted MFCC, Fbanks,
short-term energy, and LPC as four branches of the in-
put layer. After integration, ANN was used as the clas-
sifier, and finally, a 95.3% snoring recognition rate was
obtained, an improvement compared with a single fea-
ture processing network. Nevertheless, the model’s in-
put layer has multiple parallel input branches, and the
network structure is relatively complex.

In their experiment, the fusion feature maps were
employed in feature extraction, and only one entry
was needed for model input. In Dafna et al. (2013),
127 features from both the time domain and fre-
quency domain were extracted. Using a feature selec-
tion method, 34 most effective features were selected
objectively, and the AdaBoost classifier was used and
yielded a 98.2% recognition rate. However, the extrac-
tion process involved various features, making the pro-
cess of feature extraction complicated.

Cavusoglu et al. (2007) divided the frequency
range of snoring sounds (0–7500 Hz) into 500 Hz sub-
bands and calculated the average normalized energy in
each sub-band to obtain spectral characteristics. The
linear regression model was used and a 90.2% accuracy
was obtained. However, the energy distribution of snor-
ing was mainly concentrated in the low frequency and
the band division of equal intervals may lead to insuf-
ficient low-frequency resolution. Sun et al. (2022) pro-
posed a snoring detection algorithm based on acoustic
features and XGBoost. Various training and test data
splitting methods were used to evaluate model perfor-
mance, and the results showed that when the training
set and test set are from all subjects, the classification
performance was better than that of the training set
and test set from different independent subjects.

In terms of experimental accuracy, the method pro-
posed in this work is significantly improved compared
with 90.2% reported by Cavusoglu et al. (2007) and
92.78% obtained by Sun et al. (2022). However, it is
important to acknowledge that different research sam-
ples are distinct, the subjective standards of labeled
samples are different, and the methods of splitting data
sets are also different. It is therefore difficult to com-
pare the classification results to make a unified judg-
ment. The multi-channel spectrogram proposed in this
study has more than 92% in all evaluation indexes on
the CNN model, indicating that this method can effec-
tively detect snoring sound.

5. Conclusion

This study explored a classification method for
distinguishing between snoring and non-snoring using
a CNN model with a focus on a multi-channel spec-
trogram with a CNN model. Mel-spectrogram, spectro-
gram, and CWT were used as three channels for con-
structing multi-channel maps. The four feature maps
of the snoring sound signals of 30 subjects were ex-

tracted for training and testing, and the results demon-
strate that the classification performance indicators of
the multi-channel spectrogram are improved compared
with single-channel spectrograms. The main contri-
bution of this work lies in proposing a multi-chan-
nel spectrogram based on the fusion of a single-channel
spectrogram for snoring detection. The study also com-
pared the classification performance of each feature
map under the same network model.

This work focused on improving the feature ex-
traction stage, extracting the feature maps contain-
ing more time and frequency domain information, to
adapt to the strong fitting ability of the deep learn-
ing model. Future work can be carried out in differ-
ent directions. Firstly, a comparison of diverse types
of multi-channel spectrograms combined with various
classification networks could be explored to further im-
prove the accuracy of current snoring detection algo-
rithms. Another direction is to explore how snoring
sound detection contributes to the task of detecting
OSAHS. This experiment can be used as the first step
in OSAHS detection because snoring events are closely
related to apnea. In addition, the snoring sound iden-
tified by this model could be further used to quantita-
tively evaluate the severity of OSAHS.

However, the snoring data collected in this exper-
iment is limited to a hospital environment. Differ-
ent recording environments have different background
noise, which cannot guarantee the performance of the
model in other recording settings. Therefore, more
recording data in diverse environments (bedroom, dor-
mitory, hotel, etc.) is needed to obtain a more reliable
snoring recognition model and make it more robust
and generalized. In addition, it is necessary to pay at-
tention to the computational efficiency and memory
overhead of the model to ensure that model meets the
requirements for mobile deployment.
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Previous research has utilized the duration ratio and occasionally the duration difference as single-value
metrics to measure and compare the temporal acoustics of durationally contrastive vocalics (short vs. long
vowels), which allow researchers to reduce two values (short and long) to one, but express a relationship
instead of representing the vocalic duration values directly. The duration ratio may even be misleading when
comparing two languages or dialects, as it is possible to exhibit a similar ratio but differ in durational acoustics,
or vice versa. The current study proposes two alternative statistical metrics: a duration metric and a difference
metric. The duration metric is an intermediate (mean-like) value between the duration of the short and long
vocalics, and the difference metric is a ± value that can be added to or subtracted from the duration metric
to obtain the duration of long or short vocalics. We conduct a production experiment on Arabic and Japanese
vocalics and analyze the data using both traditional measures and the proposed metrics. The findings show
that the proposed metrics better predict the language from which the vocalic duration values were obtained.
Such results suggest that the proposed metrics are better candidates for measuring and comparing the temporal
acoustics of vocalics.
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1. Introduction

The durationally contrastive vocalics1 (i.e., short
and long vowels) in natural and synthetic speech have
been investigated in research on both native vs. non-
native and normal vs. impaired production and per-
ception in languages with durationally contrastive vo-
calics, such as Arabic. Most of the early research
took a theoretical perspective and focused on the ob-
servation that, as in other Semitic languages such
as Hebrew, a vocalic duration is inherently phone-
mically contrastive in Arabic (e.g., Harris, 1942;
Cantineau, 1956; Ferguson, 1957; Cowan, 1970).
Subsequent studies employed experimental or obser-

1Note that “vocalics” and “temporal acoustics” are used as
two general terms throughout the paper. The former refers to
vowels regardless of length and type, and the latter refers
to all durational aspects regardless of tool (e.g., duration dif-
ference, duration ratio...). Specific terms are used instead when
applicable.

vational methods to examine the temporal acous-
tics of Arabic vocalics acoustically, perceptually, or
acoustically-perceptually for both normal and im-
paired speakers (e.g., Al-Ani, 1970; Mitleb, 1984;
Alghamdi, 1998; Tsukada, 2009; 2011; 2012a; 2012b;
2013; Amir et al., 2014; Kalaldeh, 2018; Aldholmi
et al., 2021). This phenomenon has been explored
in Arabic varieties including Iraqi (Hassan, 1981),
Jordanian (Mitleb, 1984), Saudi, Sudanese, Egyp-
tian (e.g., Alghamdi, 1998), Moroccan (Al-Tamimi,
Barkat-Defradas, 2003), Libyan (Ahmed, 2008),
Cairene (Kotby et al., 2011), Palestinian (Saadah,
2011), Syrian (Almbark, Hellmuth, 2015), and
Modern Standard Arabic (MSA) (Kalaldeh, 2018;
Aldholmi, 2022), as well as other varieties spo-
ken in non-Arab regions such as the Kassem/Kfar
Barra/Jaljulia dialects in Israel (Amir et al., 2012),
Galilee and the Triangle (Muthallath) regions in Israel
(Amir et al., 2014), and Malaysia (Abd Almisreb
et al., 2016).

https://acoustics.ippt.pan.pl/index.php/aa/index
mailto:yaldholmi@ksu.edu.sa
https://creativecommons.org/licenses/by/4.0/
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Most of the aforementioned studies have docu-
mented and characterized the temporal acoustics of
Arabic vocalics and the short-to-long duration ra-
tio thereof both interdialectally and cross-dialectally.
Other studies sought to compare and contrast the Ara-
bic native production of vocalic duration with that of
other Semitic languages that exhibit vocalic durational
contrast, such as Hebrew (e.g., Amir et al., 2012), and
non-Semitic languages that either feature durational
contrast, such as Japanese and Thai (Tsukada, 2009),
or do not, such as English (Mitleb, 1984). Other stud-
ies examined non-native production and perception
of vocalic duration by speakers of Arabic as a sec-
ond language (L2) whose native language (L1) was
Japanese (Tsukada, 2012a; 2012b), English (Flege,
Port, 1981; Lababidi, Park, 2014), Korean (Hong,
Sarmah, 2009), or Hebrew (Zaltz, Segal, 2021).

To this end, researchers have utilized both the du-
ration difference and the duration ratio in dialect and
language comparisons. For instance, some Arabic di-
alects, specifically Jordanian, have been reported to
have a short-to-long duration ratio of 0.65 (Mitleb,
1984), while others have demonstrated a consider-
ably smaller ratio, for example, 0.39 in Palestinian
(Saadah, 2011). This discrepancy may not necessar-
ily be due to the use of different stimuli or methods
but rather due to actual interdialectal variations, as
the duration ratio does not truly convey much about
vocalic duration in one dialect or another, nor does it
allow for a clear cross-dialect or cross-language com-
parison.

The duration ratio does not directly express vocalic
duration in time units (e.g., ms); instead, it shows only
how large or small a value is in relation to another
value. That is, the duration ratio of 100 to 200 ms is
exactly the same as that of 200 to 400 ms (0.5 in both),
which makes this measure unhelpful when comparing
two language varieties. The duration difference only
shows the quantitative relationship between two given
vocalics as short in duration and long in duration,
rather than reflecting the actual duration acoustics of
the segments under investigation. In addition, some-
times, the short version becomes too long or the long
version becomes too short, which results in a negative
duration difference value when calculating the differ-
ence for each minimal pair (e.g., 70 − 100 = −30 ms).
Considering that individual value (rather than the
overall mean difference), the difference between two
positive values should be any nonnegative value (in-
cluding zero), but a negative duration ratio value will
be uninterpretable. There are a few potential solutions
to this particular issue, but each has its own problems.
For instance, we could transform and normalize data
to be at or above zero, but this would increase the
overall mean duration difference.

Hence, this study proposes two statistical metrics
to allow for direct comparison between different vari-

eties in terms of vocalic duration. The first section pro-
vides background and describes the two metrics, the
duration metric and the difference metric, that can be
used instead of the duration difference or duration ra-
tio values reported in previous studies. The two metrics
are illustrated using available data from relevant liter-
ature. In the second section, a production experiment
is conducted to test the two alternative metrics, using
data from Arabic and Japanese as two languages that
have been repeatedly compared and contrasted in the
literature (e.g., Tsukada, 2009) because they share
similar durationally contrastive vocalics (e.g., Ald-
holmi, 2022).

2. Traditional measures vs. proposed metrics

2.1. Traditional measures

As reported in some previous studies, the tradi-
tional method for obtaining a short-long duration ra-
tio divides the mean duration of the short vowels by
that of the long vowels. For instance, Mitleb (1984)
reported a ratio of 0.65, calculated as (Eq. (1)):

ratio =
mean short vowels

mean long vowels
,

0.65 =
83 ms

128 ms
.

(1)

In some cases, the duration difference is reported
instead of the duration ratio. The duration difference is
simply the difference between the mean duration of the
long vowels and that of the short vowels, as shown in
Eq. (2). Mitleb (1984) reported a duration difference
of 45 ms:

difference =mean long vowels −mean short vowels,

45 = 128 ms − 83 ms.
(2)

The duration ratio is sometimes reported in qual-
itative rather than numerical form. For instance,
Tsukada (2011) stated that “long [Arabic] vowels are
twice as long as their short counterparts” (p. 989),
while “long Japanese vowels tend to be more than twice
as long as their short counterparts” (p. 990). Regard-
less, both the duration ratio and the duration differ-
ence depend on the range of the two values, specifi-
cally the mean short vowel duration and the mean long
vowel duration, which on their own are insufficient to
precisely quantify the vocalic duration in a given di-
alect. For example, suppose that in one Arabic dialect
the mean duration of two short vocalics (65 + 75 ms)
is 70 ms while the mean duration of two long vocalics
(165+175 ms) is 170 ms, and in another Arabic dialect
the mean duration of two short vocalics (115+125 ms)
is 120 ms while the mean duration of two long vocalics
(285+295 ms) is 290 ms. In both scenarios, the ratio is
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approximately 0.41, but the difference is 100 ms in the
first and 170 ms in the second. Using a duration ra-
tio value makes the two dialects seem similar, but the
range of the values and the difference do not.

2.2. Proposed metrics

The proposed duration difference is similar to
the formant spacing – compact-diffuse (C-D) mea-
sure used in some studies in which the first formant
(F1, a smaller value) is subtracted from the second
formant (F2, a larger value) (e.g., Blomgren et al.,
1998; Kent, Vorperian, 2018). Although computing
the C-D value has a different purpose, namely, to eval-
uate tongue elevation (e.g., Jakobson et al., 1963),
it reduces the two values into a single value that can
be used for statistical description and inference. An-
other formant spacing value is the so-called grave-acute
(G-A) measure (Kent, Vorperian, 2018), which de-
scribes tongue advancement (Jakobson et al., 1963;
Blomgren et al., 1998). The G-A value has been com-
puted according to Eq. (3), where X = each individual
vocalic, and n = the total number of data points (vo-
calics):

G-A =
1

n
∑ (F1 of vocalic X + F2 of vocalic X)

2
. (3)

This method can form the basis of a new, alternative
metric that can be used to describe the vocalic dura-
tion and the vowel difference in languages where the
vocalic duration is contrastive. The proposed metric
can be calculated by the given equation (Eq. (4)):

duration metric =
1

n
∑ (short + long)

2
. (4)

The output provides us with one value that lies be-
tween the original value of the short vowel and that of
the long vowel, but it should better inform us about
how short or long the two contrastive vocalics are in
a given dialect or language. To illustrate this, consider
the previous two scenarios, calculated as (a) and (b)
for convenience. Note that we treat the mean durations
as single data points for two individual vocalics:

a) duration metric = 1

2
(65+165

2
+ 75+175

2
) = 120 ms,

b) duration metric = 1

2
(115+285

2
+ 125+295

2
) = 205 ms.

The two obtained values indicate that the first di-
alect has notably smaller short and long vocalic du-
rations than the second dialect. In other words, the
overall duration of vocalics in the second dialect is ap-
proximately 42% longer than that in the first dialect.
Neither the duration ratio, which is identical in both
dialects (0.41), nor the duration difference, which al-
ways depends on the distance between the short and
long vowel durations, will provide a unified metric that

allows for a direct comparison between the two dialects
or languages. Nevertheless, the proposed duration met-
ric here still does not show how far the duration value
is from the original short and long durations. Hence,
one further step is needed, which is to calculate the
difference metric (Eqs. (5) and (6)):

difference metric = duration metric

± (duration metric − short vocalic) (5)

or

difference metric = duration metric

± (long vocalic − duration metric). (6)

Note that Eqs. (5) and (6) provide the exact value.
Consider the vowel difference computed for the afore-
mentioned scenarios:

a) difference metric=120 ms ± (65+75
2
=70)=50 ms,

b) difference metric=205 ms±(115+125
2
=120)=85 ms.

The ± value is the difference metric that we can add to
or subtract from the vowel duration metric to obtain
the duration of the short vocalic or of the long vocalic.
In the first scenario, 120 ms± 50 ms = 70 or 170 to
yield the durations of the short and long vocalics, re-
spectively. The difference metric shows that the differ-
ence between the short and long vowels is smaller in
the first dialect than in the second dialect. The same
applies to the second scenario.

Thus, the duration metric provides us with one
value that represents both short and long vocalics. This
cannot be achieved via the traditional duration differ-
ence (where the short duration is subtracted from the
long duration) because the short and long vowels can
have large values (e.g., 200 and 250 ms, respectively),
but the duration difference, which will be 50 ms in this
case, cannot be used to calculate the exact duration of
either vocalic. Similarly, two smaller values for short
and long vowels (e.g., 50 and 110 ms) can have a larger
duration difference, calculated here as 60 ms, but this
value also indicates nothing about the duration of the
short and long vocalics. The proposed duration metric
does provide information about how long the short and
long vocalics are. To illustrate this with a real-world
example, we analyze data from Tsukada (2011).

2.3. An example from Arabic and Japanese

The short vocalic /a/ in trial 1 has a relatively
small duration ratio (0.37) compared to its long coun-
terpart, which is below the lowest value reported in the
literature on Arabic (0.39), while the short vocalic /u/
in trial 1 has a relatively larger duration ratio (0.51),
which is above the frequently reported range (39–45)
in the literature (e.g., Tsukada, 2011). Nevertheless,
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Table 1. Duration [in ms], difference [in ms], and ratio in Arabic (data adopted from Tsukada, 2011, p. 992).

Trial/item
Long
vowels

Long vowels
duration

Short
vowels

Short vowels
duration

Duration
ratio

Duration
difference

Short + long
Duration
metric

Difference
metric

1 /aa/ 307.00 /a/ 114.00 0.37 193.00 421.00 210.50 ±96.50

2 /aa/ 190.00 /a/ 96.00 0.51 94.00 286.00 143.00 ±47.00

1 /ii/ 235.00 /i/ 103.00 0.44 132.00 338.00 169.00 ±66.00

2 /ii/ 173.00 /i/ 87.00 0.50 86.00 260.00 130.00 ±43.00

1 /uu/ 212.00 /u/ 109.00 0.51 103.00 321.00 160.50 ±51.50

2 /uu/ 183.00 /u/ 88.00 0.48 95.00 271.00 135.50 ±47.50

Mean All 216.67 All 99.50 0.47 117.17 316.17 158.08 ±58.58

Table 2. Duration [in ms], difference [in ms], and ratio in Japanese (data adopted from Tsukada, 2011, p. 992).

Trial/item
Long
vowels

Long vowels
duration

Short
vowels

Short vowels
duration

Duration
ratio

Duration
difference

Short + long
Duration
metric

Difference
metric

1 /aa/ 190.00 /a/ 67.00 0.35 123.00 257.00 128.50 ±61.50

2 /aa/ 166.00 /a/ 65.00 0.39 101.00 231.00 115.50 ±50.50

1 /ee/ 182.00 /e/ 88.00 0.48 94.00 270.00 135.00 ±47.00

2 /ee/ 159.00 /e/ 79.00 0.50 80.00 238.00 119.00 ±40.00

1 /ii/ 195.00 /i/ 80.00 0.41 115.00 275.00 137.50 ±57.50

2 /ii/ 176.00 /i/ 69.00 0.39 107.00 245.00 122.50 ±53.50

1 /oo/ 181.00 /o/ 84.00 0.46 97.00 265.00 132.50 ±48.50

2 /oo/ 156.00 /o/ 75.00 0.48 81.00 231.00 115.50 ±40.50

1 /uu/ 179.00 /u/ 59.00 0.33 120.00 238.00 119.00 ±60.00

2 /uu/ 152.00 /u/ 61.00 0.40 91.00 213.00 106.50 ±45.50

Mean All 173.60 All 72.70 0.42 100.90 246.30 123.15 ±50.45

the actual durations of both short vocalics are 114 ms
and 109 ms, respectively, which exhibit only a negligi-
ble difference (114 − 109 = 5 ms). The overall dura-
tion ratio (0.47) and the overall duration difference
(117.17 ms) do not indicate the actual magnitude of
the durations of short and long vocalics in Arabic. In
contrast, the duration metric does show that Arabic
short vocalics are generally shorter and Arabic long
vocalics longer than 158.08 ms and that the distance
between short or long vowels and this metric value is
±58.58 ms overall.

Table 2 shows a duration metric in Japanese of
123.15 ms and a difference metric of ±50.45 ms, sug-
gesting that Japanese vocalics generally tend to be
shorter than Arabic vocalics (123.15 vs. 158.08 ms, re-
spectively) and that the difference (not the ratio) be-
tween short and long vocalics in Japanese is smaller
than that in Arabic (50.45 vs. 58.58 ms, respectively).
Inspection of the means for both Arabic and Japanese
short and long vowels supports this conclusion.

3. Duration metric and difference metric tested:

An experiment

The current experiment utilizes the proposed dura-
tion and difference metrics for statistical analysis and

compares them with the traditional duration differ-
ence and the duration ratio measures in Arabic and
Japanese.

3.1. Methodology

The stimuli for this study consist of 18 MSA
CVCVC vs. CV:CVC words and 18 Japanese CVCV
vs. CV:CV words. The Arabic items selected for this
experiment were inspired by (but not taken from) Has-
san (2002), while the Japanese items were selected
from Tsukada (2012b). The target vocalic in the stim-
uli from both languages was the first rather than the
second/final vocalic because the final vocalic is subject
to certain phonological processes such as shortening
and lengthening (see Aldholmi, 2022). Following the
same protocol by Aldholmi (2022), 22 male and 18 fe-
male native speakers of Arabic (n = 40) produced the
items using an Arabic carrier sentence (/ʔ anaa ʔ ak-
tubu ʔ aidʕan/ “I write as well”). The Arabic
participants spoke different Arabic dialects, including
Najdi (Qassimi, n = 8), Hijazi (Jeddah and Madinah,
n = 11), Southern (Faifa and Abha, n = 12), and North-
ern (Northern Borders, n = 9) dialects. The Arabic
participants met face-to-face with the experimenter or
other linguists who had volunteered to help the re-
searcher collect the data at different Saudi institutions.
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Twenty-four male and 162 female native speakers
of Japanese (n = 40; the initial sample comprised 41
participants, but one was excluded for unclear speech)
produced the Japanese items using a Japanese car-
rier sentence adopted from Tsukada (2011, p. 991)
(/tsugiwa to iimasu/ “Next I say the word ”) and
performed the task entirely online (using Phonic.ai,
2023). Approximately half of the Japanese participants
(n = 19) came from Osaka, while the rest did not
specify their origin. The target vocalics were isolated
from the adjacent consonants by the experimenter, us-
ing both visual and auditory judgements for all items.
Praat (Boersma, Weenink, 2021) was used for seg-
menting and marking the boundaries of segments for
all items.

3.2. Results

As shown in Figs. 1 and 2 and Table 3, Arabic has
larger means and greater variability for both short and
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Fig. 1. Short vocalic durations in Arabic and Japanese.
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Fig. 2. Long vocalic durations in Arabic and Japanese.

2It would have been desirable to maintain gender balance for
both Arabic and Japanese speakers, had the Japanese speakers
been as accessible to the researcher as the Arabic speakers were.
Nonetheless, an attempt was made to maintain a similar female-
to-male ratio in both groups, although previous studies did not
always have gender-balanced groups. For instance, Tsukada had
7 Arabic speakers (4 male and 3 female) in some studies (e.g.,
Tsukada, 2011) and 9 Arabic speakers (6 male and 3 female)
in some other studies (e.g., Tsukada, 2012a). It should also be
recalled that speakers maintain duration distinction in languages
that exhibit durationally contrastive vocalics such as Hebrew
regardless of gender (e.g., Amir et al., 2012).

Table 3. Short and long vocalic means [ms], SDs, minimums
and maximums of durations in Arabic and Japanese.

Length Language Mean SD Minimum Maximum

Short
Arabic 108.95 42.43 50.00 254.63

Japanese 60.51 14.56 27.00 97.00

Long
Arabic 237.11 52.55 27.00 413.94

Japanese 161.88 17.37 120.00 205.00

long vocalics (short: M = 108.95, SD = 42.43; long: M =
237.11, SD = 52.55) than Japanese (short: M = 60.51,
SD = 14.56; long: M = 161.88, SD = 17.37).

The repeated-measures ANOVA with the vocalic
length (short vs. long) as a within-subject factor and
language as a between-subject factor was performed to
test mean differences. As detailed in Table 4, the test
provided evidence for a statistically significant differ-
ence between short and long vocalics with a very large
effect size, F (1, 78) = 2047.16, p < 0.001, ω2 = 0.86, and
between Arabic and Japanese, also with a large effect
size, F (1, 78) = 182.51, p < 0.001, ω2 = 0.53. There
was also a statistically significant interaction between
the two factors with an intermediate effect, F (1, 78) =
27.89, p < 0.001, ω2 = 0.07.

Table 4. Repeated-measures ANOVA results.

Factors df F p ω2

Vocalic length 1 2047.16 <.001 0.86

Language 1 182.51 <.001 0.53

Vocalic length ∗ language 1 27.89 <.001 0.07

Thus, we have strong evidence that Arabic and Ja-
panese differ significantly in terms of duration for both
short and long vocalics and that, within each language,
short vocalics are shorter than their counterparts. Ta-
ble 5 presents the duration differences and duration
ratios for both languages. The duration difference for
Arabic (128.16 ms) and for Japanese (101.82 ms) and
the duration ratio for Arabic (0.48) and Japanese
(0.37) are similar to those calculated and obtained
from the data provided in (Tsukada, 2011). Hence,
the duration difference may be misinterpreted as in-
dicative of an overall similarity between the vocalic du-
ration in Arabic and Japanese, which is not precisely
the case.

Table 5. Duration differences and duration ratios
in Arabic and Japanese.

Language Mean SD Minimum Maximum

Duration
difference

[ms]

Arabic 128.16 54.20 −167.47∗ 329.84

Japanese 101.82 19.45 45.00 294.00

Duration
ratio

Arabic 0.48 0.29 0.20 3.04

Japanese 0.37 0.06 0.20 0.54

∗Note that the negative value is one of the issues caused by
using the duration difference, as explained in the introduction.
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Now consider both the proposed duration metric
and the difference metric in Table 6. The duration met-
ric for Arabic (173.03 ms) was substantially larger than
that for Japanese (111.20 ms). Likewise, the difference
metric for Arabic (64.08 ms) was considerably greater
than that for Japanese (51.30 ms).

Table 6. Duration metrics and difference metrics
in Arabic and Japanese.

Language Mean SD Minimum Maximum

Duration
metric [ms]

Arabic 173.03 39.32 42.50 283.54

Japanese 111.20 14.85 74.50 145.50

Difference
metric [ms]

Arabic 64.08 42.43 50.00 254.63

Japanese 51.30 28.31 −52.00 259.00

Thus, based on the aformentioned data, we obser-
ve that the duration metric and the difference met-
ric better represent the vocalic duration facts in both
languages. The values are re-reported side-by-side in
Table 7, which arguably illustrates how the substan-
tial dissimilarity between Arabic and Japanese and be-
tween short and long vocalics is reflected more clearly
in the duration metric and the difference metric than in
the duration difference and the duration ratio. To sup-
port this claim, an inverse regression was performed
to test which of the four variables (duration differ-
ence, duration ratio, duration metric, or difference
metric) would most accurately predict the language.
We first compare the duration difference and the du-
ration metric, as these two are similar; both inform us
about the actual duration of the short vs. long vowels.
Next, we compare the duration ratio and the differ-
ence metric, as these two are also similar; both inform

Table 7. Vocalic durations, duration differences, duration ratios, duration metrics,
and difference metrics in Arabic and Japanese.

Short
duration

[ms]

Long
duration

[ms]

Duration
difference

[ms]

Duration
ratio

Duration
metric
[ms]

Difference
metric
[ms]

Arabic Japanese Arabic Japanese Arabic Japanese Arabic Japanese Arabic Japanese Arabic Japanese

Mean 108.95 60.51 237.11 161.88 128.16 101.82 0.48 0.37 173.03 111.20 64.08 51.30

SD 42.43 14.56 52.55 17.37 54.20 19.45 0.29 0.06 39.32 14.85 42.43 28.31

Table 8. The −2LL and pseudo-R2 values for model 1.

χ2 df p −2LL Nagelkerke R2 Tjur R2 Cox and Snell R2 McFadden R2

Model 79.58 1 <.001 918.55 0.14 0.12 0.10 0.08

Duration difference 60.60 1 <.001

Table 9. Confusion matrix (sensitivity and specificity rates) and accuracy rate of model 1.

Observed

Predicted

Language Percentage
correctArabic Japanese

Language
Arabic 240 120 66.70

Japanese 77 283 78.60

Overall percentage (accuracy) 72.60

us about the relationship between two values. Despite
the similarity in purpose between the members of each
group, the difference metric and duration metric both
have the added benefit of being able to inform us about
the mean vocalic duration measures as well.

We fitted an inverse binary logistic regression mo-
del, first using the duration difference as a predictor
variable and the language as a predicted variable. The
results indicated a significant improvement in fit rela-
tive to an intercept-only model, χ2(1) = 79.58, p < .001,
and that the duration difference was a statistically sig-
nificant predictor of language, χ2(1) = 60.60, p < .001.
Table 8 shows the −2 log-likelihood (−2LL) and the
pseudo-R2 values of the first model (model 1). As
shown, in order from the largest pseudo-R2 value to
the smallest, the Nagelkerke R2, Tjur R2, Cox and
Snell R2, and McFadden R2 exhibited relatively sim-
ilar, low values. These values become important later
when we compare with another predictor variable.

Table 9 shows that the sensitivity of the model was
78.60%, the specificity of the model was 66.70%, and
the overall accuracy was 72.60%.

The model was re-fitted using the duration metric
value as a predictor variable. The results again showed
a significant improvement in fit for the second model
(model 2) relative to an intercept-only model, χ2(1) =
572.06, p < .001, and that duration metric was a sta-
tistically significant predictor of the language, χ2(1) =
159.56, p < .001. When the duration difference was
used as a predictor for the language, the –2LL value
was lower while the pseudo-R2 values (Table 10) were
higher than those obtained in the previous model,
demonstrating the development of better fit in model 2.
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Table 10. The −2LL and pseudo-R2 values for model 2.

χ2 df p −2LL Nagelkerke R2 Tjur R2 McFadden R2 Cox and Snell R2

Model 572.06 1 <.001 426.06 0.73 0.65 0.57 0.54

Duration metric 159.56 1 <.001

As shown in Table 11, the sensitivity (85.30%),
specificity (92.80%), and overall accuracy (89.00%) all
improved in model 2.

Thus, all indicators demonstrated that the dura-
tion metric proposed in the current study is a better
alternative to the duration difference used in previ-
ous studies. We compare the two other indicators (the
duration ratio vs. the difference metric), following the
same steps used in comparing the duration difference
and the duration metric.

An inverse binary logistic regression model
(model 3) was performed with the duration ratio as
a predictor and the language as a predicted variable.
The output showed that, compared to an intercept-
only model, model 3 demonstrated a significant im-
provement in fit, χ2(1) = 101.92, p < .001, and that
duration ratio was a statistically significant predictor
of the language, χ2(1) = 68.31, p < .001. The −2LL
value (896.20) and the pseudo-R2 values (Cox and
Snell R2 = 0.17, Nagelkerke R2 = 0.13, Tjur R2 = 0.12,
and McFadden R2 = 0.10) were very similar (Table 12)

Table 11. Confusion matrix (sensitivity and specificity rates) and accuracy rate of model 2.

Observed

Predicted

Language Percentage
correctArabic Japanese

Language
Arabic 307 53 85.30

Japanese 26 334 92.80

Overall percentage (accuracy) 89.00

Table 12. The −2LL and pseudo-R2 values for model 3.

χ2 df p −2LL Cox and Snell R2 Nagelkerke R2 Tjur R2 McFadden R2

Model 101.92 1 <.001 896.20 0.17 0.13 0.12 0.10

Duration ratio 68.31 1 <.001

Table 13. Confusion matrix (sensitivity and specificity rates) and accuracy rate of model 3.

Observed

Predicted

Language Percentage
correctArabic Japanese

Language
Arabic 215 145 59.70

Japanese 105 225 70.80

Overall percentage (accuracy) 65.30

Table 14. The −2LL and pseudo-R2 values for model 4.

χ2 df p −2LL Nagelkerke R2 Tjur R2 Cox and Snell R2 McFadden R2

Model 537.29 1 <.001 460.84 0.71 0.60 0.53 0.52

Duration metric 167.56 1 <.001

to those obtained when the duration difference was
used as an indicator.

The sensitivity (59.7%), specificity (70.8%), and
overall accuracy (65.3%) of the model, as shown in
Table 13, indicated that this model exhibited poor sen-
sitivity and slightly poor overall accuracy.

Running the model again with the difference met-
ric as a predictor, model 4 showed a significant im-
provement in fit relative to the intercept-only model,
χ2(1) = 537.29, p < .001. It also indicated the dif-
ference metric as a statistically significant predictor
of the language, χ2(1) = 167.56, p < .001. The −2LL
value (460.84) and the pseudo-R2 values (Nagelkerke
R2 = 0.71, Tjur R2 = 0.60, Cox and Snell R2 = 0.53, and
McFadden R2 = 0.52) were highly similar (Table 14) to
those obtained when using the duration metric as an
indicator.

The sensitivity (87.2%), specificity (84.2%), and
overall accuracy (85.7%) of the model, as shown in Ta-
ble 15, were notably higher than those in the previous
model and indicated good fit. Thus, running the model
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Table 15. Confusion matrix (sensitivity and specificity rates) and accuracy rate of model 4.

Observed

Predicted

Language Percentage
correctArabic Japanese

Language
Arabic 314 46 87.20

Japanese 57 303 84.20

Overall percentage (accuracy) 85.70

again with the difference metric as a predictor signifi-
cantly improved the model’s goodness of fit compared
to using the duration ratio as a predictor.

4. Discussion and conclusion

The findings above agree with a large body of lit-
erature that has shown that Arabic and Japanese con-
trast short and long vowels (e.g., Tsukada, 2013), as
well as with previous observations that Arabic short
vowels weigh approximately 50% of their long coun-
terparts while Japanese short vowels weigh less than
50% of their long counterparts (e.g., Tsukada, 2011).
The duration difference and the duration ratio were,
respectively, 128.16 and 0.48 for Arabic vocalics and
were, respectively, 101.82 and 0.37 for Japanese vocal-
ics. The duration differences (128.16 and 101.82 ms)
do not reflect the short and long durations in Arabic
or Japanese; Arabic short vowels are approximately
55% longer than Japanese short vowels, Arabic long
vowels are approximately 65% longer than Japanese
long vowels, and, overall, Arabic vocalics are approxi-
mately 60% longer than Japanese vocalics. Likewise,
the duration ratio does not convey much informa-
tion about vocalic duration within-language (e.g., Ara-
bic or Japanese) or between the two languages (Arabic
and Japanese) nor in comparison with other languages.
Based on the data we obtained in this experiment, the
duration ratios in Arabic and Japanese are relatively
similar: 0.48 in Arabic and 0.37 in Japanese. That is,
the durations of short and long vowels in Arabic are
nearly double those in Japanese, but we cannot deduce
this from the duration ratio.

In comparison, the duration metric (173.03 ms) and
difference metric in Arabic (±64.08 ms) diverged from
the duration metric (111.20 ms) and the difference
metric in Japanese (±51.30 ms). The duration metric
shows the average length of both short and long vowels;
we can see clearly that Arabic vocalics are consider-
ably longer than Japanese vocalics. The duration met-
ric shows the extent to which short vocalics and long
vocalics are similar or different within and between
Arabic and Japanese, and we can ascertain that the
difference between short and long vocalics in Arabic is
greater than that in Japanese and that, moreover, that
duration is more variable in Arabic than in Japanese.
The two metrics together show that the duration met-
ric of short and long vocalics in Arabic (173.3 ms) is

very close to the duration of long vocalics in Japanese
(111.20± 51.30 = 162 ms) and that the duration met-
ric of short and long vocalics in Japanese (111.20 ms)
is also similar to the duration of short vowels in Arabic
(173.03 − 64.08 = 108.95 ms).

Neither the duration difference nor the duration ra-
tio is a factual duration unit. Unlike the duration met-
ric, the duration difference does not provide the actual
duration of vocalics in Arabic vs. Japanese. Likewise,
the duration ratio is a completely different measure-
ment unit that no longer expresses the duration in time
units and cannot indicate the duration of short vow-
els relative to long ones in Arabic vs. Japanese. The
duration ratio cannot be used to compare vocalic du-
rations between dialects or languages, because two dif-
ferent languages that have two distinct duration mea-
surements for short and long vocalics may still have
similar or even identical duration ratios. For instance,
the duration ratio for Palestinian vocalics is approxi-
mately 0.39 (Saadah, 2011) and for Japanese vocalics
in the current experiment was 0.37. These two val-
ues are extremely similar, but overall, Palestinian short
and long vocalics are both longer than their Japanese
counterparts. Using the actual vocalic duration mea-
surements in a statistical test to compare vocalics in
Palestinian and Japanese should reveal a significant
difference, while using the duration ratio is unlikely
to reveal any differences. This is probably the reason
why the duration and difference metrics were better
predictors of the language.

To summarize, this paper shows how the duration
difference and duration ratio measures used in previ-
ous studies are not optimal metrics for comparing vo-
calic duration within and across languages. We pro-
pose two alternative metrics: the duration metric and
the difference metric. Using data from a previous study
(Tsukada, 2011), we illustrate the difference between
the duration ratio and the duration difference, on the
one hand, and between the duration metric and dif-
ference metric, on the other hand. We then conduct
an experiment to examine the new metrics. The find-
ings show that short and long vocalic durations dif-
fer in both Arabic and Japanese and that Arabic and
Japanese also differ in terms of short and long vowel
durations. More importantly, the key finding is that
the proposed metrics were better predictors of the lan-
guage than the traditional measures. This finding in-
vites researchers on the vocalic duration, whether pho-
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neticians, language acquisitionists, or speech patholo-
gists, to consider using (and testing) of the proposed
metrics. We also call for a revisiting of the findings es-
tablished in previous literature, especially those studies
that compared several languages or dialects (e.g., Al-
ghamdi, 1998). Future research can survey languages
and dialects that have shown similar or dissimilar dura-
tion ratios and examine whether the proposed metrics
will reveal patterns that differ from those revealed by
the traditional duration ratio and duration difference
measures.
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1. Introduction

Sound quality or the quality of an instrument is
an essential consideration for musicians and those in-
volved in instrument construction and maintenance.
In the case of musical instruments made primarily of
wood, the physical condition of this material is essen-
tial. It is described by some parameters, among which
moisture content is one of the most important. This
is because wood contains a high percentage of lignin,
which is very hygroscopic (Gordobil et al., 2021).
A change in wood moisture content causes a change
in acoustic parameters, e.g., density, Young’s modu-
lus, and other physical parameters. Changes also affect
the structure of the wood itself, as very dry wood may
crack easily (Rath, Staudinger, 2001). The problems
mentioned have a significant impact on the musical in-
strument sound and its overall condition.

The acoustic guitar is an instrument made primar-
ily of wood. The tree species used in the instrument are
primarily spruce, cedar, and mahogany (Gore, 2011).
Humidity affects not only the sound but also the tun-
ing of this instrument. When the wood is too dry, the

neck’s geometry changes, causing out-of-tune sounds
on the frets (Wrzeciono et al., 2018). In addition,
the moisture content of the wood in a guitar may vary
with the season. For example, in Poland, wood drying
is most noticeable during winter conditions (Wrze-
ciono et al., 2018).

Luthiers deal with this problem in different ways.
One solution is presented in the paper (Wrzeciono
et al., 2018), where a parametric analysis of guitar
sound before and after humidification was performed.
As a result, it was possible to determine several pa-
rameters, including the time of sustain, which varied
significantly depending on the instrument’s condition.
However, linking the audible change in the swell to the
measurement results remained a challenge. In this pa-
per, we present methods to solve the mentioned prob-
lem.

During the experiments, the evaluation of the in-
strument’s sound quality was carried out by its owner.
However, the humidification process was conducted
in the luthier’s workshop, where the instrument was
serviced due to excessively low wood moisture con-
tent. In such a situation, there is a possibility that
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the measured sound parameters do not support the
subjective assessment made by the instrument owner.
Conducting a double-blind test under such circum-
stances was impossible. So, measurements and ana-
lysis of the results had to be performed to deter-
mine whether a trend would correlate with the mu-
sicians’ perceptions. A detailed study of changes was
described in the paper by Wrzeciono et al. (2018).
Through this study it was found that the most sig-
nificant changes perceived in sound are related to the
sounding time.

The objective of our study closely aligned with the
evaluation procedures employed by musicians in as-
sessing the sound quality of an instrument, where in
normal operational conditions, musicians leverage the
phenomenon of mutual excitation of strings. Conse-
quently, it was necessary to conduct experiments with
all strings attached. Therefore, our study aimed not to
eliminate this phenomenon but to examine its quanti-
tative changes.

2. Materials and methods

In a pilot study related to the parametric analy-
sis of guitars, about 60 instruments were used before
proceeding to a systematic multi-day experiment. All
of the instruments tested had new strings attached.
The tuning process was carried out using a special-
ized luthier’s device that tunes an empty string to an
accuracy of 0.1 cents.

Typically, moisturizing a guitar usually takes
a week, and the effects of humidification are monitored
daily (Wrzeciono et al., 2018).

The measurement setup included a chamber sound
box isolating the guitar from its surroundings, along
with a microphone unit. The strings were excited by
a free-falling arm containing a handle to prevent the
arm from rebounding. Measurements of the sound
level obtained by striking the strings with the arm
were conducted with a set of microphones placed on
the axis of the sound hole, at a distance of 15 cm
from the guitar. The primary measurement was made
with a PreSonus PRM1 microphone calibrated with
a Sonopan KA-50 calibrator. In addition, the Rode
NT1 microphone was employed as the second one to
record guitar sounds with a low noise level.

The microphones were connected to a Focusrite
Scarlett 2i2 2Gen audio interface, and the measure-
ment system was calibrated with a signal from a 94 dB
acoustic calibrator (Sonopan KA-50). Then, a record-
ing of the guitar sound was made after striking the
strings with the arm. A single recording consisted of
ten strokes made every 60 seconds. The recordings were
made at a sampling rate of 96 kHz and a bit resolution
of 24 bits. Infrasound components were removed from
the calibration and measurement signals by the Octave
program’s digital filter. The signal from the PRM1

microphone was used as a reference to calculate the
sound level of the tested guitar. A detailed descrip-
tion of the measurement method and measuring in-
struments is presented in the paper by Wrzeciono
et al. (2018).

Several parameters describing the guitar sound
were also defined in that work. However, the sounding
guitar time, denoted as T40, was the most important
one. The T40 parameter is the interval of time in which
the sound level of the guitar, after impulse excitation,
drops by 40 dB. A time window of 10 ms was used
in the signal power calculation. In addition, infrasonic
components were previously removed from the signal.
However, the T40 parameter alone does not account for
the change in the decay’s nature (Wrzeciono et al.,
2018).

Therefore, further analytical work was undertaken
to reconstruct the auditory impression. The study in-
volved qualitative and quantitative analysis. Higuchi
fractal dimension (HFD) and symbolic analysis were
chosen as qualitative analysis, while empirical mode
decomposition (EMD) was selected as the quantitative
analysis.

Both HFD and symbolic method have been used
to analyze biomedical signals for medical diagnosis
and treatment evaluation efficacy (Gladun, 2020; Go-
molka et al., 2018; Pierzchalski et al., 2011; Sto-
jadinović et al., 2020). Therefore, using these meth-
ods to analyze a relatively uncomplicated signal, such
as the sound level of a guitar, should yield intriguing
results. The problem of evaluating the effectiveness of
the humidification process is analogous to assess the ef-
fectiveness of therapy. At its core, conditioning serves
as therapy for the instrument.

The fractal dimension and the characteristics of the
symbolic analysis allow, based on the analyzed signal,
to determine the state in which the system generat-
ing the signal is present, thus enabling the detection of
state changes. These methods allow to track changes in
long signals through the use of moving window tech-
nique. Since the waveforms of sound levels concern-
ing the registration of physiological signals are short,
global (for the whole signal) values of fractal dimen-
sion and symbolic parameter were calculated. These
calculated parameters give general information about
the changes in guitar sound.

On the other hand, EMD is currently used in a wide
range of topics in geophysics (Huang, Wu, 2008),
oceanology (Zhou et al., 2021), biomedicine (Khan,
Pachori, 2021; Li et al., 2021; Pierzchalski et al.,
2011), and engineering (Zheng et al., 2021). The de-
sign of the EMD method gives a broader picture of
the changes in the system under study. It is multi-
parametric and thus less synthetic than the previously
discussed methods. The original decomposition into
modes and the residue allow us to observe precisely
what occurs in the sound level signal.
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3. Signal processing

3.1. Brief introduction to methods of analysis

The humidification process significantly changes
the shape and complexity of the sound pressure level
(SPL) curve. Therefore, employing signal complex-
ity analysis methods is justified. Three methods have
been proposed and used here: HFD, symbolic analy-
sis, and EMD. They represent different approaches to
signal analysis. HFD is based on scaling law; symbolic
analysis uses statistics; EMD is an iterative decom-
position procedure. Thus, the convergence of results
obtained by these methods confirms the notion of SPL
analysis as a complex signal. Furthermore, the agree-
ment of these results with listening evaluations vali-
dates the use of these methods for automatic evalua-
tion and control of the humidification process.

HFD and symbolic measure are global. Their val-
ues allow determining only the level of complexity of
the signal. On the other hand, EMD analysis provides
more profound information about the changes that oc-
cur in the signal.

3.2. Higuchi’s fractal dimension

HFD of the signal curve (Higuchi, 1988) measures
the signal’s waveform complexity and should not be
confused with the fractal dimension in phase space
(Mandelbrot, 1967). HFD, denoted as Df , typically
ranges from 1.0 (for a straight line or straight Eu-
clidean curve) to 2.0 (for a curve with random am-
plitudes). The only parameter of Higuchi’s algorithm
is kmax. It is the maximal rescale (time delay) integer
parameter, which depends on the sampling frequency
and signal length (Spasić et al., 2005). In our study,
the optimal value of kmax has a value of eight, because
Df has the least variance at this parameter setting.

From sampled in time signal: X(1),X(2), ...,X(N),
the algorithm constructs k new series Xk

m: X(m),
X(m+k), ...,X (m+int((N−m)/k)k) for m = 1,2, ..., k,
where m is the initial time, k is the delay, and int(r)
is the integer part of a real number r.

For every k = 1,2, ..., kmax the difference between
shifted samples starting from the following m is calcu-
lated as:

Lm(k) = 1

k

⎛⎜⎝
int(N−m

k
)∑

i=1

∣X (m + ik) −X (m + (i − 1)k)∣⎞⎟⎠
⋅ N − 1
int (N−m

k
)k , (1)

where N is the total number of samples.
Next, the mean of the k values Lm(k) for m = 1,

2, ..., k is calculated as:

L(k) = 1

k

k∑
m=1

Lm(k). (2)

L(k) satisfies the scaling law:

L(k)∝ k−Df , (3)

where exponent Df is HFD. This relationship is re-
duced to linear form:

log (L(k))∝Df log (1
k
). (4)

Hence, the value of the fractal dimension Df is calcu-
lated by a least-squares linear best-fitting procedure.

3.3. Symbolic analysis

The symbolic analysis uses the methodology ap-
plied in information theory (Stone, 2022), which de-
fines many parameters of signal complexity, i.e., en-
tropies and related measures (Ribeiro et al., 2012;
2017). However, in this paper, we propose to use a more
specific parameter whose mathematical description is
close to the average codeword length (Johnson Jr
et al., 2003).

The construction of the parameter uses the statis-
tical distribution of symbol sequence representing the
falling and rising slope of the signal (Stepien, 2011).
The general idea is to encode the changes in signal
between successive samples with symbols “0” and “1”:

c(i) = { 1 if X(i) ≥X(i − 1),
0 if X(i) <X(i − 1). (5)

The symbol “1” denotes an amplitude increase,
while the symbol “0” denotes an amplitude decrease
between successive signal samples. Thus, rising edges
of the signal correspond to “1” sequences, and falling
edges to “0” sequences. In this way, the monotonic-
ity of the signal is encoded. Hence, sequences compris-
ing only “1” or “0” symbols are called mono-sequences
here. We denote the length of the mono-sequence cor-
responding to the rising slope by l({1}∗), while that
of the falling slope by l({0}∗).

To estimate the probabilities p (l({1}∗)) and
p (l({0}∗)) of occurrence of mono-sequences of consec-
utive lengths let us encode the signal according to the
rule (Eq. (5)). Then, count the encoded signal’s mono-
sequences according to their length and divide by the
total number of mono-sequences of a given type.

Our signal characteristic is the sum of mean values
of mono-sequences’ lengths in the coded signal, which
are calculated as:

L1 =
lmax∑
l=1

p (l ({1}∗)) l ({1}∗),
L0 =

lmax∑
l=1

p (l ({0}∗)) l ({0}∗).
(6)

Finally, we obtain a parameter called the sum of
mean lengths (SML), which measures the complexity
of the signal:

SML = L0 +L1. (7)
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The SML parameter is the sum of the mean values
and, as such, is an average measure. However, unlike
entropy per symbol, it is not a measure that directly
characterizes the source of the signal but rather a mea-
sure of the complexity of the signal itself and, indi-
rectly, its source.

In addition to providing overall signal characteris-
tics, this parameter can be used to track the evolution
of signal complexity, e.g., using the moving window
technique.

3.4. Empirical mode decomposition

EMD decomposes multi-component signals into
their mono-components, as proposed by Huang et al.
(1998). EMD is a data-driven algorithm that does not
depend on any predefined basis function. Such mono-
components are called intrinsic mode functions (IMFs).
An IMF is a signal that fulfills the following condi-
tions: the number of extrema and the number of zero
crossings of the IMF are either the same or their dif-
ference is 1; the signal has “zero mean” – meaning the
mean value of the envelope determined by the maxima
and the envelope defined by the minima is equal to 0
at every point.

The above conditions suggest that EMD – non-
stationary signal is decomposed into stationary, sym-
metric signals (modes) that are easy to analyze.

The crucial step of EMD is extracting extrema from
the original signal x(t) end creating the upper envelope
emax and the lower envelope emin by cubic spline inter-
polation (de Boor, 1978) of the maxima and minima,
respectively. Then, the mean value of the two envelopes
is computed as:

m(t) = emax − emin

2
. (8)

The value m(t) is subtracted from the primary sig-
nal x(t) resulting in:

imf1(t) = x(t) −m(t). (9)

This is called the sifting process (Fig. 1).
In an ideal case, imf1(t) could be the first mode

IMF1, but it usually remains an asymmetric signal. In
such a case, we need to repeat the above procedure,
treating imf1(t) as the input data for the subsequent
sifting process, so the mean valuem(t) of the envelopes
of imf1(t) is calculated, and this value is subtracted
from imf1(t):

imf1(t) ∶= imf1(t) −m(t). (10)

In Eq. (10), the sign “ ∶=” denotes “becomes,” that is,
in the programming loop, the right-hand side is substi-
tuted for the left-hand side. This procedure is repeated
until imf1(t) meets the conditions of an IMF signal

Start

End

Spline interpolation of
maximas: emax(t) and minimas: emin(t)

m(t)=
emax(t)−emin(t)

2

imf i(t):=imf i(t)−m(t)

m(t)≈0

r( t) :=r( t)−imf i( t)

r(t)≈0 i : = i+ 1

r ( t ) =x ( t ) ;  i= 1

imf i( t)=r( t)

imf i( t)

Legend:
x – original data
imf – table of IFM’s
r – residue
i – decomposition iteration

IMF’s decomposition loop

Sifting loop
True

True

False

False

Fig. 1. Block diagram of sifting process
(from (Pierzchalski et al., 2011)).

(m(t) ≈ 0). After the extraction of IMF1, the original
data is reduced by the ultimate value of imf1(t):

r(t) = x(t) − imf1(t). (11)

The residue r(t) is treated as input for extracting
the subsequent IMF (next sifting loop).

a)

original signal - IMF1

Am
pl

itu
de

Am
pl

itu
de

Am
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itu
de

envelope 
envelopes' mean

IMF1 
envelope 
envelopes' mean

original signal 
envelope 
envelopes' mean

Time [s]

b)

c)

Fig. 2. EMD decomposition: a) start; b) end of the decom-
position of the first IMF; c) start of the decomposition for

the second IMF (from (Pierzchalski et al., 2011)).
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The procedure is looped to obtain all IMFs (Figs. 1
and 2). Decomposition is finished when either the i-th
residue ri(t) = ri−1(t)−imfi(t) has less than three ex-
trema or all its points are equal to zero.

The sum of all IMF components (modes) and the
residue is equal to the original signal:

rn + n∑
m=1

IMFm(t) = x(t), (12)

where n is the number of modes.
In most analyzes using EMD, researchers focus

on the modes themselves, ignoring the residue, which
for many complex signals, has tiny amplitudes. How-
ever, in this study, the amplitudes of the residues
are much higher than the amplitudes of the modes.
Thus, the residues give the most crucial information
about the signal.

4. Results

The results presented here are for five guitars
that underwent the humidification process for nearly
a week. The guitar designations are random and do not
refer to any specific type or model of guitar. The ana-
lyzed data were obtained using the measurement and
processing methods described in (Wrzeciono et al.,
2018).

4.1. Analysis of sound level during sustain
by Higuchi’s fractal dimension

Table 1 shows the derived fractal dimension values
for the instruments before and after moisturizing. All
tested guitars exhibited a higher fractal dimension af-
ter the humidification process than before. This means
that the SPL curve for the instrument after humidifi-
cation is more complex than before.

Table 1. HDF for five guitars before and after
humidification.

The guitar ID Before moisturizing After moisturizing

110 2.12 2.18

111 2.08 2.17

112 2.01 2.2

113 2.08 2.12

114 2.19 2.22

It should be noted that the levels of fractal dimen-
sion values attained by guitars depend not only on
their initial condition but also on individual features
of their construction. For example, the fractal dimen-
sion value for guitar 110 before humidification is the
same as for the fractal dimension of guitar 113 after hu-
midification. However, after humidification, the fractal
dimension for guitar 110 reaches the level of this value
for guitar 114.

Moreover, it is observed that the level of increment
in fractal dimension depends on the guitar’s starting
condition and susceptibility to moisturizing. The most
significant increases in fractal dimension occurred for
guitars 112 and 111, while for guitars 113 and 114, the
increment was the smallest.

It is also intriguing that the fractal dimension val-
ues exceed the value of 2. This is probably due to the
properties of the curve of the sound level during sus-
tain, where a strong nonlinear trend is superimposed
on a rapidly varying oscillation. This trend is essen-
tial in interpreting how we hear the guitar sound. We
write about this further in the results section on EMD
analysis.

4.2. Symbolic analysis of sustain curve

The sum of the means lengths of mono-sequences
(SML), similarly to HFD, records the difference before
and after conditioning the instrument (Fig. 3). For this
parameter, we observe a decrease in value after condi-
tioning. This means that the amplitudes of the fast
oscillations are statistically shorter and become more
uniform after humidification. The complexity of sus-
tain curves grows after moisturizing, which agrees with
the results obtained with HFD.

110 111 112 113 114
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2.9

3.0

3.1

3.2

3.3

3.4

3.5 Before humidification
After humidification

SM
L

Guitar

Fig. 3. Values of SML score for five instruments.

Using SML, we tracked the changes in guitars dur-
ing the humidification process. Figure 4 shows the evo-
lution of the SML scores for guitars from the first be-
fore conditioning to the last after an entire humidifi-
cation cycle.

The effect of the instrument humidification process
is irregular – improvement is followed by deterioration.
This agrees with listening observations. The evolution
during conditioning resembles a fading oscillation, in-
dicating that guitars are moving towards their charac-
teristic equilibrium points.
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Fig. 4. Evolution of SML scores during instrument
humidification.

4.3. EMD decomposition of the sound level in sustain

EMD decomposed the sound level during sustain
of the guitar before and during the moisturizing pro-
cedure. Figure 5 presents the decomposition of the SPL
curve for guitar 112 before and after the complete cycle
of moisturizing.

For guitar 112, the number of modes did not
change. However, evident changes can be seen in the
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Fig. 5. EMD decomposition of the SPL for guitar 112: a) before moisturizing; b) after moisturizing.

shape of the mode waveforms. Here, the shape of the
sustain signal is mainly affected by mode IMF5. The
bulges observed in the sustain signal of the guitar be-
fore the humidification process, audible as long ripples
of sound, are associated with mode IMF5.

In the seven decompositions, the final number of
modes was five; in two cases, it was six, and in one case,
it was four. Thus, for two guitars, after conditioning,
the number of modes increased from five to six (gui-
tar 111) and four to five (guitar 113, see Fig. 6); for
one guitar, it decreased from six to five (guitar 114).

Especially interesting are the results of the residue
decomposition of the signal. For example, residues of
SPL measurements before and after humidification for
guitar 110 are presented in Fig. 7.

Figure 8 shows the changes in the shapes of the
residue curves determined for the instruments during
the humidification process.

The shape of these curves matches the listening ex-
perience and confirms the irregular changes in instru-
ment sound quality during humidification. In addition,
an identical irregularity was observed for the previ-
ously determined SML parameter.

Through our investigation, we observed significant
alterations in the playability of instruments follow-
ing the humidification process, as indicated by all the
methods employed.
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Fig. 6. EMD decomposition of the SPL for guitar 113: a) before moisturizing; b) after moisturizing.
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Fig. 8. Residues after the EMD decomposition of SPL measured during moisturizing procedure. The first and last measures
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Previously, a solution to the problem of objective
assessment of the influence of the humidification pro-
cedure on guitar sound quality was proposed together
with the original measurement procedure by Wrze-
ciono et al. (2018). Despite having an effective mea-
surement method, the problem turned out to be non-
trivial, and the methods of sound level analysis pro-
posed in (Wrzeciono et al., 2018) did not yield en-
tirely satisfactory results. As a result, only the sustain
time parameter T40 was suitable for guitar condition
evaluation. Unfortunately, the disadvantage of this pa-
rameter is its excessive sensitivity to changes in the

signal level cut-off moment. Therefore, in this work,
more global methods that use all measured points on
the sound level curve, or as in the case of EMD, gen-
erate curves containing deeper information, were used
to evaluate sound level changes.

5. Conclusion

The purpose of this study was to find parameters
for evaluating guitar humidification performance, and
we found that complexity parameters like HFD, sym-
bolic analysis, and EMD provide a consistent and clear
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depiction of the changes in guitar sound quality dur-
ing the humidification process. To the best of the au-
thors’ knowledge, this is probably the first application
of these methods to evaluate guitar humidification per-
formance.
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considering the overlap of multiple highlight echoes caused by the high-speed translation of the target and the
long pulse detection signal, precise representation is achieved by setting motion positions and calculating time
delays within the model. The results represent the echoes of moving targets with multiple highlights and micro-
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1. Introduction

Existing studies have shown that underwater tar-
gets, during navigation or operational activities, ex-
hibit periodic micro-motions such as vibrations and ro-
tations alongside their translation (Clemente et al.,
2013; Hanif et al., 2022). Micro-Doppler features,
serving as a crucial representation of target motion
states, are particularly important in high-speed tar-
get detection. By extracting micro-Doppler features
from complex echo signals, it is possible to estimate
motion parameters of the high-speed target’s micro-
motion components, which is of great significance for
target detection and identification.

In the field of radar detection, extensive research
has been conducted on target micro-motion fea-
tures, micro-motion feature extraction, and classifi-
cation, leading to valuable achievements (Clemente
et al., 2013; Hanif et al., 2022). Chen et al. (2003)

elucidated the frequency modulation effect caused
by target micro-motion, known as micro-Doppler.
Micro-Doppler features have been used for classify-
ing various human activities. By using raw micro-
Doppler signatures as features, detection and recogni-
tion of various human activities can be achieved (Kim,
Ling, 2009; Kim, Moon, 2016). Wang et al. (2023)
employed time-frequency analysis to extract micro-
Doppler features from radar signals to identify the
indoor activities of elderly people, enabling an effec-
tive assessment of potential risks in their daily rou-
tines. Zhao and Su (2023) decomposed Doppler sig-
nals from the echo of small unmanned aerial vehicles
based on the micro-Doppler effect of rotating targets.
They further extracted motion parameters from the
residual rotating signals, achieving efficient identifica-
tion of LSS UAVs. In addition to civilian applications,
relevant research has also been conducted in the mili-
tary domain. For instance, based on the estimation of

https://acoustics.ippt.pan.pl/index.php/aa/index
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target micro-motion parameters, the identification of
warheads has been accomplished, taking into account
the different forms of target micro-motions (Gao et al.,
2010; Han, Feng, 2020; Zhang et al., 2023).

In underwater acoustics, most research has con-
centrated on estimating motion parameters and po-
sition parameters of targets through Doppler parame-
ters, enabling measurements such as velocity and range
estimation (Xu, 2016; Tang et al., 2020). Zhang
et al. (2018) proposed a method based on frequency-
difference-of-arrival measurements to accurately infer
the position and velocity of underwater targets by con-
sidering the Doppler effect. Gong et al. (2020) intro-
duced a low-complexity Doppler estimation algorithm
to estimate the Doppler frequency shift and achieve lo-
calization of autonomous underwater vehicles. Yang
et al. (2023) estimated the Doppler frequency shift
to obtain the motion states of scatterers and then
fused the motion features to accurately identify multi-
ple moving scatterers within the same beam. Regard-
ing micro-Doppler feature research, Kashyap et al.
(2015) simulated underwater vehicles with rotating
propellers using sonar and radar detection. Employ-
ing time-frequency analysis to extract micro-Doppler
features, the author confirmed that micro-Doppler fea-
tures can be used for target identification. However,
the presented simulation models lack generality. Kul-
handjian et al. (2020) classified and recognized the
swimming postures of humans on the water surface us-
ing acoustic micro-Doppler features. Wu et al. (2022)
simulated the motion features of composite targets
with translational and micro-motion components, us-
ing a single-highlight model, and obtained the tar-
get’s motion features through time-frequency analy-
sis. Kou and Feng (2022) focused on targets with
various micro-motion forms in a static state. The au-
thor separated multi-point echoes and extracted the
micro-motion features of each highlight by construct-
ing a redundant dictionary and sparse decomposi-
tion. Saffari et al. (2023) effectively selected fea-
tures by extracting micro-Doppler features to distin-
guish and identify the propellers of various underwa-
ter target models (in stationary states) based on their
different models and motion states.

Based on the above, most of the existing research
models primarily consider micro-motion features in
a stationary state and perceive the target as a sin-
gle highlight structure. However, in actual underwater
operational scenarios, targets often exhibit a combined
motion pattern of translation and micro-motion, typi-
cally presenting complex structures with multiple scat-
tering centers. For instance, in the case of a torpedo
moving at high speed underwater, the tail fin under-
goes a rotational motion and the engine compartment
exhibits vibration. In light of this scenario, this pa-
per builds upon the highlight model and establishes
a motion characteristic model that incorporates multi-

ple highlight and micro-motions for combined transla-
tion and micro-motion. The feature parameters are ex-
tracted using time-frequency analysis methods to ver-
ify the correctness and effectiveness of the established
model.

2. Mathematical model of micro-motion features

based on single highlight

The single-highlight model for underwater targets
(Tang, 1994) assumes that the relative distance be-
tween a moving target and the sonar remains con-
stant during the pulse width of the transmitted signal.
However, when underwater targets exhibit high-speed
translation along with micro-motion, such as rotation
and vibration, the position of the target’s highlights
changes not only due to translation but also due to
micro-motion. This results in significant changes in
the relative distance between the sonar and the tar-
get, which should be represented as an instantaneous
distance R(t).

Assuming the transmitted signal is a long pulse sig-
nal:

p(t) = p0(t)e−j2πft, (1)

where p0(t) is the envelope of the signal and f is the
carrier frequency.

During the pulse width of the transmitted signal
illuminating the target, the highlight of the target is
established as a dynamic model, represented as a vec-
tor indicating the relative distance R(t).

The vector distance relationship between the sonar
and the micro-motion target is illustrated in Fig. 1.
The sonar is located at the origin O of the coordinate
system (x, y, z) and remains stationary. At time t = 0,
the highlight of the target is located at the origin O1

of the coordinate system (x1, y1, z1), which is a trans-
lation of the (x, y, z) coordinate system. The initial
distance vector between the sonar and the target is
denoted as R0. The highlight moves uniformly with
a velocity vector V, and simultaneously, the micro-
motion of the highlight introduces a distance change
vector M(t). M(t) varies depending on the specific
micro-motion pattern.

sonar

끫룆R(t)

R0

Vt

M(t)

Fig. 1. Sonar and micro-motion target vector relationship.
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The motion of the target can be decomposed into
two stages: first, the target moves from point P

to point P ′, where the vector distance of this segment
is equal to the translational velocity vector multiplied
by time; then, based on the micro-motion pattern, it
moves from point P ′ to point P ′′, where the vector
distance of this segment varies based on the form of
infinitesimal motion. By adding these vectors together,
we can obtain the instantaneous distance R(t):

R(t) = ∣∣R0 +Vt +M(t)∣∣. (2)

According to the highlight model theory, the time
delay τ can be expressed as:

τ = 2R(t)
c

. (3)

The echo signal expression is:

s(t) = Ap0 (t − 2R(t)
c
) e−j2πf(t− 2R(t)

c
)
ejϕ

= Ap0 (t − 2R(t)
c
) e−j2Φ(R(t))ejϕ, (4)

where A is the amplitude of the echo from the high-
light, ϕ is the phase change at the formation of the
echo, and Φ(R(t)) is the phase of the echo signal. By
taking the derivative of the phase, we can obtain the
instantaneous frequency:

ft = 1

2π

dΦ(R(t))
dt

= f − 2f

c

dR(t)
dt

= f − f ′t , (5)

f ′t = fd + fmd = 2f

c
[VT ⋅ n] + 2f

c
[ d

dt
(M(t))]T ⋅ n, (6)

where n = (R0 +Vt+M(t))/∣∣(R0 +Vt+M(t))∣∣ is the
unit vector of OP

′′, and since the initial distance is
much larger than the distance generated by the target
within one pulse period, we can approximate the unit
vector of OP

′′ as the unit vector of OP, denoted as
n ≈ np =R0/∣∣R0∣∣.

From the above derivation, we can see that fd =
2f

c
[VT ⋅ n] is the Doppler frequency shift, indicat-

ing that the echo signal form with Doppler fre-
quency shift can be obtained through the dynamic
representation of time delay. On the other hand,

fmd = 2f

c
[ d

dt
(M(t))]T⋅ n is the frequency shift caused

by the frequency modulation resulting from micro-
motion, known as the micro-Doppler frequency shift.
Its essence is similar to the Doppler features, as both
are caused by the change in the relative distance be-
tween the sonar and the target due to the target’s mo-
tion, which leads to changes in the echo phase.

3. Motion features model for underwater targets

with multiple highlights and micro-motion forms

For complex volumetric targets, a single high-
light is insufficient to encompass their multifaceted

features. Therefore, it is necessary to consider them
as a collection of multiple highlights, each exhibit-
ing diverse micro-motion patterns. Taking a high-
speed moving torpedo target as an example, a compos-
ite motion feature model is constructed to encompass
multiple highlights and their different micro-motion
patterns.

The torpedo is in a high-speed state underwater.
Consider a five-highlight model for the torpedo. The
head of the torpedo represents a stationary highlight
without any micro-motion. The middle section con-
tains an engine that causes mechanical vibrations in
the body. Finally, the tail of the torpedo consists of
three propeller blades that can be seen as three high-
lights rotating around the rear of the body.

The geometric relationship between the torpedo
target and the observing sonar is illustrated in Fig. 2.
Parts A, B, and C in Fig. 2d correspond to Figs. 2a–c,
respectively. The observing sonar is located at the ori-
gin O of the sonar coordinate system (x, y, z). Each
highlight has its independent coordinate system rel-
ative to the sonar coordinate system, denoted as
(x1, y1, z1), (x2, y2, z2), and (x3, y3, z3). These coor-
dinate systems are translations of the sonar coordi-
nate system (x, y, z). The distribution and motion of
these highlights are as mentioned above, represent-
ing the head, middle, and tail of the target, respec-
tively. The highlight representing the middle section
undergoes harmonic vibrations, with the origin O2 of
its coordinate system as the center of oscillation. The
three highlights representing the tail section rotate
around the origin O3 of their coordinate system, with
the y-axis as the rotation axis. They rotate with the
same radius and angular velocity. The initial positions
of these highlights in the coordinate system (x3, y3, z3)
are different. The entire target moves uniformly along
the negative y-axis direction with a speed of v.

For a stationary highlight, as shown in Fig. 2a, the
position of the highlight at the initial moment is P ,
which is located at the origin O1 of the target coordi-
nate system (x1, y1, z1). Its position vector in the sonar
coordinate system (x, y, z) is R1 = (X1, Y1, Z1)T, and
the initial azimuth and pitch angles are α1 and β1, re-
spectively. The radial unit vector of the sonar to the
target is:

np=R1/∣∣R1∣∣=(cosα1 cosβ1, sinα1 cosβ1, sinβ1)T. (7)

The velocity vector of the highlight is V = (0, v, 0)T.
The instantaneous distance and echo signal expression
of the highlight are:

R1(t) = ∣∣R1 +Vt∣∣ =√X2
1
+ (Y1 + vt)2 +Z2

1
, (8)

s1(t) = A1p0 (t − 2R1(t)
c
) e−j2ωc(t− 2R1(t)

c
)
ejϕ1 . (9)
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Fig. 2. The geometric relationship in the model: a) stationary high-light at position A; b) vibrating high-light at position B;
c) rotating highlight at position C; d) geometric relationship between sonar and target.

It can be seen that there is no micro-Doppler; the
only Doppler frequency shift is:

fd = 2f

c
[VT ⋅ np] = 2f

c
(v sinα1 cosβ1). (10)

For the vibrating highlight, as shown in Fig. 2b,
assume that the highlight is initially located at posi-
tion P , which corresponds to the origin O2 in the tar-
get coordinate system (x2, y2, z2). The position vector

of the highlight in the sonar coordinate system (x, y, z)
is denoted as R2 = (X2, Y2, Z2)T. The initial azimuth
angle and pitch angle are represented as α2 and β2, re-
spectively. The unit vector in the radial direction from
the sonar to the vibrating center O2 of the target high-
light takes the same form as Eq. (7).

The origin O2 is the vibration center. The har-
monic vibration is performed with frequency fv
and amplitude Dv. The azimuth angle of the vi-
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bration direction is α, and the pitch angle is β.
The unit vector of the vibration direction is nv =(cosα cosβ, sinα cosβ, sinβ)T. In the form of simple
harmonic vibration, the vibration distance is Dt =
Dv sin(2πfvt). And then the instantaneous distance is:

R2(t) = ∣∣R2 +Vt +Dt ⋅ nv ∣∣
= [(X2 +Dt cosα cosβ)2
+ (Y2 + vt +Dt sinα sinβ)2
+ (Z2 +Dt sinβ)2]1/2. (11)

Echo signal expression of the highlight is:

s2(t) = A2p0 (t − 2R2(t)
c
) e−j2πf(t− 2R2(t)

c
)
ejϕ2 . (12)

The Doppler is the same as the stationary highlight,
and the micro-Doppler is:

fmd = 2f

c
[ d

dt
(Dv sin (2πfvt) ⋅ nv)]T⋅ np

= 4πfvfDv

c
cos (2πfvt)

⋅ [cos (α2 − α) cosβ2 cosβ + sinβ2 sinβ]. (13)

In summary, the micro-Doppler curve of a vibrat-
ing feature can be represented by a sinusoidal curve.
The period of the micro-Doppler curve corresponds to
the vibration period, and its amplitude is related to the
vibration amplitude, vibration period, and the carrier
frequency of the transmitted signal.

For rotating highlights, the three highlights differ
only in their initial positions. By analyzing the general
geometric relationship of a single highlight under mo-
tion, we can determine the motion features of three
highlights. The rotation radius is l. The rotational
angular velocity is ω = (0,w,0). The initial rotation
angle of the rotation highlight at t = 0 is θi(i = 1,2,3).
Therefore, the initial distance vector of the rotating
highlights in the coordinate system (x3, y3, z3) at t = 0
can be expressed as:

ri = (l cos θi, 0, l sin θi)T. (14)

For the motion analysis of a rotating highlight, its geo-
metric relationship with the sonar system is depicted in
Fig. 2c. At t = 0, the initial position of the target high-
light is located at point P , and its initial rotation angle
is denoted as θ. The initial position vector of the target
highlight in the target coordinate system (x3, y3, z3) is
represented as r = (l cos θ, 0, l sin θ)T. The origin O3

of the target coordinate system (x3, y3, z3) has a po-
sition vector R3 = (X3, Y3, Z3)T with respect to the
sonar coordinate system (x, y, z). The initial azimuth
angle and pitch angle of the target coordinate system

are denoted as α3 and β3, respectively. The unit vector
in the radial direction from the sonar to the rotating
center O3 of the target highlight takes the same form
as Eq. (7).

According to Rodrigues’ formula (Chen et al., 2003),
the instantaneous distance is:

R3(t) = ∣∣R3 +Vt +Rt(t)r∣∣
= [(X3 + l cos θ cosωt + l sin θ sinωt)2
+ (Y3 + vt)2
+ (Z3 − l cos θ sinωt + l sin θ cosωt)2]1/2. (15)

Rt(t) is the rotation matrix. The expression of the
echo signal is obtained as:

s3(t) = A3p0 (t − 2R3(t)
c
) e−j2ωc(t− 2R3(t)

c
)
ejϕ3 . (16)

When placing the target highlight and the sonar in
the same plane, i.e., X3 = 0, and applying an approx-
imation method (Chen, 2014), the specific expression
for micro-Doppler can be derived as:

fmd = 2fωl

c
sinβ3 sin (ωt + θi). (17)

In summary, the micro-Doppler curve of a rotating
highlight follows a sinusoidal pattern, similar to that of
a vibrating highlight. The period of the micro-Doppler
curve corresponds to the rotational period of the mo-
tion. The amplitude of the micro-Doppler curve is in-
fluenced by the rotational radius, the rotation period,
and the carrier frequency of the transmitted signal.

For the other two rotating highlights, their forms
are similar. The final received echo signal form for
a multi-highlight moving target is:

s(t) = 5∑
i=1

si(t). (18)

According to the traditional underwater target
model (Dong et al., 2013), the relative distances be-
tween the highlights of a target can result in different
temporal distributions of their respective echoes. The
relative distances between the highlights can also vary
during the period of signal transmission due to the
high-speed state of the target. Additionally, to capture
finer micro-Doppler features, it is necessary to trans-
mit detection signals with longer pulse widths, which
ultimately leads to temporal overlap of the echoes from
different highlights.

Since the initial moment corresponds to the time of
signal transmission, the starting time of the echo signal
is denoted as t1, and it is given by the equation:

t1 = τ1 = 2R(t1)
c

, (19)
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where R(t1) represents the position of the highlight
when the sound wave illuminates it, which corresponds
to the initial position in the aforementioned model.
The termination time of the echo signal for the high-
light is denoted as t2, and it is given by the equation:

t2 = T + τ2 = T + 2R(t2)
c

. (20)

The starting moment of the echo signal corresponds
to the position of the highlight. It represents the po-
sition where the highlight is located after its motion,
compensating for the positional changes caused by the
time difference resulting from the relative distances be-
tween the highlights.

4. Simulation and analysis

In order to validate the accuracy and effective-
ness of the model proposed in this paper, this sec-
tion simulates the echo signals of moving targets un-
der single-highlight and multi-highlight scenarios with
micro-Doppler effects, based on the models established
in Secs. 2 and 3. The short-time Fourier transform
(STFT) is employed to obtain time-frequency spec-
trograms, which are then used to extract the motion
features of the targets. This enables the estimation of
target parameters.

4.1. Single-highlight micro-motion model simulation
verification

Simulations and analyses were conducted for sta-
tionary highlights, vibrating highlights, and rotating
highlights, with the initial moment defined as the time
of signal transmission. Partial simulation parameter
settings are shown in Table 1.

For the analysis of stationary highlights, the position
vector of the target at the moment of sound wave illu-
mination is calculated as R

′ = (0, 505.50, −200)T m.
Taking the initial position vector direction as the in-
cident wave direction, the radial unit vector from the
sonar to the target is np = R

′/∣∣R′∣∣, and the actual

radial velocity component is v =V
T ⋅ np = 18.597 m/s.

The simulated echo signal pulse width is T ′s = 0.4879 s.

Table 1. Highlights simulation parameters.

Simulation parameters Value

The initial position vector of each highlight R = (0, 520, −200)T m

The translational velocity vector of each highlight V = (0, −20, 0)T m/s

Vibration azimuth angle and pitch angle αv = 0, βv =
π
2

Vibration frequency fv = 10 Hz

Vibration amplitude Dv = 0.5 m

Rotational angular velocity vector ω= (0, 10π, 0) 1/s

Initial rotation angle θ = 30○

Rotation radius l = 3 m

Derived from the actual radial velocity, it yields the
Doppler factor δ = 0.0248, which then compresses
the pulse width to (1 − δ)Ts = 0.4876 s. This value is
found to be consistent with the pulse width of the echo
signal obtained in this paper’s model. The same consis-
tency is observed for vibrating highlights and rotating
highlights.

The echo signal is subjected to STFT, resulting
in a time-frequency distribution as shown in Fig. 3.
The transmitted signal is a rectangular pulse signal,
and the echo appears as a straight line on the time-
frequency plot. By extracting the maximum value on
the frequency axis at the middle moment, the Doppler
frequency shift is ξ = 741.925 Hz. The radial veloc-
ity of the highlight translation is estimated to be
v̂ = 18.596 m/s, which is consistent with the target
radial velocity component.

Fig. 3. STFT of the stationary highlight.

To analyze the vibrating highlights, the first step
is to obtain the time-frequency representation. Then,
peak extraction is performed on the time-frequency
representation to obtain the micro-Doppler curve, as
shown in Fig. 4.

The time difference between each maximum value
is obtained from the micro-Doppler curve, resulting in
the micro-Doppler period T̂ = 0.0667 s. The estimated
vibration frequency f̂ = 1

T
= 15.024 Hz is found to be

in close agreement with the fundamental vibration
frequency. Additionally, the micro-Doppler spread
max fmd − min fmd = 1382.6 Hz is calculated by sub-
tracting the minimum value from the maximum value
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a) b)

Fig. 4. STFT of the vibrating highlight (a) and the micro-Doppler curve of the vibrating highlight (b).

a) b)

Fig. 5. STFT of the rotating highlight (a) and the micro-Doppler curve of the rotating highlight (b).

of the micro-Doppler curve. Then, the vibration am-
plitude estimation is D̂ = 0.497 m, which is consistent
with the vibration amplitude.

The same analysis is performed on the rotating
highlight and the results are shown in Fig. 5. The
time difference between each maximum value is ob-
tained from the micro-Doppler curve, resulting in the
micro-Doppler period T̂ = 0.1997 s. The estimated
angular velocity, ω̂ = 2π

T̂
= 10.016π 1/s, is found to

be in close agreement with the fundamental angu-
lar velocity. Additionally, the micro-Doppler spread
max fmd − min fmd = 2800.8 Hz is calculated by sub-

Table 2. Simulation parameters of the target.

Simulation parameters Value

The initial position of stationary highlight in the head area of the target R1 = (0, 500, −200)
T m

The initial position of the vibrating highlight in the middle area of the target R2 = (0, 520, −200)
T m

The initial position of the rotating highlight in the tail area of the target R3 = (0, 540, −200)
T m

The translational velocity vector of each highlight V = (0, −20, 0)T m/s

Vibration azimuth angle and pitch angle αv = 0, βv =
π
2

Vibration frequency fv = 10 Hz

Vibration amplitude Dv = 0.5 m

Rotational angular velocity vector ω= (0, 10π, 0) 1/s

Initial rotation angle θ = 30○

Rotation radius l = 3 m

The initial rotation angle of each rotating highlight θ1 = 30
○, θ2 = 150

○, θ3 = 270
○

tracting the minimum value from the maximum value
of the micro-Doppler curve. And then the rotation ra-
dius estimation is l̂ = 3.017 m, which is basically con-
sistent with the rotation radius.

4.2. Simulation and analysis of multi-highlight
moving target models

Simulation analysis is conducted on the multi-
highlight model using the size parameters and motion
parameters of a torpedo-like object. Some of the sim-
ulation parameters are set as shown in Table 2.
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a) b)

Fig. 6. Final received signal simulation process: a) echo in time domain; b) received signal in time domain.

Taking into account the received echo signals in
real underwater environments, it should be noted that
these signals are not entirely comprised of valid in-
formation due to the presence of environmental noise
and reverberation interference in marine environments.
The actual received signal is a mixture of the echo
signal, noise, and reverberation. By considering the
spectral characteristics of marine environmental noise
and Gaussian white noise in the frequency domain,
the required environmental noise is simulated (Han
et al., 2020). The ocean reverberation is simulated us-
ing a unit scattering model (Li, Liu, 2016). The simu-
lated echo time-domain sequence is shown in Fig. 6a.
The noise and reverberation are then superimposed
on the echo, resulting in the final received signal time-
domain sequence as shown in Fig. 6b. The signal-
to-noise ratio (SNR) of the final received signal is−1.81 dB, and the signal-to-reverberation ratio (SRR)
is −2.51 dB.

The final received signal is processed as follows:
first, the analytic signal of the echo signal is obtained,
and then it is multiplied by the complex conjugate of
the transmitted signal to obtain the baseband signal.
Finally, the STFT is applied to the baseband signal, re-
sulting in the time-frequency distribution shown in
Fig. 7. By processing the echo signal into a baseband
signal, the energy of the reverberation is concentrated

Fig. 7. STFT of the echo.

at frequency 0. The bright straight line above the re-
verberation represents the energy distribution of the
stationary highlight at the target’s head, character-
ized by relatively large energy and smaller amplitude.
The micro-Doppler curves with larger amplitudes and
smaller magnitudes represent the energy distribution
of the vibrating highlights at the target’s midsection.
The three micro-Doppler curves with the highest am-
plitudes correspond to the energy distribution of the
three rotating highlights at the target’s tail.

From the time-frequency distribution graph, we can
observe that the approximate time difference between
the peaks of the micro-Doppler curves for the vibrat-
ing highlights is between 0.06 and 0.07 s. This allows
us to make a rough estimation of the vibration fre-
quency in the range of 14 to 16 Hz. On the other hand,
the approximate time difference between the peaks
of the micro-Doppler curves for the rotating highlights
is around 0.2 s. This suggests a rough estimation of the
rotational angular frequency at approximately 5 Hz.

By modifying the parameters of the micro-motion,
we can observe changes in the time-frequency distri-
bution of the target echo. Based on the aforemen-
tioned simulation parameters, we change the vibra-
tion amplitude of the vibrating highlight, denoted as
Dv = 1 m, and the rotation radius of the rotating high-
light, denoted as l = 5 m. The resulting STFT of the
echo is shown in Fig. 8. Then, keeping the amplitude
and rotation radius unchanged, we modify the vibra-
tion frequency of the vibrating highlight (fv = 20 Hz)
and the rotation frequency of the rotating highlight
(fr = 8 Hz). The resulting STFT of the echo is shown
in Fig. 9.

It is observed that the time-frequency distribution
exhibits significant changes compared to the previous
simulation results. Increasing the vibration amplitude
and rotation radius leads to a larger micro-Doppler
spread in the echo. Similarly, increasing the vibration
frequency and rotation frequency results in a larger
micro-Doppler period and an increased micro-Doppler
spread in the echo.
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Fig. 8. STFT of the echo with modified vibration amplitude
and rotation radius.

Fig. 9. STFT of the echo with modified vibration frequency
and rotation angular velocity.

This indicates that in practical scenarios, the mic-
ro-Doppler features are influenced by the micro-motion
parameters of the target. Different micro-motion forms
of the target or different micro-motion states within
the same micro-motion form will result in distinct pat-
terns in the time-frequency domain. Additionally, in
theoretical derivations, the micro-Doppler is also in-
fluenced by parameters such as the target’s initial po-
sition and the carrier frequency of the transmitted sig-
nal.

Therefore, micro-Doppler can be utilized as a mo-
tion feature for target classification and recognition,
while the Doppler frequency shift is primarily used to
extract the target’s radial velocity and can also serve
as a motion feature.

5. Conclusion

This paper investigated the underwater motion fea-
ture models for the multi-highlight targets at high
speed based on hightlight model and the micro-Dop-
pler effect. Firstly, the positional variations of the
target highlights were incorporated into the model,
and a single-highlight model was established for com-
pound motion patterns. Subsequently, a motion target
model was proposed for multiple highlights with micro-

Doppler effects, and the effectiveness of the model was
validated through motion parameter estimation using
simulated results and the simulation of target echoes
in real underwater environments.

The research results demonstrate that the echo
pulse width of the composite motion single-highlight
model coincides with the pulse width compression (or
expansion) caused by translational velocity. Moreover,
its micro-doppler characteristics can be fully mani-
fested in the time-frequency distribution, and precise
micro-motion parameters such as vibration frequency
and rotational velocity can be accurately extracted
from the time-frequency distribution. These findings
validate the accuracy of the model and its superior
representation of motion characteristics compared to
traditional underwater point target models.

Additionally, the multi-highlight moving target mo-
del addresses the limitations of the single-highlight
model in describing complex body targets. The echo
simulation results based on this model fully demon-
strate the effects of echo superposition caused by dif-
ferences in the positions of multiple points and trans-
lational velocity in the time-frequency distribution,
confirming the effectiveness of the model proposed in
this study. Furthermore, variations in micro-motion
parameters also lead to noticeable differences in the
time-frequency distribution, and a rough estimation of
the target’s micro-motion parameters can be obtained
from the time-frequency distribution. This indicates
that micro-Doppler can serve as a motion feature for
the target. The proposed model in this study provides
a theoretical foundation and approach for the investi-
gation of underwater moving targets, serving as a ref-
erence for further exploration of the motion features of
underwater targets.

References

1. Chen G. (2014), Micro-Doppler signature analysis
of radar targets and its applications [in Chinese],
Ph.D. Thesis, Xidian University in Xi’an, China, doi:
10.7666/d.D725864.

2. Chen V.C., Li F., Ho S.S., Wechsler H. (2003),
Analysis of micro-Doppler signatures, [in:] IEE Pro-
ceedings-Radar, Sonar and Navigation, 150(4): 271–
276, doi: 10.1049/ip-rsn:20030743.

3. Clemente C., Balleri A., Woodbridge K., Sorag-
han J.J. (2013), Developments in target micro-Doppler
signatures analysis: Radar imaging, ultrasound and
through-the-wall radar, EURASIP Journal on Ad-
vances in Signal Processing, 2013: 47, doi: 10.1186/
1687-6180-2013-47.

4. Dong Z., Li Y., Chen X. (2013), Submarine echo sim-
ulation method based on highlight model [in Chinese],
Computer Simulation, 30(6): 38–41, doi: 10.3969/
j.issn.1006-9348.2013.06.009.

5. Gao H., Xie L., Wen S., Kuang Y. (2010), Micro-
Doppler signature extraction from ballistic target with

https://doi.org/10.7666/d.D725864
https://doi.org/10.1049/ip-rsn:20030743
https://doi.org/10.1186/1687-6180-2013-47
https://doi.org/10.1186/1687-6180-2013-47
https://doi.org/10.3969/j.issn.1006-9348.2013.06.009
https://doi.org/10.3969/j.issn.1006-9348.2013.06.009


208 Archives of Acoustics – Volume 49, Number 2, 2024

micro-motions, IEEE Transactions on Aerospace and
Electronic Systems, 46(4): 1969–1982, doi: 10.1109/
TAES.2010.5595607.

6. Gong Z., Li C., Jiang F., Zheng J. (2020), AUV-
aided localization of underwater acoustic devices based
on Doppler shift measurements, IEEE Transactions on
Wireless Communications, 19(4): 2226–2239, doi:
10.1109/TWC.2019.2963296.

7. Han L., Feng C. (2020), Micro-Doppler-based space
target recognition with a one-dimensional parallel net-
work, International Journal of Antennas and Propaga-
tion, 2020: 8013802, doi: 10.1155/2020/8013802.

8. Han M., Wang C., Sun Q., Wang W., Lu Y. (2020),
Measurement and analysis of ambient noise in the
South China Sea based on underwater acoustic buoy
[in Chinese], Journal of Applied Acoustics, 39(4): 536–
542, doi: 10.11684/j.issn.1000-310X.2020.04.006.

9. Hanif A., Muaz M., Hasan A., Adeel M. (2022),
Micro-Doppler based target recognition with radars:
A review, IEEE Sensors Journal, 22(4): 2948–2961,
doi: 10.1109/JSEN.2022.3141213.

10. Kashyap R., Singh I., Ram S.S. (2015), Micro-
Doppler signatures of underwater vehicles using acous-
tic radar, [in:] 2015 IEEE Radar Conference (Radar-
Con), pp. 1222–1227, doi: 10.1109/RADAR.2015.713
1181.

11. Kim Y., Ling H. (2009), Human activity classifica-
tion based on micro-Doppler signatures using a sup-
port vector machine, IEEE Transactions on Geoscience
and Remote Sensing, 47(5): 1382–1337, doi: 10.1109/
TGRS.2009.2012849.

12. Kim Y., Moon T. (2016), Human detection and ac-
tivity classification based on micro-Doppler signatures
using deep convolutional neural networks, IEEE Geo-
science and Remote Sensing Letters, 13(1): 8–12, doi:
10.1109/LGRS.2015.2491329.

13. Kou S., Feng X. (2022), Angle-micro-Doppler fre-
quency image of underwater target multi-highlight
combining with sparse reconstruction, Applied Acous-
tics, 188: 108563, doi: 10.1016/j.apacoust.2021.108563.

14. Kulhandjian H., Ramachandran N., Kulhan-
djian M.K., D’Amours C. (2020), Human activity
classification in underwater using sonar and deep learn-
ing, [in:] Proceedings of the 14th International Confer-
ence on Underwater Networks & Systems, pp. 1–5, doi:
10.1145/3366486.3366509.

15. Li S., Liu S. (2016), A modeling and simulation based
on k-distribution model [in Chinese], Ship Science and

Technology, 38(s1): 158–161, doi: 10.3404/j.issn.1672-
7619.2016.S1.029.

16. Saffari A., Zahiri S.-H., Khishe M. (2023), Auto-
matic recognition of sonar targets using feature selec-
tion in micro-Doppler signature, Defence Technology,
20: 58–71, doi: 10.1016/j.dt.2022.05.007.

17. Tang W. (1994), Highlight model of echoes from sonar
targets, Acta Acustica, 19(2): 92–100.

18. Tang Y., Wang X., Li H., Gao C., Miao X. (2020),
Experimental research on interior field noise and the
vibration characteristics of composite reinforced sheet-
beam structures, Applied Acoustics, 160: 107154, doi:
10.1016/j.apacoust.2019.107154.

19. Wang Z., Ren A., Zhang Q., Zahid A., Abbasi Q.H.
(2023), Recognition of approximate motions of hu-
man based on micro-Doppler features, IEEE Sen-
sors Journal, 23(11): 12388–12397, doi: 10.1109/JSEN.
2023.3267820.

20. Wu Y., Luo M., Li S. (2022), Measurement and ex-
traction of micro-Doppler feature of underwater ro-
tating target echo, [in:] OCEANS 2022 – Chennai,
pp. 1–5, doi: 10.1109/OCEANSChennai45887.2022.97
75247.

21. Xu L. (2016), Study on Doppler parameter estima-
tion of underwater acoustic signal and its application
[in Chinese], Ph.D. Thesis, Northwestern Polytechnical
University in Xi’an, China, doi: 10.7666/d.D01304090.

22. Yang Y., Fan J., Wang B. (2023), Research on scat-
tering feature extraction of underwater moving clus-
ter targets based on the highlight model, Archives
of Acoustics, 48(2): 235–247, doi: 10.24425/aoa.2023.
145235.

23. Zhang B., Hu Y., Wang H., Zhuang Z. (2018), Un-
derwater source localization using TDOA and FDOA
measurements with unknown propagation speed and
sensor parameter errors, IEEE Access, 6: 36645–36661,
doi: 10.1109/ACCESS.2018.2852636.

24. Zhang R., Wang Y., Yeh C., Lu X. (2023), Preces-
sion parameter estimation of warhead with fins based
on micro-Doppler effect and radar network, IEEE
Transactions on Aerospace and Electronic Systems,
59(1): 443–459, doi: 10.1109/TAES.2022.3182635.

25. Zhao Y., Su Y. (2023), Estimation of micro-Doppler
parameters with combined null space pursuit meth-
ods for the identification of LSS UAVs, IEEE Trans-
actions on Geoscience and Remote Sensing, 61: 1–11,
doi: 10.1109/TGRS.2023.3264643.

https://doi.org/10.1109/TAES.2010.5595607
https://doi.org/10.1109/TAES.2010.5595607
https://doi.org/10.1109/TWC.2019.2963296
https://doi.org/10.1155/2020/8013802
https://doi.org/10.11684/j.issn.1000-310X.2020.04.006
https://doi.org/10.1109/JSEN.2022.3141213
https://doi.org/10.1109/RADAR.2015.7131181
https://doi.org/10.1109/RADAR.2015.7131181
https://doi.org/10.1109/TGRS.2009.2012849
https://doi.org/10.1109/TGRS.2009.2012849
https://doi.org/10.1109/LGRS.2015.2491329
https://doi.org/10.1016/j.apacoust.2021.108563
https://doi.org/10.1145/3366486.3366509
https://doi.org/10.3404/j.issn.1672-7619.2016.S1.029
https://doi.org/10.3404/j.issn.1672-7619.2016.S1.029
https://doi.org/10.1016/j.dt.2022.05.007
https://doi.org/10.1016/j.apacoust.2019.107154
https://doi.org/10.1109/JSEN.2023.3267820
https://doi.org/10.1109/JSEN.2023.3267820
https://doi.org/10.1109/OCEANSChennai45887.2022.9775247
https://doi.org/10.1109/OCEANSChennai45887.2022.9775247
https://doi.org/10.7666/d.D01304090
http://doi.org/10.24425/aoa.2023.145235
http://doi.org/10.24425/aoa.2023.145235
https://doi.org/10.1109/ACCESS.2018.2852636
https://doi.org/10.1109/TAES.2022.3182635
https://doi.org/10.1109/TGRS.2023.3264643


Archives of Acoustics Vol. 49, No. 2, pp. 209–219 (2024), doi: 10.24425/aoa.2024.148777

Research Paper

A Hybrid Finite Element Method – Kirchhoff Approximation Method

for Modeling Acoustic Scattering from an Underwater Vehicle Model

with Alberich Coatings with Periodic Internal Cavities

Fan YANG(1), Zilong PENG(1), (3)∗, Hao SONG(2), Yuhang TANG(3), Xuhong MIAO(3)

(1)School of Energy and Power, Jiangsu University of Science and Technology
Zhenjiang, China

(2)Systems Engineering Research Institute
Beijing, China

(3)PLA Unit 92578
Beijing, China

∗Corresponding Author e-mail: zlp_just@sina.com

(received July 17, 2023; accepted November 25, 2023; published online February 20, 2024)

Anechoic tiles can significantly reduce the echo intensity of underwater vehicles, thereby increasing the
difficulty of detecting such vehicles. However, the computational efficiency of conventional methods such as
the finite element method (FEM) and the boundary element method (BEM) has its limitations. A fast hybrid
method for modeling acoustic scattering from underwater vehicles with anechoic tiles with periodic internal
cavities, is developed by combining the Kirchhoff approximation (KA) and FEM. The accuracy and rapidity
of the KA method were validated by FEM. According to the actual situation, the reflection coefficients of
rubber materials with two different structures under rigid backing are simulated by FEM. Using the KA
method, the acoustic scattering characteristics of the underwater vehicle with anechoic tiles are obtained by
inputting the reflection coefficients and the target’s geometric grid. Experiments on the monostatic target
strength (TS) in the frequency range of 1 to 20 kHz and time domain echo characteristics of acoustic scattering
on a benchmark scale model with anechoic tiles are conducted. The research results indicate that the TS values
and echo characteristic curves of the KA solutions closely approximate the experimental results, which verifies
the accuracy of the KA method in calculating the TS and echo characteristics of underwater vehicles with
anechoic tiles.
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1. Introduction

Anechoic tiles are widely used in underwater com-
bat platforms such as underwater vehicles. In the un-
derwater acoustic environment, considering the influ-
ence of temperature, salinity, pressure, and viscos-
ity (Witos, 2019; Esfahani et al., 2023; Esfahani,
Sun, 2023), laying the anechoic tiles on the subma-
rine’s surface not only absorbs incident sound waves
but also reduces structural noise. Therefore, anechoic
tiles play an important role in the acoustic stealth of

underwater vehicles (Yao et al., 2007; Huang et al.,
2015; Xu et al., 2004). With the development of mod-
ern sonar technology and in-depth research of acoustic
stealth technology around the world, studying acous-
tic scattering and echo characteristics simulation of un-
derwater vehicles equipped with anechoic tiles has be-
come a crucial mission.

Many scholars have studied the scattered sound
field of underwater complex targets using numerical
methods such as finite element method (FEM) and
boundary element method (BEM). In 2013, Wei et al.

https://acoustics.ippt.pan.pl/index.php/aa/index
mailto:zlp_just@sina.com
https://creativecommons.org/licenses/by/4.0/
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simulated the acoustic scattering of rigid spheres and
infinite cylinders based on BEM. In 2015, Xu et al.
used the BASIS method to simulate the scattering of
the BeTSSi model at a frequency of 200 Hz. In 2018,
Feng et al. employed BEM to analyze the target
strength (TS) of the rigid boundary benchmark model
in the low-frequency range. In the same year, Chen
and Luo (2018) deduced the Helmholtz formula for
the scattered sound field of underwater targets based
on the boundary element theory.

FEM and BEM require extremely dense meshes
to ensure accurate calculation, and this mesh den-
sity increases with higher computing frequencies (Liu
et al., 2019). As the mesh density increases, the com-
putational time for both methods at high frequen-
cies progressively extends. To solve this problem, Fan
and Tang (1999) proposed a Kirchhoff approxima-
tion (KA) method for calculating TS. Subsequently,
Fan and Zhuo (2006) introduced a KA method for
graphic visualization, considering occlusion, secondary
scattering (Zheng et al., 2011; Marston, Sun, 1995),
ray tracing, and multiple iterations (Wang et al.,
2021).

Lee and Seong (2009) derived the time domain
solution of Kirchhoff’s formula for impedance poly-
gons. Pignier et al. (2015) used the KA formula to
study multiple scattering problems of external radi-
ation noise from moving ground vehicles through ob-
jects such as roads, buildings, and noise-shields. Abawi
(2016) used KA to establish a method for solving
the frequency and time domain solutions of scattered
sound fields from arbitrarily shaped targets. To im-
prove the computational speed of the KA method,
Lavia et al. (2018) proposed the concept of replac-
ing the flat facets with curved triangles. Additionally,
Liu et al. (2023) established a highlight model that
can reflect the real lines and scattering characteristics
of underwater vehicles.

The traditional KA method is primarily applied
to calculate the echo intensity of rigid targets. While
FEM can solve the acoustic scattering problem of the
targets laying anechoic tiles, the modeling process be-
comes increasingly time-consuming, especially when
dealing with complex anechoic tiles and the varying
shapes of underwater vehicles. Therefore, whether it
is modeling or calculation, FEM will require a sub-
stantial time investment. In this paper, the reflection
coefficients of anechoic tiles with periodic cavities are
calculated by FEM at different angles and frequen-
cies. To overcome the time constraints associated with
FEM, we integrate the target grid information and re-
flection coefficient matrix into the KA method, origi-
nally designed for rigid targets. This enables the quick
and accurate calculation of the TS for models with
anechoic tiles containing periodic internal cavities. By
combining FEM and the KA method, the modeling
work of laying anechoic tile on the submarine model

can be omitted, and the spatial characteristics of the
scattered sound field are studied.

2. Theoretical research and calculation model

2.1. Physical method of geometrical acoustic
scattering of underwater target

As shown in Fig. 1, the plane wave is incident from
M1 to the surface s, then the scattered acoustic poten-
tial function satisfies the following Helmholtz integral
equation (Fan et al., 2012):

φs = 1

4π
∫
s

[φs ∂
∂n
(eikr2

r2
) − ∂φs

∂n

eikr2

r2
]ds, (1)

where s is the surface of the scatterer, n is the exter-
nal normal of the surface, k = 2πf/c, where the sound
velocity c is a nonlinear function of temperature, am-
bient pressure, and salinity. In the case of free sound
field and horizontal detection, where the target, trans-
ducer, and hydrophone are all situated at the same
depth, the sound velocity under the circumstances can
be considered constant; r1 and r2 are the incident point
radius vector and the scattering point radius vector, re-
spectively; θ1 is the angle between r1 and n, θ2 is the
angle between r2 and n.

ds
O

s

z

y

x

M1

M2

r2r20

n

r1
r10

Sound source

Sound receiving

θ1

θ2

Fig. 1. Schematic diagram of the integral region, where O is
the origin of coordinates, generally considered to be the
geometric center of the target. The light green triangle ds
represents the integral grid. Point M1 represents the sound
source, and point M2 represents the sound receiving point.

In the monostatic configuration, where r1 = r2 = r,
θ2 = θ1 = θ, and A is the amplitude, the far-field scat-
tered sound field φs can be approximated as (Fan
et al., 2012):

φs = − A
2π
∫
s

eik2r ( ikr − 1
r3

cos θ)ds. (2)

For near-field acoustic scattering, considering the
plate shown in Fig. 2, point o is the target’s center
and origin of coordinates. Point c, selected as a refer-
ence point on the plate, has a vector diameter denoted
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Fig. 2. Near-field sound scattering.

as rc, commonly representing the geometric center of
the plate. Point Q is an arbitrary point on the plate.
The vector diameter from point o to point Q is r, the
vector diameter of the transmitting transducer is rT ,
and the vector diameter of the receiving transducer
is rR. There are r1= r−rT , unit vector r10 = (r−rT )/r1;
r2 = r − rR, unit vector r20 = (r − rR)/r2; R1 = rc − rT ,
unit vector R10 = (rc − rT )/R1; R2 = rc − rR, unit
vector R20 = (rc − rT )/R2.

Where n is the unit normal vector of the plate.
For small plates, it can be considered that the incident
sound wave is a plane wave, allowing for the following
approximations: r1 ≈ R1 = ∣rc − rT ∣, r10 ≈ R10, r2 ≈
R2 = ∣rc − rT ∣, r20 ≈ R20; r1 ≈ R1 − R10 ⋅ ξrc, r2 ≈
R2 −R20 ⋅ ξrc, ξrc = r − rc.

In the monostatic configuration, the near-field scat-
tered sound field φsm is

φsm = − A
2π
ei2kR1

ikR1 − 1
R

3

1

n ⋅R10 ∫
s

e−2ikR10⋅ξrc ds.

(3)
For the near-field KA method, the key to the aforemen-
tioned formula is to find the area integral:

I = ∫
s

e−2ikR10⋅ξrc ds. (4)

Assuming that the integral plane is a plane polygon s0
in the XOY plane, and the normal of the plane is R10 =
u′i+v′j+w′k, ξrc = xi+yj, then the integral operation
above can be converted to a summation for an exact
expression of the result by the following equation (Liu,
2020):

Ip = ∫
s0

e2ik(u
′x+v′y) dxdy

= 3∑
n=1

e−i(xnu+ynv)(pn−1 − pn)(u + Pn−1v)(u + Pnv) , (5)

and u′ = 2ku, v′ = 2kv, w′ = w, p1 = y2−y1

x2−x1

, p2 = y3−y2

x3−x2

,

p3 = y1−y3

x1−x3

, p0 = y1−y3

x1−x3

, where n is the number of poly-

gon vertices and (xn, yn) is the coordinates of polygon
vertices.

The coordinates of points in the original coordinate
system are transformed into a new coordinate system.
A coordinate transformation is performed for points 1,
2, 3 to obtain their coordinates in the new coordinate
system, which are x2(n), y2(n), z2(n) (n = 1,2,3). In
the new coordinate system, the unit vector from the
receiving point to the center of the plate is represented
as ui + vj + wk, with u′ = 2ku, v′ = 2kv, w′ = w, k =
2πf/1500.

According to the transformation of x2(n), y2(n),
z2(n) (n = 1,2,3),
φ = w 3∑

n=1

e−i(x2(n)+y2(n))
pn−1 − pn(u′ + pn−1v′)(u′ + pnv′) , (6)

and p1 = y2(2)−y2(1)
x2(2)−x2(1)

, p2 = y2(2)−y2(2)
x2(3)−x2(2)

, p3 = y2(1)−y2(3)
x2(1)−x2(3)

,
p0 = p3.

2.2. Research on time domain echo characteristics
of target based on the linear transfer network model

In the framework of linear acoustics, the problem of
target scattering can be described using acoustic trans-
fer theory. The target can be regarded as a linear
time-invariant network. In this network, the incident
signal is the input, and the echo signal is the out-
put. The time-domain transfer function of this linear
transfer network is h(τ, r1, r2,ρ), where τ is the de-
lay, r1 and r2 are the radius vector of the incident and
scattering point, respectively, and ρ is the radius vec-
tor of the target. The frequency domain transfer func-
tion H(f, r1, r2,ρ) of the transfer network is denoted
as the ratio of the scattering wave potential function
to the incident wave potential function, where f is the
frequency. In the monostatic configuration, r1 = r2,
and the transfer functions in the time domain and fre-
quency domain are h(τ, r,ρ) and H(f, r,ρ), respec-
tively.

When x(t) represents the time-domain incident sig-
nal, X(f) represents the frequency-domain incident
signal, and Y (f) represents the frequency domain
echo signal. The time domain echo signal of the tar-
get can be expressed as (Liu, 2020):

y(t) = x(t)⊗ h(τ, r,ρ), (7)

where ⊗ denotes the convolution operation. Then, the
echo signal in the frequency domain is given by:

Y (f) = X(f) ⋅H(f, r,ρ), (8)

y(t) = F −1[Y (f)]. (9)

The time-domain echo signal can be obtained by
taking the inverse Fourier transform of the frequency-
domain signal. This framework allows for the indi-
rect extraction of the time-domain echo characteris-
tics of underwater targets by calculating the frequency-
domain signals.
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2.3. Materials and model

Achieving semi-infinite air and water by adding
a perfectly matched layer, the materials used are shown
in Table 1.

In Fig. 3, the benchmark model (Nell, Gilroy,
2003) is chosen for conducting the acoustic scattering
and TS prediction of the target after laying different
anechoic tiles.

The acoustic wave is incident horizontally, and the
specific parameters of the benchmark model are shown

Table 1. Material parameters.

Material
Density
[kg/m3]

Young’s modulus
[Pa]

Poisson ratio
Sound velocity

[m/s]
Thickness

[mm]

Rubber (Xu et al., 2004) 1090 3 × 107(1 + 0.249i) 0.49 – 50

Steel 7800 2.13 × 1011 0.3 – 8

Water 1000 – – 1500 Semi-infinite

Air 1.21 – – 343 Semi-infinite

a)

b)

Fig. 3. a) Benchmark model and incident direction of the plane wave; b) specific dimensions of the benchmark submarine.

a) b)

Fig. 4. a) Computational unit; b) schematic diagram of multiple units.

in Fig. 3b. To satisfy the far field condition, the simu-
lated distance is 10 km.

2.4. Application of Floquet theory
in solving acoustic scattering

from elastomers

The challenge of the FEM in solving the acoustic
scattering problem lies in the inability to create in-
finitely long waveguides. As shown in Fig. 4a, Floquet-
Bloch theory imposes boundary conditions on the com-
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putational unit to simulate infinitely long waveguides.
In the FEM, the equation is (Tong et al., 2020):

udst(x, y) = usrc(x, y)e−ikF (rdst−rsrc), (10)

where usrc and rsrc are the displacement and coordi-
nate of the source boundary, and udst and rdst are the
displacement and coordinate of the target boundary.
Floquet periodic boundary conditions are applied on
both sides of the model, and different traveling wave
numbers kF are input to simulate the finite length re-
gion as an infinite length waveguide. The anechoic tile
model after incorporating the Floquet periodic condi-
tion along with a schematic diagram of multiple units
are shown in Fig. 4.

2.5. Validation of the KA method

To determine the accuracy and efficiency of the KA
method in calculating the acoustic scattering from the
target equipped with anechoic tiles with air cavities,
a verification study was conducted. In Fig. 5a, a cylin-
drical shell with a radius of 0.2 m, height of 1 m, and
thickness of 0.008 m is selected. The cylindrical shell
is made of steel with air inside, there are several ane-
choic tiles, each 0.05 m thick with a grating spacing of
0.03 m outside the cylindrical shell. The center of each
anechoic tile contains a longitudinally cylindrical cav-

a)

b)

0 500 1000 1500 2000 2500 3000
-30

-25

-20

-15

-10

-5

 FEM

 KA

f [Hz]

TS
 [d

B]

Fig. 5. a) Verification model; b) comparison of the FEM
results and the KA solutions.

ity with a radius of 0.005 m and a height of 0.025 m.
The domain being studied is meshed with tetrahedral
elements, with a maximum mesh size of λ/6 (Lu, 2014),
where λ = 2πf

c
, with f representing the frequency and

c representing the velocity.
In Fig. 5b, a comparison of the TS for the ver-

ification model, covered with anechoic coatings with
cylindrical cavities, is presented between the FEM re-
sults and KA solutions, when α is 0○. In the frequency
range of 200 Hz–3 kHz, the average values of the re-
sults calculated by the FEM and the KA method are−13.75 and −13.61 dB, respectively. This validates the
accuracy of the KA method in modeling the acoustic
scattering of underwater vehicles with anechoic coat-
ings containing cavities. The total calculation time of
the FEM is 25.391 s, while the KA method only takes
15.35 s, indicating that the computational speed of the
KA method is roughly 1654 times faster than the FEM
method. This significant difference highlights the ra-
pidity of the KA method. The research process of this
study is shown in Fig. 6.

Fig. 6. Flow chart of acoustic scattering characteristics
of underwater vehicle with Alberich coatings.

3. Numerical simulation of underwater vehicle

with anechoic tiles

3.1. Reflection coefficients of different rubber
structures

The reflection coefficients of homogeneous medium
and rubber with air cavities at different angles and
frequencies (f) are calculated by FEM, as shown in
Fig. 7.

As illustrated in Fig. 7, the calculated frequency is
in the range of 200 Hz–20 kHz with a step of 200 Hz.
The cavity significantly impacts the acoustic charac-
teristics of the anechoic tile. The resonance effect of
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Fig. 7. Comparison of reflection coefficients of different anechoic tiles at different angles:
a) 0○; b) 45○; c) 60○; d) 75○.

the cavity not only accelerates the convergence speed
of the reflection coefficient but also makes the reflec-
tion peak to move towards the low-frequency direction,
which enhances the middle and low-frequency perfor-
mance of the structure. The cavity structure makes
the reflection coefficient more stable in the high fre-
quency range. However, in practical applications, ane-
choic tiles with air cavities generally require more com-
plex processing and manufacturing procedures compa-
red to homogeneous medium anechoic tiles. Addition-
ally, as the depth of the submarine increases, the pres-
sure of the seawater medium also rises, leading to al-
terations in the acoustic performance of anechoic tiles
with air cavities.

3.2. TS of the submarine model with homogeneous
rubber and rubber with periodic internal cavities

The reflection coefficients, as shown in Fig. 7, are
substituted into the KA method to obtain the TS of the
benchmark model after applying different kinds of ane-
choic tiles. This process yields a TS angle-frequency

spectrum, with the horizontal axis representing the an-
gle, and the vertical axis representing the frequency.

As shown in Fig. 8, different types of anechoic tiles
exhibit varying degrees of suppression on the TS of
underwater vehicles at different incident angles and
frequencies. Similar to the trends observed in the re-
flection coefficient, anechoic tiles with periodic internal
cavities demonstrate superior sound absorption in the
low and specific middle frequency ranges compared to
homogeneous mediums under the resonant interaction
of the air cavity.

In Fig. 9, the directivity diagrams of TS for the
benchmark model are presented at different frequencies
before and after the applications of anechoic tiles, and
the figure also illustrates the impact of different types
of anechoic tiles on the TS of the model.

In Fig. 9, the variation trend of the TS presents
a butterfly shape with the azimuth angle changing.
The highest TS values are observed in the abeam di-
rection of the underwater vehicle, primarily due to
mirror reflections on the hull surface and acoustic re-
flections from the conning tower. With the existence
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a) b)
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Fig. 8. TS angle-frequency spectrum of benchmark model with different anechoic tiles:
a) homogeneous medium anechoic tiles; b) anechoic tiles with air cavities.
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Fig. 9. TS directional diagrams of benchmark model with different anechoic tiles at different frequencies:
a) 1 kHz; b) 5 kHz; c) 10 kHz; d) 20 kHz.

of cavity resonance, anechoic tiles with air cavities ex-
hibit a more effective sound absorption effect compared
to anechoic tiles with homogeneous mediums, partic-

ularly in the middle and low frequency ranges. Under
the condition of high frequency, the silencing effect of
different anechoic tiles becomes consistent.
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4. Comparisons of acoustic scattering

characteristics between the KA solutions

and experimental results

4.1. Acoustic scattering characteristic test instrument
and arrangement

By conducting a lake test of the benchmark scale
model with anechoic tiles, the variation of echo char-
acteristics concerning the horizontal azimuth and fre-
quency of the incident wave is quantitatively analyzed,
providing data support for verifying the accuracy of
the KA method. Figure 10 shows the benchmark scale
model and the test site.

Fig. 10. Benchmark scale model and test site photos.

According to Fig. 11, the Agilent 33220A signal
generator is primarily employed to produce acoustic
signals with specified parameters, including frequency,
amplitude, and pulse width. The JYH1000A power
amplifier amplifies the acoustic signals generated by
the signal generator to ensure that the transmitted
signals meet the requirements for underwater acous-
tic detection. The transducer converts the electrical
signal into the acoustic signal and transmits it for
target detection. The hydrophone is the device that
converts the acoustic signal into an electrical signal,
utilized for receiving the echo signal from the under-
water model and converting it into an electrical rep-
resentation. The charge amplifier amplifies the echo
signal from the hydrophone. The China Orient Insti-
tute of Noise & Vibration INV3062A1 data acquisi-

Data collection
Signal collector Signal sourceSynchronous

trigger

Power    amplifier

Charge amplifier

Rotating platform
Experimental

platform

transducer
Hydrophone

Benchmark
submarine

r3 = 8.95 m

r1 = 7.15 mr2 = 3.65 m

Fig. 11. Schematic diagram of the test equipment
arrangement.

tion system is responsible for receiving and storing the
output echo signal from the charge amplifier, allowing
for subsequent analysis and interpretation. The spe-
cific parameters of the benchmark model are shown
in Fig. 3b. The scaling ratio used in this experiment,
relative to the original model, is 1:15. The thickness
of the shell is 3 mm, the length is 4.13 m, and the ra-
dius of the midship is 0.25 m. The signal pulse width
is set to 1.5 ms, the signal length is 500 ms, and the
sampling frequency is 80 kHz. Anechoic tiles with a ho-
mogeneous medium are laid on the surface of the ex-
perimental model. The thickness of each anechoic tile
is 10 mm, and its Young’s modulus, density and Pois-
son’s ratio are 4.41× 106 Pa, 1100 kg/m3 and 0.48, re-
spectively. The transmitting transducer, hydrophone,
and research model are aligned in a straight line. The
distance between the transducer and the hydrophone
is 7.15 m, and the distance between the hydrophone
and the research model is 3.65 m. All three are located
at an underwater depth of 8.95 m. At the beginning of
the test, it is ensured that the research model is facing
the transducer in the abeam direction, and a horizontal
uniform rotation of 360○ during the rotation process is
maintained.

4.2. Benchmark scale model monostatic TS
experimental data analysis

The TS azimuth characteristics of the benchmark
scale model obtained by the experiment and the KA
method are shown in Fig. 12.

As illustrated in Fig. 12, the TS is highest in the
abeam direction, which is −7 ∼−3 dB. In the bow di-
rection it is −14 ∼−6 dB, and in the stern direction it
is the smallest, measuring −16 ∼−9 dB. It can be seen
that except for the range of 210–330○, the KA solutions
are basically consistent with the experimental results
in trend and magnitude, demonstrating the reliability
of the KA method in predicting the monostatic TS of
underwater vehicles with anechoic tiles. In the range
of 210–330○, because of the model processing and sus-
pension problems, there will be some discrepancies be-
tween the experimental results and the KA solutions.

4.3. Experimental data analysis
of the time domain echo spreading characteristics

of the benchmark scale model

The benchmark scale model with anechoic tiles
used in the test has the directions of incident waves
within the angle range of 0–360○ (where the abeam
direction corresponds to incident directions of 0 and
180○, and the bow and stern correspond to 90 and 270○

incident directions, respectively). The experimental re-
sults of time domain echo characteristics in different
frequency ranges are compared to the KA solutions.
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Fig. 12. Comparisons of TS between the experimental results and the KA solutions at different frequencies:
a) 5 kHz; b) 10/;kHz; c) 15 kHz; d) 20 kHz.

The comparisons of acoustic scattering echo char-
acteristics between the benchmark submarine scale
model’ experimental results and KA solutions are
shown in Figs. 13 and 14. Echo characteristics of the
bow, elevator, conning tower and stern of the model

a) b)
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Fig. 13. Comparisons of the echo characteristics of the benchmark submarine scale model with anechoic tiles in the
frequency band of 1–10 kHz between the experimental results and KA solutions: a) experimental results; b) KA solutions.

can be clearly observed in the experimental results
and KA solutions, and the characteristics of each com-
ponent can be accurately reflected in the echo time.
However, there are still some differences between the
experimental results and KA solutions. For example,
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Fig. 14. Comparisons of the echo characteristics of the benchmark submarine scale model with anechoic tiles in the fre-
quency band of 10–20 kHz between the experimental results and the KA solutions: a) experimental results; b) KA solutions.

the experimental results exhibits obvious highlights
in the position of the elevator, and there are several
more characteristic curves near the abeam direction
which are presumed to be the echo characteristics from
ropes, buckles and the beam used when hoisting the
model. The above factors make the experimental re-
sults have more echo characteristics than the KA so-
lutions.

5. Conclusions

In this study, the KA method is used to evaluate
the TS and echo characteristics of a target after lay-
ing anechoic tiles. The rapidity and accuracy of the KA
method are confirmed through comparisons with FEM
and experimental results. This investigation achieves
fast acoustic scattering prediction for targets with ane-
choic tiles, which makes a significant contribution to
improving the acoustic stealth technology of the un-
derwater vehicle.

From the research on underwater vehicles with ane-
choic tiles, we can come to the following conclusions.

The cavity significantly affects the resonance char-
acteristics of anechoic tiles, especially in the case of
vertical incidence, which not only reduces the reflection
coefficient peaks, but also makes the reflection coeffi-
cient peaks move to the low frequency direction. This
trend becomes more pronounced at frequencies below
10 kHz. However, acoustic tiles with internal cavities
also require more complex processing and manufactur-
ing processes, and the acoustic performance exhibits
greater sensitivity to changes in environmental condi-
tions, such as sound pressure. Therefore, in practical
applications, a thorough assessment of the advantages
and disadvantages of both methods is imperative to en-
sure the selection of an acoustic tile design that aligns
with specific requirements.

In the experimental results and KA solutions, the
TS and echo characteristics of the benchmark sub-
marine model with anechoic tiles at different incident
frequencies are approximately consistent. The bench-
mark submarine model with anechoic tiles can produce
clear echo characteristics at the bow, elevator, conning
tower, hull, and empennage, and several echo curves of
the experimental results and KA solutions exhibit good
agreement in terms of echo time, brightness, and shape.
This alignment accurately reflects the external charac-
teristics of the submarine model with anechoic tiles.

By investigating the sound absorption character-
istics of anechoic tiles with cavities, we have gained
profound insights into detection and stealth capabili-
ties of underwater vehicles. The KA method enables
rapid and precise evaluation of the TS after the appli-
cation of anechoic tiles with periodic internal cavities.
The significant reduction in computational time pro-
vides an efficient tool for the acoustic parameter design
and optimization of anechoic tiles, thereby advancing
underwater vehicle acoustic stealth and detection tech-
nology.
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A comprehensive understanding of the characteristics and the formation mechanism of reverberation is the
key to improving the performance of the active target detection. In response to the challenge of analyzing
the intensity of bottom reverberation in typical deep-sea environments, this study proposes a prediction method
for the bottom reverberation intensity under beam-controlled emission conditions. It explains the variation law
of bottom reverberation intensity under beam-controlled emission conditions in typical deep-sea environments of
the South China Sea through theoretical and simulation analyses. Reverberation intensity of the deep-sea
bottom under beam-controlled emission conditions exhibits significant fluctuations during the duration of
reverberations in the direct sound zone of the seabed. This phenomenon is closely related to the directionality
of the source emission, leading to intermittent reverberation masking and detectable areas in the active sonar
detection. In addition, the duration of the high-reverberation zone near the cutoff distance of the direct sound
from the seabed is longer under the beam-controlled emission conditions of the emission array located within
the surface waveguide layer of the deep sea during winter.
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1. Introduction

Reverberation is the primary background interfer-
ence in the active sonar target detection, and a com-
prehensive understanding of its characteristics and for-
mation mechanism is the key to improving the per-
formance of the active target detection (Cui et al.,
2023; Hao et al., 2023). Meanwhile, reverberation car-
ries hidden ocean information that can be used for
environmental parameter inversion, leading to the in-
creasing attention toward reverberation research in the
field of marine acoustics. At present, theoretical and
experimental studies on shallow water reverberation
are relatively more common than those on deep water.

With regard to the reverberation prediction theory, do-
mestic and foreign scholars have established the theory
of normal mode reverberation (Zhang et al., 1987),
the theory of ray reverberation (Lupien et al., 1995),
and the theory of parabolic equation reverberation
(Collins, Evans, 1992). The intensity attenuation
characteristics and spatial correlation characteristics of
reverberation signals combined with experimental re-
search have been simultaneously analyzed. Hence, the
current study no longer develops this topic.

The characteristics of deep sea reverberation are
significantly different from those of shallow sea re-
verberation, and their analysis and numerical mod-
eling methods are different. A large number of the-
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oretical and experimental studies on deep-sea rever-
beration have been conducted in the last century. El-
lis and Crowe (1991) proposed a 3D seabed scat-
tering function that included backscattering and lat-
eral scattering based on the Lambert scattering model.
This function was used in the numerical simulation of
deep-sea bistatic reverberation and compared with ex-
perimental results. Mackenzie (1961) calculated the
deep-sea bottom reverberation of near-bottom sound
sources and receivers at specific frequencies and ex-
plained the applicable angle range of the scattering for-
mula. Urick and Saling (1962) calculated the seabed
backscatter excited by an explosive sound source and
obtained a scattering intensity curve with angle. Ellis,
Haller (1987), and Ellis, Crowe (1991) combined
the Lambert scattering model with the surface scatter-
ing function based on the Kirchhoff approximation to
propose a 3D seabed scattering function that included
backscattering and lateral scattering. They used it in
the numerical simulation of deep-sea bistatic rever-
beration and compared it with experimental measure-
ment results. Williams and Jackson (1998) used the
Kirchhoff approximation and the perturbation theory
to describe the seafloor backscattering while discussing
the effects of seafloor sediment layers and substrates on
scattering.

With the support of relevant national plans, signif-
icant improvements have been achieved in recent years
in experimental methods and equipment for deep-sea
acoustics in China. A large number of deep-sea ex-
periments have been conducted, promoting theoret-
ical and experimental research on deep-sea bottom
reverberation. Weng et al. (2014) conducted numeri-
cal simulations of local deep-sea bottom reverberation
by using the ray method and provided preliminary ex-
planations and analyses of experimental data. Guo
et al. (2009) proposed an incoherent bottom reverbera-
tion signal model based on ray theory; this model sim-
plified the calculation of the reverberation signal pre-
diction. Xu et al. (2016) calculated deep-sea reverber-
ation generated by the first bottom reflection of sound
waves and obtained numerical results that were con-
sistent with experimental data. Qin et al. (2019) pro-
posed a deep-sea bottom reverberation model based
on the ray theory for calculating local and bistatic re-
verberation and then compared the experimental data
with the simulation results to obtain the seabed scat-
tering coefficient of the experimental sea area. Xue
et al. (2021) described interface reverberation as an in-
coherent superposition of different multipath reverber-
ation fading processes and combined it with the physi-
cal mechanism of interface scattering. They established
a reverberation intensity model with the physical pa-
rameters of the sea surface and seabed as variables.

The current study focuses on deep sea bottom
reverberation characteristics under beam-controlled
emission conditions in the actual work of active sonar.

It introduces a prediction method for deep sea bottom
reverberation under beam-controlled emission condi-
tions and explains the formation mechanism of deep
sea bottom reverberation fluctuation laws through the-
oretical and simulation analyses.

2. Methodology

2.1. Model of deep-sea bottom reverberation intensity
under beam-controlled emission conditions

The description of sound propagation in accordance
with the ray theory is simple and intuitive, and thus,
it is extremely helpful for explaining the results of
other sound propagation models. Simultaneously, it di-
rectly establishes the relationship between the sound
propagation distance and propagation time; hence, it
can be used to predict reverberation intensity in high-
frequency situations in the deep sea. Accordingly, this
study uses the ray theory to establish a deep-sea bot-
tom reverberation model for simulation analysis.

Reverberation signals can be expressed as the pro-
cess of propagating sound signals excited by a sound
source to a seafloor scatterer and then scattering them
back to the receiver. Figure 1 shows a diagram of the
formation of deep-sea bottom reverberation in the case
of a combined transmitter and receiver. Considering
that beam control in practical active sonar applica-
tions is generally the pitch angle, i.e., the vertical beam
control, this study abstracts it as a vertical dimension
emission array to study deep-sea bottom reverberation
intensity characteristics under beam-controlled emis-
sion conditions.

Transceiver 
acoustic 
array

Sea 

surface

Seabed 
scattering 
unit

Seabed

Fig. 1. Schematic of seabed scatterer division
under beam-controlled emission conditions.

In the case of directional emission from a trans-
ceiver acoustic array, pinc denotes the sound pressure
transfer function from the sound source to the seabed
scattering element under directional sound source ra-
diation, pscatt represents the sound pressure transfer
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function from the seabed scattering element to the
transceiver array under omnidirectional sound source
radiation, ri denotes the i-th eigenray, and the inten-
sity of the incident wave propagating along the inci-
dent eigenray to the seabed scattering element ds is
represented as p2

inc
(ri). The scattering wave intensity

scattered by the seabed scattering unit ds can be ex-
pressed as

p2inc (ri)f (θinc, θscatt)ds, (1)

where f (θinc, θscatt) represents the backscatter func-
tion of the seabed, which is affected by the incident
and scattering grazing angles, and ds is the area of
the scattering unit. The reverberation intensity inci-
dent along the i-th eigenray to the scattering element
returning to the receiving point along the j-th eigenray
can be expressed as (Xue et al., 2021):

Iscatt(ij) = ∫ p2inc (ri)f (θinc, θscatt)p2scatt (rj)ds. (2)

The total bottom reverberation intensity at the receiv-
ing array is the sum of the reverberations that arrive
along all the propagation paths (Xue et al., 2021):

Iscatt = N∑
i=1

M∑
j=1
∫ p2inc (ri)f (θinc, θscatt)p2scatt (rj)ds,

(3)
where N represents the number of incident eigenrays,
and M represents the number of scattered eigenrays
that correspond to the i-th incident eigenray, Iscatt is
the total reverberation intensity.

The prerequisite for predicting the intensity of
deep-sea bottom reverberation under beam-controlled
emission conditions is the prediction of the deep-sea
sound field transfer function under beam-controlled
conditions and seabed scattering characteristics. The
current study utilizes the ray model sound field calcu-
lation program BELHOP to predict the eigenray and
the corresponding grazing angle, time delay, and the
transfer function under directional source conditions.
Meanwhile, a small-slope approximation (SSA) model
is used to predict the seabed scattering characteristic.

2.2. SSA model

In this study, the small slope formalism is adopted
for bottom interface scattering. This lowest-order SSA
(Thorsos, Broschat, 1995; Broschat, Thorsos,
1997) models interface scattering strength in all or-
ders of the surface height h and through the first-order
derivatives of h (surface slope). Using the local SSA in-
stead of the standard first-order perturbation approx-
imation improves prediction accuracy at the cost of
moderately increasing numerical complexity.

The SSA result for an incoherent component of
the scattering cross section per unit area (per unit

solid angle) for a random, rough interface is as follows
(Grauss et al., 2002):

σ
1

8
∣ β∣Qh∣Qz

∣2
int

, (4)

where β is an algebraic form that depends on the
boundary conditions that are prevailing at the inter-
face. ∣Qh∣ and Qz are given by (Grauss et al., 2002):

∣Qh∣ = k0√a∗, (5)

Qz = −k0 (sin θinc + sin θscatt), (6)

where a∗ = cos2 θinc + cos2 θscatt − 2 cos θinc cos θscatt cosφbi
and k0 = 2πf

c0
denotes the acoustic wavenumbers; θinc

denotes the incident grazing angle; θscatt denotes the
scattered grazing angle; φbi denotes the bistatic angle,
which is defined as the difference in azimuth between
the incident and scattered directions; I in Eq. (7) de-
notes the integral that involves the spatial spectrum of
roughness, and it is given by (Grauss et al., 2002):

I (α) = ∞

∫
0

J0 (y)y exp (−αy2ν)dy, (7)

where ν ≡ (γ2−2)
2

, γ2 denotes the roughness spectral
exponent, with γ2 ∈ (2,4), J0 is the 0-th-order Bessel
function of the first kind, and α is given by (Grauss
et al., 2002):

α = (hrmsQz)2(2h0 ∣Qh∣)2ν
Γ (1 − ν)
Γ (1 + ν) , (8)

where h2rms denotes the mean-square roughness, which
is given by (Grauss et al., 2002):

h2rms = πw2

h2
0
ν
, (9)

where w2 is the input rough spectral intensity, and h0
is a normalizing reference distance of 1 m.

Notably, once the real or imaginary part of a sound
speed acquires dependence on frequency, then α, β,
and σint acquire complicated frequency dependencies.

3. Analysis of deep-sea sound field

characteristics under beam-controlled

conditions

This section conducts a simulation analysis of the
sound field distribution under the conditions of omni-
directional and directional sound sources as a prereq-
uisite for the simulation analysis of deep-sea bottom
reverberation under beam-controlled emission condi-
tions.

The simulation analysis focuses on the typical deep-
sea hydrological environment of the South China Sea,
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with a depth of 4000 m. The historically measured
summer and winter sound speed profiles are presented
in Fig. 2. The material of the seabed is fine sand, with
a sound speed of 1753 m/s, a density of 1.957 g/cm3,
and an attenuation coefficient of 0.51 dB/m ⋅Hz. To com-
pare the changes in the sound field distribution caused
by beam-controlled emission, simulation calculations
were conducted using the BELLHOP (Porter, 2011)
ray model sound field calculation program, and sound
field distributions were given for omnidirectional and
directional source emission cases. The sound source ar-
ray under beam-controlled emission conditions is an
eight-element vertical array, with a center frequency
of 1 kHz. The array elements are arranged at a half-
wavelength spacing of 0.75 m, and the center depth of
the array is arranged at a depth of 10 m underwater,
such that the depth of the entire sound source array is
within 50 m. The array is arranged inside the surface
waveguide to illustrate sound field differences during
winter when a surface waveguide is present. The natu-
ral directionality of the eight-element transceiver com-
bined with a vertical array is shown in Fig. 3. Its main
lobe corresponds to 0○, with the first side lobe appear-

D
ep

th
 [m

]

Sound speed [m/s]

Fig. 2. Sound speed profile (SSP) in deep water. The blue
solid line represents the summer sound speed profile, while
the red dashed line represents the winter sound speed pro-
file. The subplot of Fig. 2 gives the variation of the SSP over
a depth range of 100 m, emphasizing the difference between
the summer and winter SSP, i.e., a surface isothermal layer

of 50 m occurs during winter in blue solid line.

Angle [deg]

D
ire

ct
iv

ity

Fig. 3. Natural directivity of eight-element source array.

ing at an angle of ±21○, the second side lobe appearing
at an angle of ±38○, and the third side lobe appear-
ing at an angle of ±61○.

The distribution of sound fields excited by direc-
tional and omnidirectional sources in the deep sea
of the South China Sea during summer is shown in
Fig. 4. In contrast with the excited sound field of om-
nidirectional sources, the main energy emitted by di-
rectional sources leads to a clear high-sound-intensity
region at 18–19 km, which corresponds to the main
lobe with a grazing angle of 0○ in the directional pat-
tern. The leakage of the side-lobe energy leads to inter-
mittent high-sound-intensity regions within the range
of 0–15 km. The high-sound-intensity region at 10 km
corresponds to the first side lobe with a grazing angle
of ±21○. The high-sound-intensity region at 5 km corre-
sponds to the second side lobe with a grazing angle of±38○. The high-sound-intensity region at 2.2 km cor-
responds to the third side lobe with a grazing angle
of ±61○. Notably, the cutoff distance of the deep-sea
bottom direct sound zone in the summer hydrological
environment is about 18–19 km, and the sound field
excited by directional sources does not significantly
change the cutoff distance of the deep-sea bottom di-
rect sound zone.

The distribution of sound fields excited by direc-
tional and omnidirectional sources during winter (with
the presence of a 50 m surface waveguide) is shown in
Fig. 5. In contrast with the excited sound field of an
omnidirectional source, the main energy emitted by
a directional source leads to a significant high-sound-
intensity region at 18–23 km, which corresponds to
the main lobe with a grazing angle of 0○ in the di-
rectivity pattern. The leakage of the same side-lobe
energy leads to intermittent high-sound-intensity re-
gions within the range of 0–15 km. The high-sound-
intensity region at 10 km corresponds to the first side
lobe with a grazing angle of ±21○. The high-sound-
intensity region at 5 km corresponds to the second side
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Fig. 4. Transmission loss during summer in the South China
Sea: a) sound speed profile in summer; b) omnidirectional

sources; c) directional sources.
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Fig. 5. Transmission loss during winter in the South China
Sea: a) sound speed profile in winter; b) omnidirectional

sources; c) directional sources.
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lobe with a grazing angle of ±38○. The high-sound-
intensity region at 2.2 km corresponds to the third
side lobe with a grazing angle of ±61○. Notably, un-
der the condition of omnidirectional source radiation,
the cutoff distance of the deep-sea bottom that directly
reaches the sound zone is about 22 km in the winter
hydrological environment, which is far from the 18 km
in the summer hydrological environment, because the
surface waveguide leaks energy, causing it to propagate
further. The cutoff distance of the sound field excited
by the directional source from the seabed to the sound
zone extends to 23–24 km, because the emission array
beam-controlled emission within the surface waveguide
layer causes more energy to concentrate on the sur-
face waveguide layer. Moreover, the amount of energy
leaked from the surface waveguide layer to the seabed
to the direct sound zone increases.

On the basis of the analysis of the sound field char-
acteristics in the direct sound zone of the deep-sea bot-
tom under beam-controlled conditions, the next sec-
tion analyzes the bottom reverberation characteristics
in typical deep-sea environments.

4. Analysis of bottom reverberation intensity

under beam-controlled emission conditions

Before analyzing and calculating deep-sea bottom
reverberation intensity, obtaining the backscatter in-
tensity of the seabed is necessary. For the simulation
environment in Sec. 3, the seabed material is fine sand,
and detailed parameters can be found in Sec. 3. On the
basis of SSA to calculate backscatter intensity, the in-
put rough spectral intensity of the model is 0.0004,
and the rough spectral exponent is 2.6. On the ba-
sis of the aforementioned model parameters, the vari-
ation of the backscattering intensity of the deep-sea
seabed with grazing angle is calculated at a frequency
of 1 kHz. As shown in Fig. 6, the backscattering inten-
sity of the rough interface increases with an increase
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at

te
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g 
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gt
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Fig. 6. Variation of seabed backscatter intensity
with grazing angle.

in the grazing angle. This rough interface backscatter-
ing intensity is the input of the model for calculating
bottom reverberation intensity.

On the basis of this scattering model and Eq. (3),
combined with the sound field transfer function pre-
dicted by the ray model, the deep-sea bottom rever-
beration intensity excited by omnidirectional and di-
rectional sources under summer and winter conditions
in the South China Sea is calculated.

The variation in deep-sea bottom reverberation in-
tensity over time caused by omnidirectional and di-
rectional sources in the South China Sea during sum-
mer is shown in Fig. 7. For omnidirectional and direc-
tional sources, bottom reverberation occurs after 5 s,
which corresponds to the time when bottom vertical
reflected reverberation occurs. The reverberation in-
tensity excited by omnidirectional sources monotoni-
cally decreases within 5 to 27 s, while the reverberation
intensity excited by directional sources exhibits signif-
icant fluctuations within 5 to 27 s. This phenomenon
exerts a significant effect on the active sonar target de-
tection, resulting in intermittent reverberation mask-
ing and detectable areas.

a)

Time [s]

RL
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b)

Time [s]
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Fig. 7. Variation of bottom reverberation intensity with
time: a) omnidirectional source; b) directional source.

By converting horizontal axis time into the acoustic
path that corresponds to the active sonar, the variation
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of deep sea bottom reverberation intensity excited by
omnidirectional and directional sources in the South
China Sea during summer with an acoustic path can
be obtained, as shown in Fig. 8. Evident peaks are ob-
served in the reverberation intensity at 4, 6, 9, and
18 km. This finding is related to the emission direc-
tionality of the eight-element vertical emission array.
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Fig. 8. Variation of bottom reverberation intensity with
acoustic path: a) omnidirectional source; b) directional

source.

To further illustrate the corresponding relationship
among the peak values of intermittent bottom rever-
beration intensity, the bottom scattering area, and
emission directionality, the acoustic path is converted
into the horizontal distance from the transceiver array.
The variation in deep-sea bottom reverberation inten-
sity excited by omnidirectional and directional sources
in the South China Sea during summer with a hori-
zontal distance can be obtained as shown in Fig. 9.
At a depth of 3995 m, the variation in propagation
loss with horizontal distance is also given, as shown in
Fig. 10. Comparing the variation of reverberation in-
tensity in Fig. 9 with the variation of propagation loss
in Fig. 10, four high-energy regions of reverberation
intensity are observed, corresponding to the four high-
energy regions of transmission loss and correspond-

a)

Range [km]

RL
 [d

B]

b)

Range [km]

RL
 [d

B]

Fig. 9. Variation of bottom reverberation intensity with
horizontal range: a) omnidirectional source; b) directional

source.
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Fig. 10. Variation of transmission loss with horizontal range
for a receiver depth of 3995 m. The blue solid line represents
the transmission loss of sound field excited by an omnidi-
rectional point source, while the red dashed line represents
the transmission loss of sound field excited by a directional

transmitter array.

ing to the main lobe and the three side lobes of di-
rectional sound sources. The high-reverberation zone
that appears at 15–19 km corresponds to the main
lobe with a grazing angle of 0○ in the directivity pat-



228 Archives of Acoustics – Volume 49, Number 2, 2024

tern. The leakage of side-lobe energy leads to inter-
mittent high-reverberation zones within the range of
0–15 km. The high-reverberation zone at 10 km cor-
responds to the first side lobe with a grazing angle of±21○. The high-reverberation zone at 5 km corresponds
to the second side lobe with a grazing angle of ±38○.
The high-reverberation zone at 2.2 km corresponds to
the third side lobe with a grazing angle of ±61○.

The variation of deep-sea bottom reverberation in-
tensity over time caused by omnidirectional and di-
rectional sources in the South China Sea during win-
ter is shown in Fig. 11. Similar to that during sum-
mer, bottom reverberation occurs after 5 s, which cor-
responds to the time when vertically reflected reverber-
ation occurs on the seabed. The reverberation intensity
excited by omnidirectional sources monotonically de-
creases within 5 to 30 s, while the reverberation inten-
sity excited by directional sources exhibits significant
fluctuations within 5 to 30 s. This phenomenon exerts
a significant effect on the active sonar target detec-
tion, resulting in intermittent reverberation masking
and detectable areas.
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Fig. 11. Variation of bottom reverberation intensity with
time: a) omnidirectional source; b) directional source.

By converting horizontal axis time into the acous-
tic path that corresponds to the active sonar, the vari-
ation of the deep-sea bottom reverberation intensity

excited by omnidirectional and directional sources in
the South China Sea during winter can be obtained
with respect to the acoustic path, as shown in Fig. 12.
Evident peaks can be seen in the reverberation inten-
sity at 4, 6, 9, and 20 km. These peaks are related to
the emission directionality of the eight-element vertical
emission array.
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Fig. 12. Variation of bottom reverberation intensity with
acoustic path: a) omnidirectional source; b) directional

source.

To further illustrate the corresponding relation-
ship among the peak value of intermittent bottom
reverberation intensity, bottom scattering area, and
emission directionality, the acoustic path is converted
into the horizontal distance from the transceiver ar-
ray. The variation of deep-sea bottom reverberation
intensity excited by omnidirectional and directional
sources in the South China Sea during winter with hor-
izontal distance can be obtained as shown in Fig. 13.
At a depth of 3995 m, the variation in transmission loss
with the horizontal distance is also given, as shown in
Fig. 14. Comparing the variation of reverberation in-
tensity in Fig. 13 with the variation of transmission
loss in Fig. 14, four high-energy regions of reverbera-
tion intensity can also be observed, corresponding to
the four high-energy regions of transmission loss and
corresponding to the main lobe and three side lobes
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Fig. 13. Variation of bottom reverberation intensity with
horizontal range: a) omnidirectional source; b) directional

source.
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Fig. 14. Variation of transmission loss with horizontal range
for a receiver depth of 3995 m. The blue solid line represents
the transmission loss of sound field excited by an omnidi-
rectional point source, while the red dashed line represents
the transmission loss of sound field excited by a directional

transmitter array.

of directional sound sources. The high reverberation
zone appearing at 15–23 km corresponds to the main
lobe with a grazing angle of 0○ in the directivity pat-

tern. The leakage of side-lobe energy leads to inter-
mittent high-reverberation zones within the range of
0–15 km. The high-reverberation zone at 10 km cor-
responds to the first side lobe with a grazing angle
of ±21○. The high-reverberation zone at 5 km corre-
sponds to the second side lobe with a grazing angle
of ±38○. The high-reverberation zone at 2.2 km cor-
responds to the third side lobe with a grazing angle
of ±61○.

To compare the differences in the distribution
of bottom reverberation intensity caused by beam-
controlled emission in the South China Sea during
summer and winter, Figs. 10 and 14 were drawn to-
gether, as shown in Fig. 15. Except for the differences
in hydrological conditions (sound speed profile), the
two curves are plotted under the same simulation con-
ditions. The variation trend of reverberation intensity
within a range of 12 km is nearly consistent, includ-
ing the high-reverberation zone caused by side-lobe en-
ergy leakage. However, significant differences exist in
the high-reverberation zone caused by the directional
main lobe emission. The major issues are:

1) For the high-reverberation zone near a range of
18 km excited by the main lobe energy, bottom re-
verberation intensity during winter is weaker than
that during summer, because the existence of an
isothermal layer on the surface during winter re-
sults in most of the energy radiated by small graz-
ing angles being bound to the surface waveguide
layer. The energy reaching the direct sound zone
on the seabed beyond 15 km is lower than that in
the absence of a surface waveguide layer.

2) For the high-reverberation zone excited by the
main lobe energy, the duration (corresponding
horizontal distance) of the main lobe’s high-
reverberation zone is longer during winter, and
the effect on the active target detection in deep-
sea environments is more significant. The reason
for this finding is that after the beam-controlled

Range [km]

RL
 [d

B]

Fig. 15. Bottom reverberation during summer and winter
under beam-controlled emission conditions.
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emission of the emission array inside the surface
waveguide layer, the sound energy leakage of the
surface waveguide layer expands the direct sound
zone of the deep sea during winter, and the acous-
tic ray with a small grazing angle can reach up to
23 km, resulting in an increase in the duration of
the main lobe’s high-reverberation zone.

5. Conclusions

In response to the challenge of analyzing the in-
tensity of bottom reverberation in typical deep-sea en-
vironments, this study proposes a prediction method
for the intensity of bottom reverberation under beam-
controlled (shaded) emission conditions and explains
the variation law of bottom reverberation intensity un-
der beam-controlled emission conditions through theo-
retical and simulation analyses in typical deep-sea en-
vironments of the South China Sea with a seabed ma-
terial of fine sand. The conclusions drawn are:

1) Deep-sea bottom reverberation intensity under
beam-controlled emission conditions exhibits sig-
nificant fluctuations during the duration of rever-
beration in the direct sound zone of the seabed.
This phenomenon is closely related to the directio-
nality of source emission, leading to intermittent re-
verberation masking and detectable areas in the
active sonar detection.

2) For the high-reverberation zone near the cutoff
distance of the direct sound from the seabed ex-
cited by the main lobe energy of the directional
source, the reverberation intensity during winter
is weaker than that during summer. The reason
for this finding is that the existence of a surface
isothermal layer during winter results in most of
the energy emitted by the small grazing angle be-
ing bound to the surface waveguide layer. Mean-
while, the energy reaching the cutoff distance of
the direct sound from the seabed is lower than
that without surface waveguide layer.

3) Under the beam-controlled emission conditions
of the emission array located within the surface
waveguide layer of the deep sea during winter,
the duration of the high-reverberation zone near
the cutoff distance of the direct sound from the
seabed is longer, because the sound energy leak-
age from the surface waveguide layer expands the
direct sound zone of the deep sea during winter.
The acoustic ray with a small grazing angle can
reach further distance, resulting in an increase in
the duration of the high-reverberation zone of the
main lobe. This phenomenon will have a more sig-
nificant effect on the active target detection in
deep-sea environments.

The analysis of the distribution characteristics of
deep-sea bottom reverberation intensity in this study

provides guidance for the suppression of deep-sea ac-
tive sonar reverberation, and the evaluation and rea-
sonable application of deep-sea active sonar detection
performance in actual combat.

Acknowledgments

This research was funded by National Natural Sci-
ence Foundation of China (grant no. 12304501), Sci-
ence and Technology on Sonar Laboratory foundation
(grant no. 2022-JCJQ-LB-031-02), and Youth Elite
Scientists Sponsorship Program by CAST (grant no.
YESS20200330).

References

1. Broschat S.L., Thorsos E.I. (1997), An investigation
of the small slope approximation for scattering from
rough surfaces. Part II. Numerical studies, The Jour-
nal of the Acoustical Society of America, 101(5): 2615–
2625, doi: 10.1121/1.418502.

2. Collins M.D., Evans R.B. (1992), A two-way para-
bolic equation for acoustic backscattering in the ocean,
The Journal of the Acoustical Society of America,
91(3): 1357–1368, doi: 10.1121/1.402465.

3. Cui X., Chi C., Li S., Li Z., Li Y., Huang H. (2023),
Waveform design using coprime frequency-modulated
pulse trains for reverberation suppression of active
sonar, Journal of Marine Science and Engineering,
11(1): 28, doi: 10.3390/jmse11010028.

4. Ellis D.D., Crowe D.V. (1991), Bistatic reverber-
ation calculations using a three-dimensional scatter-
ing function, The Journal of the Acoustical Society of
America, 89(5): 2207–2214, doi: 10.1121/1.400913.

5. Ellis D.D., Haller D.R. (1987), A scattering func-
tion for bistatic reverberation calculations, The Jour-
nal of the Acoustical Society of America, 82(1): 124,
doi: 10.1121/1.2024654.

6. Grauss R.C., Gragg R.F., Wurmser D., Fialkow-
ski J.M., Nero R.W. (2002), Broadband models for
predicting bistatic bottom, surface and volume scatter-
ing strengths, Naval Research Laboratory Report.

7. Guo X.Y., Su S.J., Wang Y.K. (2009), Research on
the signal modeling method for sea bottom reverbera-
tion based on ray theory [in Chinese], Technical Acous-
tics, 28(3): 203–207.

8. Hao Y. et al. (2023), Underwater reverberation sup-
pression via attention and cepstrum analysis-guided
network, Journal of Marine Science and Engineering,
11(2): 313, doi: 10.3390/jmse11020313.

9. Lupien V.H., Bondaryk J.E., Baggeroer A.B.
(1995), Acoustical ray-tracing insonification software
modeling of reverberation at selected sites near the

https://doi.org/10.1121/1.418502
https://doi.org/10.1121/1.402465
https://doi.org/10.3390/jmse11010028
https://doi.org/10.1121/1.400913
https://doi.org/10.1121/1.2024654
https://doi.org/10.3390/jmse11020313


G. Zheng et al. – Analysis of Bottom Reverberation Intensity. . . 231

Mid-Atlantic Ridge, The Journal of the Acoustical So-
ciety of America, 98(5): 2987, doi: 10.1121/1.413929.

10. Mackenzie K.V. (1961), Bottom reverberation for
530- and 1030-cps sound in deep water, The Journal of
the Acoustical Society of America, 33(11): 1498–1504,
doi: 10.1121/1.1908482.

11. Porter M.B. (2011), The Bellhop Manual and User’s
Guide: Preliminary Draft.

12. Qin J.X., Wang L.H., Li Z.L. (2019), Theory and ex-
periment of large-depth reverberation in deep water [in
Chinese], Technical Acoustics, 38(5): 95–96.

13. Thorsos E.I., Broschat S.L. (1995), An investiga-
tion of the small slope approximation for scattering
from rough surfaces. Part I. Theory, The Journal of
the Acoustical Society of America, 97(4): 2082–2093,
doi: 10.1121/1.412001.

14. Urick R.J., Saling D.S. (1962), Backscattering of ex-
plosive sound from the deep-sea bed, The Journal of
the Acoustical Society of America, 34(11): 1721, doi:
10.1121/1.1909106.

15. Weng J.B., Li F.H., Liu J.J. (2014), The preliminary
study on bottom reverberation model in deep water [in
Chinese], Technical Acoustics, 33(S2): 71–73.

16. Williams K.L., Jackson D.R. (1998), Bistatic bot-
tom scattering: Model, experiments, and model data
comparison, The Journal of the Acoustical Society of
America, 103(1): 169–181, doi: 10.1121/1.421109.

17. Xu L., Yang K., Guo X., Li H. (2016), Bistatic bot-
tom reverberation in deep ocean: Modeling and data
comparison, [in:] OCEANS 2016 – Shanghai, pp. 1–5,
doi: 10.1109/OCEANSAP.2016.7485385.

18. Xue R.Z., Duan R., Yang K.D., Ma Y.L., Guo Y.
(2021), Modeling and analysis of monostatic incoherent
boundary reverberation intensity in deep water, Acta
Acoustica, 46(6): 926–938, doi: 10.15949/j.cnki.0371-
0025.2021.06.014.

19. Zhang R.H., Jin G.L. (1987), Normal-mode theory of
the average reverberation intensity in shallow water,
Journal of Sound and Vibration, 119(2): 215–223, doi:
10.1016/0022-460X(87)90450-0.

https://doi.org/10.1121/1.413929
https://doi.org/10.1121/1.1908482
https://doi.org/10.1121/1.412001
https://doi.org/10.1121/1.1909106
https://doi.org/10.1121/1.421109
https://doi.org/10.1109/OCEANSAP.2016.7485385
https://doi.org/10.15949/j.cnki.0371-0025.2021.06.014
https://doi.org/10.15949/j.cnki.0371-0025.2021.06.014
https://doi.org/10.1016/0022-460X(87)90450-0




Archives of Acoustics Vol. 49, No. 2, pp. 233–240 (2024), doi: 10.24425/aoa.2024.148786

Research Paper

Numerical Study on the Dynamics of a Charged Bubble in the Acoustic Field

Liang LV(1), Fei LIU(2), Yawei LI(3)∗

(1)School of Mechano-Electronic Engineering, Suzhou Vocational University
Suzhou, China

(2)Department of Sports Health and Art Education, Hebei Petroleum University of Technology
Chengde, China

(3)Department of the Party and the Mass, Hebei Petroleum University of Technology
Chengde, China

∗Corresponding Author e-mail: liyawei_123321@163.com

(received May 25, 2023; accepted January 19, 2024; published online March 26, 2024 )

In this paper, the dynamics of an acoustic bubble with a constant charge in compressible liquid are in-
vestigated numerically, which is based on the Gilmore-NASG model to estimate the radial oscillations. The
cavitation effects are enhanced due to the presence of the charge on the bubble surface. The obtained results
from the present model are compared with that calculated by the previous model within a wide range of pa-
rameters (e.g., charge, acoustic pressure amplitude, ultrasound frequency, and liquid temperature). The similar
influences of these parameters on bubble collapse intensity can be observed from both models. Since the present
model fully considers the compressibility of gas and liquid, it can be applied to a wider parameter range and
leads to the larger predicted values. The research in this paper can provide important insights about the effects
of charge on bubble dynamics and the acoustic cavitation applications (e.g., sonochemistry, water treatment,
and food industry).
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1. Introduction

Cavitation bubbles exist widely in nature, e.g., the
snapping shrimp uses cavitation bubbles formed by
the rapid closure of its claws to stun its prey; in a fast
flowing system, cavitation bubbles are prone to oc-
cur if the channel suddenly narrows and then widens.
The phenomenon of cavitation in the liquid is con-
cerned because of its damage to hydraulic machinery
and ship propellers (Sezen et al., 2021; Wang et al.,
2022). Due to unique physical and chemical phenom-
ena (Cleve et al. 2019; Dehane et al., 2022; Ker-
boua et al., 2021; Lv et al., 2019; Lv, Liu, 2023; Tian
et al., 2023) (e.g., liquid jet, free radicals formation, ra-
diation pressure, and acoustic microstreaming) caused
by the bubble oscillations, cavitation has been con-
tributed to various applications such as water treat-
ment (Ferkou et al., 2015), petroleum hydrocarbons

degradation (Lei et al., 2020), nanoparticle synthesis
(Pokhrel et al., 2016), and so on.

The charges carried on the bubble surface have
been reported by many research groups. The zeta po-
tential of the bubble measured experimentally by using
the microelectrophoresis technique indicated that the
effect of the PH solution on the variation of the bub-
ble zeta potential depended not only on the type of
the metal ions but also on the electrolyte concentra-
tion (Yang et al., 2001). They also found the charge
polarity varied at different solutions (e.g., the bubble
was the negative charge in NaCl solutions, while its
charge polarity reversed in multivalent metal ions solu-
tions). Takahashi (2005) found that the bubbles were
negatively charged under a wide range of the PH condi-
tion and positively charged under strongly acidic con-
ditions. In (Lee, Choi, 2020), the stable light emission
of a single bubble sonoluminescence (SBSL bubble)
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with charge in water was investigated for the first time.
The results revealed that the SBSL bubble was pos-
itively charged and suggested that it was necessary
for analyses of the SBSL bubble to take the electrical
properties into consideration. The behaviour of laser-
generated bubbles in an electric field was studied by
Phukan et al. (2023). They found the maximum bub-
ble radius increased with the increase of the electric
field intensity. This effect was more pronounced in the
presence of an acetone medium and decreased succes-
sively in ethanol and water media owing to their vary-
ing magnitudes of electrical conductivity. In addition
to experimental researches of the bubbles in an electric
field, theoretical studies have also made great progress.
The volume mode and shape model dynamics were ex-
amined in a weakly viscous dielectric fluid under the
uniform and the axisymmetric straining electric field
(Oh et al., 2001). A model was built describing the vi-
olent collapse of the bubble in the homogeneous, irro-
tational, solenoidal, and unsteady electric field (Spelt,
Matar, 2006). The research group optimized the bub-
ble model in the electric field, and further analyzed the
bubble dynamics of violent collapse, translation and
shape deformations (Shaw et al., 2009).

Nevertheless, there are few studies on the charged
bubbles that undergo acoustic cavitation, which has
been applied in many fields (e.g., ultrasonic cleaning,
drug delivery, and inactivate viruses). Based on the
study of the stability of a charged bubble in the dielec-
tric liquid in (Grigor’ev, Zharov, 2000), the model
of a charged bubble excited by ultrasound wave has
been deduced by Hongray et al. (2014; 2015). The
study results proved that the effective surface was re-
duced due to the presence of charge. Compared with
the uncharged bubble oscillations under acoustic ex-
citation, the bubble expanded to a larger radius and
compressed to a smaller size, which in turn caused the
bubble collapse to be stronger. The bifurcation dia-
grams have also been studied to some extent, with the
presence of charge leading to advance bifurcations.

The theoretical and experimental researches have
been proved a lot on the charge bubbles in liquid.
The theoretical study of bubble dynamics in the acous-
tic field is mainly based on uncharged bubbles, which
will lead a bias in calculation results. The model of
charged bubbles was derived from the Keller-Miksis
equation (Hongray et al., 2014; 2015). When the ef-
fect of charge is taken into account, the bubble collapse
will be enhanced resulting in the significant increase
of the speed of a bubble wall, and the Mach number
can easily reach 1, which is the critical value that the
Keller-Miksis equation is safely adopted (Zilonova
et al., 2018). Therefore, it is necessary to establish
a model that can be used in large parameter intervals,
especially the high pressure amplitude and low fre-
quency excitation. In this paper, based on the Gilmore-
NASG model (Denner et al., 2021), a more applica-

ble dynamic model of charged bubbles is established
and compared with the model (Hongray et al., 2014;
2015) in detail within a wide range of parameters. Sub-
sequently, the sections of present paper are organized
as follows. In Sec. 2, the model of a charged bubble
and the numerical method are introduced. In Sec. 3,
the calculation results of the present model are quan-
titatively compared with those of the previous model.
In Sec. 4, the main findings of the present paper are
summarized.

2. Mathematical model and simulation method

For simplicity, the following assumptions are used
in physical models: (1) the bubble is spherically
symmetric; (2) the fluid is Newtonian and compres-
sible; (3) the buoyancy force and gravity are neglected;
(4) the bubble-bubble interaction is neglected; (5) the
thermal conductivity, phase change and mass trans-
port across the bubble-liquid interface are neglected.
The radial dynamics of the bubble is governed by the
Gilmore equation (Denner, 2021):

(1 − Ṙ
cl
)RR̈ + 3

2
(1 − Ṙ

3cl
) Ṙ2 = (1 + Ṙ

cl
)H

+(1 − Ṙ
cl
)RḢ

cl
, (1)

where R is the instantaneous radius of the bubble, the
overdot denotes the time derivative, cl is the speed of
sound in the liquid at the bubble wall, H is the differ-
ence between the enthalpy of the liquid at the bubble
wall and at infinity. The state of gas and vapor in-
side the bubble, and the liquid outside the bubble are
described by the NASG equation of state, and the ex-
pression is (Denner, 2021):

p(v, T ) = (Γ − 1)CV T

v − b −B, (2)

where p is the pressure, v is the specific volume,
T is the temperature, Γ is the polytropic exponent,
Cv is the heat capacity at a constant volume, b is the
co-volume that represents the volume occupied by
the individual molecules, B is a pressure constant that
models molecular attraction.

H and cl are defined as Eqs. (3) and (4), respec-
tively:

H = Γl

Γl − 1 (
pl +Bl

ρl
− p∞ +Bl

ρ∞
) − bl pl − p∞

Γl − 1 , (3)

cl =
√
Γl

pl +Bl

ρl(1 − blρl) , (4)

where Γl is the liquid polytropic exponent, pl is the
pressure in the liquid at the bubble wall,Bl is the liquid
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pressure constant, p∞ is the liquid pressure at infinity,
ρl and ρ∞ are the densities of liquid at the bubble wall
and at infinity, respectively. The expressions of pl, p∞,
ρl, and ρ∞ are given as Eqs. (5)–(8):

pl = pg − 2σ

R
− 4µṘ

R
+ Q2

8πεR4
, (5)

p∞ = Pl,0 − Pasin (2πft), (6)

ρl = Kl(pl +Bl) 1

Γl

1 + blKl(pl +Bl) 1

Γl

, (7)

ρ∞ = Kl(p∞ +Bl) 1

Γl

1 + blKl(p∞ +Bl) 1

Γl

, (8)

where σ is the surface tension coefficient of the liq-
uid, µ is the viscosity of the liquid, Q is the charge at
a bubble surface, ε (i.e., ε = 85ε0, ε0 is the vacuum per-
mittivity) is the liquid permittivity, Pl,0 is an ambient
pressure in the liquid, Pa is the acoustic pressure, f is
the ultrasonic frequency, Kl and pg are the constants
representing the liquid reference state and gas pressure
inside the bubble, respectively, and expressions are de-
fined as Eqs. (9) and (10):

Kl = ρl,0

(ρl,0 +Bl) 1

Γl (1 − blρl,0) , (9)

pg = (Pg,0 +Bg)
⎡⎢⎢⎢⎢⎢⎣
ρg,0 (R0

R
)3 (1 − bgρg,0)

ρg,0 (1 − bgρg,0 (R0

R
)3)
⎤⎥⎥⎥⎥⎥⎦
Γg

−Bg, (10)

where ρl,0 is the predefined reference liquid density,
Pg,0 is the predefined reference gas pressure, ρg,0 is
the predefined reference gas density, R0 is the initial
bubble radius, Γg is the gas polytropic exponent, Bg is
the gas pressure constant.

The temperature of the gas and the liquid at the
bubble wall can be calculated by Eq. (11):

T = T0 ( p +B
P0 +B )

Γ−1
Γ

, (11)

where T0 and P0 are the reference temperature and
pressure, respectively.

Equations (1)–(11) constitute the model of present
study, which is called G-M-N-C model. The bubble
radial dynamics, sound velocity, liquid density at the
bubble wall, gas pressure, gas temperature and liquid
temperature are obtained from Eqs. (1), (4), (7), (10),
(11), respectively. The fourth term on the right side of
Eq. (5) is introduced by considering the charge on the
bubble surface. If this term is ignored, the G-M-N-C
model is reduced to the model in (Denner, 2021),
which is called the G-M-N model in this paper.

To check the validation of the simulation results,
the bubble dynamics obtained by the G-M-N-C model

is compared with previous models. A single gas bub-
ble with an initial radius of 3.5 µm oscillating in the
water is considered. If not specified, the parameters in
present studies are used in Table 1. The models are
solved using the method of the Runge-Kutta 4–5 or-
der formula with a variable step length. To obtain the
results satisfying the precision requirement, both of
the absolute error and relative error are 1× 10−12.

Table 1. Parameters keep constant during simulations
(Denner, 2021; Hongray et al., 2014; 2015).

Name Notations Value Unit

Gas reference density ρg,0 1.2 kg/m3

Liquid reference density ρl,0 998 kg/m3

Gas ambient pressure Pg,0 1 atm

Liquid ambient pressure Pl,0 1 atm

Gas ambient temperature Tg,0 300 K

Liquid ambient temperature Tl,0 300 K

Gas molecule co-volume bg 0 –

Liquid molecule co-volume bl 6.7212× 10−4 m3/kg

Gas pressure constant Bg 0 –

Liquid pressure constant Bl 6.2178× 108 Pa

Gas polytropic exponent Γg 1.67 –

Liquid polytropic exponent Γl 1.19 –

Vacuum permittivity ε0 8.85× 10−12 F/m

Surface tension σ 7.2× 10−2 N/m

Liquid viscosity µ 1× 10−3 Pa ⋅ s

Charge on the bubble Q 0.3 pC

3. Results and discussion

Before showing the dynamics obtained with the
G-M-N-C model under various conditions, the other
models (i.e., G-M-N in (Denner, 2021); K-M-C in
(Hongray et al. 2014; 2015)) are adopted to calcu-
late the bubble dynamics under a high amplitude driv-
ing acoustic wave in order to conduct the comparative
analysis.

Figure 1 shows the predictions obtained by three
models, i.e., G-M-N-C, K-M-C, and G-M-N. Most of
the variables associated with the bubble are periodic
oscillations, except that the sound velocity, the density
and temperature of liquid at the bubble wall remain
constant calculated by the model of K-M-C. From
Fig. 1a, the bubble grows slowly in the initial stage and
then rapidly expands to its maximum radius (Rmax).
Correspondingly, the gas temperature and pressure in-
side the bubble reach the minimum values (Figs. 1c
and 1d). At this time, the bubble begins to collapse
due to the difference between the inside and outside of
the bubble having a maximum value. When the bub-
ble collapse to the minimum radius (Rmin), according
to Figs. 1b–1g, the variable values (i.e., bubble wall
velocity, gas temperature and pressure, the tempera-
ture, density and sound velocity of liquid on the bubble
wall) reach the maximum. After the first collapse, the
bubble oscillates slightly several times.
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Fig. 1. Time developments of the bubble radius (a), the bubble wall velocity (b), the gas temperature (c) and pressure (d)
inside the bubble, the liquid temperature (e), density (f) and sound velocity (g) at the bubble wall, and the Mach number
of the bubble wall (h) as retrieved by G-M-N-C model (solid line), K-M-C model (dash line) and G-M-N model (dash dot

line). The bubble driven by an ultrasound wave with frequency of 30 kHz and amplitude of 1.35 atm.

Comparing to the predictions obtained by the
model of G-M-N, the maximum variable values (i.e.,
the gas temperature and pressure, bubble wall velocity,
liquid temperature, density and sound speed) calcu-
lated by the model of G-M-N-C are larger. This owes to
the larger absolute value of the maximum pressure dif-
ference at the bubble wall in the model of G-M-N-C
with the consideration of the charge on the bubble sur-
face. The bubble can absorb more energy during its ex-
pansion, reaching a larger size, and a smaller size will
be acquired as the bubble collapses.

The dynamics of the charged bubble are commonly
predicted by the K-M-C model, which is compared in
detail with the G-M-N-C model. As reported in Fig. 1a,

the lower Rmin is achieved from the G-M-N-C model
(0.42 µm, compared to 0.44 µm for the K-M-C model).
Since NASG equation of state is used in G-M-N-C
model to describe dynamic features of the gas in the
bubble and the liquid at the bubble wall, and the com-
pressibility of the gas in the bubble is fully consid-
ered. It is believed that the covolumes of gas molecules
should be different with temperature and pressure. The
high temperature and pressure environment caused by
the bubble collapse results in a smaller covolume of gas
molecule, meaning that there is more space for the
gas to compress. Therefore, the bubble collapse depth
is deeper, and the minimum bubble radius is smaller.
Consequently, the bubble can be compressed more,
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yielding a much higher gas temperature and pressure
inside the bubble, as indicated in Figs. 1c and 1d. This
result matches the finding in (Nazari-Mahroo et al.,
2018; 2020).

The G-M-N-C model gives the maximum liquid
temperature and density at the bubble wall reaching
414.67 K and 1.37× 103 kg/m3, respectively, whereas
these two variables keep constant in the K-M-C model
from Figs. 1e and 1f. The calculations of the Mach
number (Ma) for two models are shown in Fig. 1h.
It can be seen that the peak Ma calculated by the
G-M-N-C model is significantly lower than that pre-
dicted by the K-M-C model. The liquid velocity of
sound at the bubble wall varies with time in the
G-M-N-C model (Fig. 1g), at the instant of the first
bubble collapse, the bubble wall velocity and the
liquid velocity of sound at the wall are both large
(Figs. 1b and 1g), reducing Ma (e.g., Ma = 0.55 from
Fig. 1h), and the reliability of the model can be guar-
anteed. While the liquid velocity of sound at the bub-
ble wall remains constant in the K-M-C model leading
to a larger Ma during the first bubble collapse (e.g.,
Ma = 0.73 from Fig. 1h).

The K-M-C model evolves from the Keller-Miksis
equation taking the liquid compressibility into account,
which is accurate at Ma < 1 (Zilonova et al., 2018).
The G-M-N-C model is derived from the Gilmore equa-
tion, which is obtained basing on the variation of liq-
uid sound velocity and integrating the liquid enthalpy
directly instead of the liquid pressure. Hence, the bub-
ble dynamics with charge estimated by the G-M-N-C
model is accurate for Ma ≤ 2.2 (Zilonova et al., 2018).
Figure 2 summarizes the maximum absolute value of
Ma in Pa (1.2–3 atm) – f(20–400 kHz) plane for two
models. Within the parameters studied, the Ma calcu-
lated by the K-M-C model range from 0.02 to 10.60,
while the values obtained by the G-M-N-C model are
0.02–4.76. Under a certain parameter, Ma calculated
by the latter model is smaller than that from the for-
mer model. The example can be seen in Fig. 1h. The
positions of the blue curves are Ma = 1 in Fig. 2a and
2.2 in Fig. 2b, respectively, which are the critical values
of Ma for the K-M-C model and the G-M-N-C model
applied in numerical studies. Under the excitation pa-
rameters on the upper left of the curves, the applica-
tion of the model is safe, while the lower right is not.
It can be seen that the G-M-N-C model has a wider
application range than the K-M-C model.

In application researches, evaluating the cavitation
intensity by calculating the gas temperature or the
emitted sound pressure, which is a difficult task, be-
cause of the need to obtain the bubble wall velocity, or
the acceleration. To this end, it is necessary to mea-
sure the cavitation intensity from the radial dynamics
of the bubble. There exist several approaches in the
literatures, e.g., the compression ratio (Rmax/Rmin)
(Hongray et al., 2014; Kalmár et al., 2020; Nazari-

a)
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Fig. 2. Maximum absolute value of Mach number of
the bubble wall calculated by K-M-C model (a) and
G-M-N-C model (b). The numerical results are ob-
tained from more than 200 combinations of ultra-
sound frequency (20–400 kHz) and acoustic ampli-

tude (1.2–3.0 atm).

Mahroo et al., 2018), the expansion-compression ra-
tio ((Rmax−R0)/(R0−Rmin)) (Hongray et al., 2015),

and the quantity of
R3

max

tc
(Kalmár et al., 2020), where

tc is the bubble collapse time. In the present study, the
compression ratio is used to describe the cavitation in-
tensity and is represented by Cs.

The effect of charge Q on the compression ratio Cs

is shown in Fig. 3. As can be seen, Cs increases linearly
with increasing Q from 0 to 0.6 pC for both models. At
the coordinate value of (0.49, 77.36), the two predic-
tion curves intersect. At this time, the minimum bub-
ble radii calculated by two models are similar, and the

[pC]

Fig. 3. Compression ratio Cs vs. charge on the bubble, cal-
culated by G-M-N-C model (solid line) and K-M-C model
(dash line) for ultrasound frequency of 30 kHz and ampli-

tude of 1.35 atm.
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values are about 0.41 µm, which is near the hard-core
radius for the bubble with an initial radius of 3.5 µm.
Therefore, the variation curves of Cs predicted by two
models can only intersect at this point. Also, this re-
sult proves the accuracy of the present model. When Q
value is away from 0.49 pC, the difference of Cs calcu-
lated by two models is increasing. At Q < 0.49 pC, the
Cs obtained by the G-M-N-C model is larger than that
predicted by the K-M-C model. It is worth noting that
in the K-M-C model, when Q is greater than 0.53 pC,
bubble collapse intensity increases, resulting in Ma > 1
(e.g., at Q = 0.55 pC, Ma = 1.03), so that the accuracy
of the model is lost. Nevertheless, the range of Q is
0–0.6 pC, and the value of Ma is 0.49–0.61 lying in the
application range of the G-M-N-C model.

In order to seek the correlation between the com-
pression ratio Cs and the pressure amplitude Pa, nu-
merical studies have been performed for various Pa

(1.2–3.0 atm). The observed results are presented in
Fig. 4. With the increase of Pa, Cs calculated by two
models increases monotonically. The predicted Cs of
the G-M-N-C model is always higher than that of the
K-M-C model. The difference of Cs calculated by two
models is about 10.02% at Pa from 1.2 to 2.2 atm.
When Pa is between 2.2–3.0 atm, the difference in-
creases significantly, and the difference value reaches
the maximum at Pa = 2.4 atm, which is 51.51%.

Pₐ [atm]

Fig. 4. Compression ratio Cs vs. acoustic amplitude, cal-
culated by G-M-N-C model (solid line) and K-M-C model
(dash line) for ultrasound frequency of 30 kHz and charge

of 0.3 pC on the bubble.

The effect of ultrasound frequency f on the com-
pression ratio Cs is explored as presented in Fig. 5. It is
observed that Cs decreases by increasing f . It is a well-
known trend of cavitation bubble dynamics. With the
increase of f , there has no enough time to grow for
the bubble, resulting in the decrease of Cs. The cavi-
tation intensity is weakened, and the bubble tempera-
ture and pressure are reduced. For the two considered
models, Cs in the G-M-N-C model is larger than that
in the K-M-C model. The difference of Cs calculated
by two models reaches the maximum value of 140.51%
at the frequency of around 700 kHz.

Other reports in the literatures supported the vari-
ation trends of the compression ratio Cs with the pres-

f [kHz]

Fig. 5. Compression ratio Cs vs. ultrasound frequency, cal-
culated by G-M-N-C model (solid line) and K-M-C model
(dash line) for ultrasound amplitude of 1.35 atm and charge

of 0.3 pC on the bubble.

sure amplitude Pa and ultrasound frequency f . Fer-
kou et al. (2015) examined the effect of ultrasound fre-
quency and acoustic intensity on the sonolytic degra-
dation of naphthol blue black in water operating acous-
tic intensity in the range of 0.44–5.22 W/cm2 with
the frequency in the range of 585–1140 kHz. The ob-
served results indicated that the sonochemical degra-
dation rate increased with increasing acoustic inten-
sity and decreasing the frequency. The similar results
were obtained for efficiency of sonochemical degrada-
tion Bisphenol A (Torres et al., 2008), the hydrogen
production from a collapsing Ar bubble in water (Ker-
boua et al., 2021; Dehane et al., 2021a) and a collaps-
ing Ar-O2 bubble in methanol (Dehane et al., 2022).

Figure 6 shows the variation of the compression ra-
tio Cs as a function of liquid temperature T∞. The
cavitation intensity can be enhanced by the increase
of T∞. As can be seen from the figure, the difference
(around 10%) between predicted values by two models
is not strongly affected by T∞ from 283 to 333 K. The
similar results obtained by Merouani and co-workers
(Chadi et al., 2018; Dehane et al., 2021b; Merouani
et al., 2014). They found that cavitation intensity and
the production ratio of ⋅OH generated by a single bub-

[K]

Fig. 6. Compression ratio Cs vs. liquid temperature, cal-
culated by G-M-N-C model (solid line) and K-M-C model
(dash line) for ultrasound frequency of 30 kHz, acoustic
amplitude of 1.35 atm and charge of 0.3 pC on the bubble.
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ble collapse was enhanced with the increase of liquid
temperature (Chadi et al., 2018). But the overall pro-
duction ratio and sonochemical degradation of non-
volatile organic pollutants in aqueous media reached
their maximum values at T∞ = 50○. The cavitation ef-
fect is mainly affected by the single bubble collapse
intensity and the number of bubbles, and the latter
decreased with the increase in liquid temperature. De-
hane et al. (2021b) found the production of RCS, ⋅OH,
⋅H, HCl and HOCl increased proportionately with the
increase of liquid temperature (from 10○ to 50○) on car-
bon tetrachloride sono-conversion under acoustic exci-
tation with the intensity of 0.7 W/cm2 and the ultra-
sonic frequency of 355 kHz.

Based on the Gilmore-NASG model, the acoustic
bubble dynamic model is established in this paper con-
sidering the effect of the charge on the bubble surface.
The paper analyze the bubble dynamics and cavitation
intensity, along with the accuracy of the present model
by comparing with the results in the literature. The pa-
per proves the model has a wider range of application
parameters. In the future work, present model can be
optimized. For example, the effects of bubble-bubble
interaction (Zhang et al., 2016) should be taken into
account to investigate the secondary Bjerknes force be-
tween two gas bubbles, that coupled with a viscous
drag force to analyze the translational motions of the
bubbles. The detail results are refered to the works
in (Wang et al., 2023). In addition, heat exchange,
mass transport and chemical reactions on the dynam-
ics of the bubble with a constant charge are also worth
considering (Dehane et al., 2021a; 2021b; 2022; Ker-
bouaet al., 2021; Lv, Liu, 2023).

4. Conclusion

In the present work, the model for a charged bubble
under acoustic excitation is proposed. Compared with
the previous model, the proposed model can be applied
to a wider parameter range, especially high acoustic
amplitudes and low ultrasound frequencies excitation.
The bubble collapse intensity calculated by two mod-
els is enhanced with increasing charge on the bubble
surface, acoustic amplitude and liquid temperature,
and the decrease of ultrasound frequency. Except for
the charge on the bubble surface, the bubble collapse
intensity by the present model is larger under the stud-
ied parameter range, mainly because the effect of liq-
uid and gas compressibility is fully considered. When
the charge is 0.49 pC, the minimum bubble radius cal-
culated by two models is near the hard-core radius,
and the bubble collapse intensity is equal. The differ-
ences between predicted values by two models reaches
the maximum at Pa = 2.4 atm or f = 700 kHz, and the
liquid temperature has little effect on the difference
(around 10%).
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This study presents an examination of the transmission properties of multilayered partitions made up
of multiple micro-perforated plates (MPPs) coupled to acoustic enclosures with general impedance bound-
aries. Multi-layered MPPs can lower the transmission while minimizing reflection in the source and receiving
enclosure. Previous research has mainly focused on the double MPPs or triple MPPs partition itself. How-
ever, it is vital to analyze the in-situ sound transmission loss of the multi-layered MPP and their efficiency
in a complex vibro-acoustic environment. The case when the multilayered MPPs are coupled to a receiving
enclosure or coupled to both a source and receiving enclosure is investigated. The objective is to provide an
analytical method to evaluate the transmission properties of multilayered MPPs coupled to acoustic enclo-
sures while being computationally more efficient than the finite element method (FEM). Using the modified
Fourier series for the acoustic pressure, a variational form for the acoustic and structure medium yields a com-
pletely coupled vibroacoustic system. A comparison between the sound transmission loss of the double MPPs,
when mounted on an impedance tube and coupled to acoustics enclosures, shows the modal effect of the en-
closures. The effect of enclosure shape, impedance boundary, perforation ratio, air gap thickness on the sound
transmission properties of the double MPPs structure is examined for both cases. Finally, in both situations,
the performance of triple MPP structure insulation is evaluated.
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1. Introduction

In recent decades, micro-perforated panels (MPP)
have become more popular as a means of noise re-
duction. In the initial design, the arrangement in-
volved placing perforated panels in front of a solid
wall. The purpose was to increase particle velocity
through the perforations and dissipate acoustic energy,
as documented by Maa (1998). Remarkably, with-
out the need for an additional layer of porous mate-
rials, the sub-millimeter-sized holes were capable of
providing relatively broad-spectrum absorption. This
phenomenon results from the shear forces generated
by air vibrations as they pass through these tiny open-
ings. As a result, this design approach facilitates the
construction of sound-absorbing walls that are both

lightweight and free of fibers, all while maintaining
high functionality. MPPs may be utilized as acoustic
liners at the intake and exhaust of aircraft nacelles
to minimize fan and jet engine noise because of their
resistance to degradation and their ability to survive
harsh settings where porous materials can degrade.
These materials are great for use as outdoor noise bar-
riers, and may even be made out of transparent mate-
rials. Therefore, they might be particularly helpful to
architects who utilize interior or exterior glass struc-
tures (Fuchs, Zha, 1997), for example, to reduce the
long reverberation durations that contribute to poor
intelligibility in glass-enclosed spaces. And since envi-
ronmental considerations are taken into account while
creating standards, it is anticipated that in the future,
these lightweight, non-polluting, soundproof alterna-
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tives, which may be made from recyclable materials,
would replace the use of porous barriers.

Micro-perforated panels have also been used
in a vast array of other technical applications. Micro-
perforated cylinder silencers were the subject of ana-
lytical and experimental study by Bravo et al. (2016)
in the high-sound pressure and low-frequency domains.
They examined the nonlinear behavior of a micro-
perforated cylinder liner as it dissipated energy and
transmitted sound at high pressure. Alisah et al.
(2021) studied the potential of an expansion chamber
coupled micro-perforated cylindrical panel using the
boundary element method to enhance the acoustic at-
tenuation for in-duct noise control issues. Yu et al.
(2015) studied the effectiveness of hybrid silencers
made from MPPs and inner partitions, finding that the
balance between dissipative and reactive noise attenua-
tion effects could be modified by varying the ideal hole
size and perforation ratio, among other aspects. Al-
lam and Åbom (2011) included MPPs in the design of
vehicle exhaust mufflers, indicating that mufflers made
using MPPs rather than porous materials provide the
advantage of a non-fibrous, lighter alternative. Micro-
perforated insertion units were developed by Pfret-
zschner et al. (2006) and may be used to protect
the acoustic properties of MPPs while reinforcing their
fragile thin plates or foils. To increase the frequency
range, Liu et al. (2017) investigated layered sound
absorbers on which a 3D-printed MPP was mounted
using a porous sound absorbent material. Yang and
Cheng (2016) conducted research on the sound ab-
sorption properties of MPPs when supported by either
an air volume or a honeycomb structure within small
enclosures. Their study revealed that the interaction
between the backing cavity and the enclosure had a no-
table influence on the MPP’s ability to absorb sound.
Kang and Brocklesby (2005) investigated the via-
bility of utilizing a window arrangement with transpar-
ent micro-perforated absorbers and proved that noise
could be decreased while enabling much greater airflow
compared with traditional window systems. An opti-
mization of the MPP with a multi-depth cavity was
carried out by Falsafi and Ohadi (2018) to extend
the absorption bandwidth. MPPs have been utilized
in honeycomb and corrugated constructions as low-
frequency sound-absorbing structures (Meng et al.,
2017; 2019; Tang et al., 2017; 2019).

Although sound absorption has been the primary
focus of most investigations on MPPs, just a few have
studied their sound-isolating properties. Toyoda and
Takahashi (2008) examined the acoustic properties
of an infinite MPP structure with a back wall. To re-
duce mid-frequency transmission loss, they performed
an analysis of the problem in only two dimensions and
proposed an air gap subdivision, namely the use of
a structure based on honeycomb. Micro-perforation en-
hances soundproofing effectiveness at the mass-spring

resonance in the two studies of the soundproofing prop-
erties of infinite double and triple windows and pa-
nels with micro-perforations (Mu et al., 2011a; 2011b).
Sound transmission loss (STL) results of single and
double-layered construction with and without micro-
perforations were compared by Dupont et al. (2003)
in their study of lightweight MPP systems. Bravo
et al. (2012) developed a fully coupled modal ap-
proach that predicts the absorption and transmis-
sion characteristics of flexible MPP-cavity-plate par-
titions. The study was expanded (Bravo et al., 2014)
and a comparison was conducted between MPP-MPP-
plate and MPP-porous-plate partitions. Kim et al.
(2020a) conducted a comprehensive analysis using
the transfer matrix technique to study the impact
of micro-perforations on the sound transmission loss
(STL) of multi-layered infinite MPPs across the en-
tire frequency spectrum. They employed the con-
cept of equivalent impedance, which combines the
impedances associated with both the inertia term and
the micro-perforations, as a means to characterize the
effects of these perforations. In a related study, Kim
et al. (2020b) employed the transfer matrix approach
while assuming conditions of plane waves in the low-
frequency domain. Their investigation centered on an-
alyzing the STL of multi-layered flexible MPPs, which
were positioned within a rectangular cross-sectioned
impedance tube. Their particular focus was on under-
standing the behavior of these panels at resonance fre-
quencies.

Analytical and numerical techniques have been uti-
lized to characterize the insulating characteristics of
the dividing partition and the parameters that lead to
observed differences in the low-frequency range of these
qualities to fully explain how finite cavities affect the
findings. Kihlman (1967) examined inaccuracies in
sound transmission measurement using modal analy-
sis. He noticed that systematic differences may develop
in the low-frequency spectrum if the source and receiv-
ing rooms have identical dimensions. Other authors
(Mulholland, Lyon, 1973; Gagliardini et al.,
1991; Kropp et al., 1994; Osipov et al., 1997a; 1997b)
have adopted comparable strategies to investigate the
impact on the measured low-frequency sound transmis-
sion loss such as room size, source location, reverbe-
ration duration, interface geometry, or mounting con-
ditions. Bravo and Elliott (2004) introduced a cou-
pled model to investigate systems comprising cavity-
panel-cavity and cavity-panel configurations, focusing
on the evaluation of low-frequency sound transmis-
sion loss. Cheng et al. (2005) studied the transmission
of energy within double-wall partitions that were me-
chanically coupled to an acoustic cavity. They specifi-
cally examined how the noise insulation characteristics
of these structures were affected by factors such as the
air gap and mechanical connections, utilizing a fully
coupled vibro-acoustic formulation.
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We have characterized the double and triple MPPs
configurations, as they are of relevance when consid-
ering the reduction of the noise transmitted through
building walls while providing boundary absorption in
the source room and receiving room, lowering their
reverberation times and improving the speech intel-
ligibility. In a typical application, multi-layered MPPs
might be utilized to reduce transmissions and reflec-
tions from both sides compared to the double plate or
the plate-cavity-MPP partitions. Multi-layered MPPs
behavior must be evaluated in such applications by
considering it as a component of the complete sys-
tem. There are two significant limitations in exist-
ing research: (a) the sound transmission of multi-
layered MPPs were assessed in simple acoustic environ-
ment such as impedance tube or free-field conditions,
and (b) the effect of enclosures and boundary condi-
tions on transmission loss the double and triple MPPs
structures, when coupled to a receiving enclosure or
both the source and receiving enclosure, was not con-
sidered. Since these characteristics can greatly alter
the transmission properties of multi-layered MPPs,
comprehensive knowledge of vibro-acoustic phenom-
ena and their sensitivity to changes in system parame-
ters is of paramount importance. Additionally, the de-
velopment of a versatile and precise methodology ca-
pable of addressing various aspects of systems would
greatly benefit both academic researchers and engi-
neers. While numerical approaches such as the finite
element method (FEM) are effective for obtaining rel-
evant acoustic data, there is a preference for analytical
techniques due to their computational efficiency. Ana-
lytical methods are particularly suited for parametric
investigations, sensitivity analyses, and optimization.
They also serve as reliable benchmarks for the devel-
opment of acoustic engineering software.

To address the limitations observed in previous
models and offer a clearer understanding of the trans-
mission properties of double MPP coupled to acoustic
enclosures and their sensitivity to changes in various
system parameters, we propose a vibro-acoustic formu-
lation for modeling the behavior of the coupled system.
In this proposed approach, we use the modified Fourier
series to express the acoustic pressure within the en-
closures. Our model assumes a clamped boundary con-
dition, which, while more complex to handle analyti-
cally than the simply supported boundary condition,
better reflects real-world engineering scenarios in many
cases. To obtain solutions for displacement and acous-
tic pressure, we apply a modified variational principle
for the coupled system. Our approach efficiency and
accuracy is validated by comparing it with the FEM
and impedance tube results. We investigate the im-
pact of key factors on the sound transmission loss of
a multi-layered MPP structure when coupled to a re-
ceiving acoustic enclosure or both the receiving and
source enclosure. These factors include the dimensions

of the acoustic enclosure, air gap thickness, acoustic
enclosure impedance, plate micro-perforation, and the
presence of absorbent materials within the gap. Fi-
nally, the case of triple MPPs is also investigated.

2. Theoretical formulations

2.1. Description of the coupled system

Figure 1 illustrates the coupled system under inves-
tigation in the present study. This system is a double
MPP that is separated by an air gap and coupled to
an enclosure cavity. The double MPP structure is com-
posed of two homogeneous and isotropic rectangular
micro-perforated plates. The two MPPs are identical.
The clamped boundary condition for the MPP is as-
sumed. A uniform, oblique plane sound wave with an
incidence elevation angle φ and an azimuth angle θ is
applied to the top MPP, designated 1, whilst the lower
MPP denoted 2, is coupled to a receiving enclosure in
the first case. To study the vibro-acoustic behavior of
double MPP when coupled to both a source and re-
ceiving enclosure, an acoustic point source is placed in
a secondary enclosure and coupled to the double MPPs
structure in the second case. The air gap and the acous-
tic enclosures have acoustically rigid walls except for
the regions occupied by the two MPPs. Nonetheless,
it is worth noting that we can readily introduce an ar-
bitrary impedance surface condition when necessary.

Second case: Source enclosure

First case: Acoustic excitation

Receiving enclosure

Air gapMPP2

MPP1

hₐ

hₑ

LyX

Z

Y
Lₓ

Fig. 1. Schematic of a double micro-perforated plate
structure coupled to an enclosure.

The acoustic pressure in the acoustic gap should
satisfy both the wave equation and the corresponding
boundary conditions.

The wave equation is given as:

∇2pg + k2pg = 0, (1)



244 Archives of Acoustics – Volume 49, Number 2, 2024

where pg is the acoustic pressure within the acoustic

gap, k = ω
c0

is the wavenumber, and ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .
The boundary conditions on the air gap bound-

aries:

∂pg

∂z
= jωρ0v1, on MPP1, (1)1

∂pg

∂z
= −jωρ0v2, on MPP2, (1)2

∂pg

∂n
= 0, Z(ω) =∞, on the rigid wall, (1)3

where ρ0 and c0 are the density of air and the speed
of sound, respectively, and vj is the average velocity
of the j-th MPP.

Similarly, the acoustic pressure within the enclo-
sure satisfies the wave equation including the continu-
ity conditions on the boundaries:

∇2pe + k2pe = 0,
∂pe

∂z
= jωρ0v2, on MPP2,

∂pe

∂z
= −jωρ0 pe

Z
, on the walls,

(2)

where pe is the acoustic pressure inside the enclosure.
As can be seen in Fig. 2, the average velocity v of

the MPP is related directly to the velocity of the plate
vp as well as the velocity of the fluid vf as it passes
through the hole:

v = vp(1 − σ) + vfσ, (3)

where σ denotes the perforation ratio, and it is defined
as σ = πd2/4U2, where d denotes the hole’s diameter
and U represents the distance between the holes of the
MPP.

Fig. 2. Average velocity on the surface of the j-th MPP.

As was shown in prior research (Takahashi,
Tanaka, 2002), the impedance of the MPP is related
to the pressure difference:

Zresist(vf − vp) +Zreactvf =∆p. (4)

According to Maa (1998), the impedance of the
hole, Z = Zresist+Zreact, which consist of a resistive part
and an imaginary part. The former corresponds to the

resistive force between the fluid and the inner surface
of the hole and the latter deals with the inertia force
(motion) of the fluid in the hole. They are given as:

Zresist = 8η0h(d/2)2 ⎛⎝
√

1 + X2

32
+
√
2dX

32h

⎞⎠, (5)

Zreact = jρωh⎛⎜⎝1 +
1√

9 + X2

2

+ 8d

3πh

⎞⎟⎠, (6)

where η0 represents the air’s viscosity coefficient, h de-

notes the thickness of the MPP, and X = (d
2
)√ρω

η
.

When we eliminate vj,f from Eqs. (3) and (4), we
get the relation:

v = γvp + σ∆p
Z

, (7)

in which

γ = 1 − σ (Zreact

Z
). (8)

For the first MPP, ∆p1 = p0 − pg.
The governing equation of the first MPP is given as

a function of MPP displacement w1 (and v1,p = jωw1):

D1∇4w1 −M1ω
2w1 = p0 − pg, (9)

where M1 is the mass per unit area and D1 is the
flexural rigidity of the first MPP, it can be written as:

D1 = E1h
3

1/12(1 − v21), (10)

where E1 represent Young’s modulus, v1 is Poisson’s
ratio, and h1 is the thickness.

In Eq. (10), damping of the structure is taken into
consideration by inserting complex Young’s modulus
E(1 + jη), where η is the loss factor.

The sound pressure acting on the incident panel
consists of three distinct pressures: the incident pres-
sure, the reflected pressure, and the radiated pressure.
Among these three components, the radiated pres-
sure is notably negligible. This is primarily due to the
incident plate’s impedance is comparable to that of
a rigid boundary when subjected to air loading. Conse-
quently, it is reasonable to assume that the magnitudes
of the incident and reflected pressure waves are equal
(Carneal, Fuller, 2004; Chazot, Guyader, 2007).

Hence, in cases involving light fluid-loading and
sub-millimetric holes with substantial resistive effects,
neglecting the radiated pressure directed outward and
assuming equivalence in magnitude between the inci-
dent and reflected pressures, we can conclude that the
blocked pressure, often referred to as the excitation
pressure, is twice the magnitude of the incident wave:

p0(x, y, t) = 2pinc exp (jωt − jkz cos(φ)
− jky sin(φ) sin(θ) − jkx sin(φ) cos(θ)). (11)
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In the same manner, the governing equation of the
second MPP is given as a function of the MPP dis-
placement w2 (and v2,p = jωw2):

D2∇4w2 −M2ω
2w2 = pg − pe, (12)

where M2 is the mass per unit area and D2 is the
flexural rigidity of the second MPP.

2.2. Solution procedure of the coupled system

Under the assumption that the double MPP are
fully clamped, the transverse deflection and moment
rotation of each panel are constrained to remain zero
along their edges. Consequently, their transverse dis-
placements can be expressed as:

wj,p(x, y) = ∑m,n
qj,mnϕmn(x, y), (13)

where the modal functions ϕmn or, more strictly speak-
ing, the basic functions take the following forms (Xin
et al., 2008):

ϕmn(x, y) = ⎛⎝1− cos(2mπxLx

)⎞⎠⎛⎝1− cos(2nπyLy

)⎞⎠. (14)

Note that the clamped modal function of Eq. (13) is
different from the simply supported modal function

ϕmn(x, y) = sin (2mπx
Lx
) sin (2nπy

Ly
).

To ensure differential continuity at the structural-
acoustic coupling interface, the sound field inside the
enclosure and the air gap may be represented (Du
et al., 2011):

pg(x, y, z)= Mx∑
mx=0

My∑
my=0

Mz∑
mz=0

Ag
mxmymz

⋅ cos(λmx
x) cos(λmy

y) cos(λmz
z)

+ Mx∑
mx=0

My∑
my=0

(ξ1Lz
(z)agmxmy

+ξ2Lz
(z)bgmxmy

)
⋅ cos(λmx

x) cos(λmy
y), (15)

pe(x, y, z)= Mx∑
mx=0

My∑
my=0

Mz∑
mz=0

Ae
mxmymz

⋅ cos(λmx
x) cos(λmy

y) cos(λmz
z)

+ Mx∑
mx=0

My∑
my=0

ξ2Lz
(z)bemxmy

⋅ cos(λmx
x) cos(λmy

y), (16)

where λms
= msπ

Ls
, (s = x, y, z). The supplemental func-

tions ξ1Ls
(s) and ξ2Ls

(s) can be found in (Du et al.,
2011).

Theoretically, an acoustic analysis of a cavity can
be formulated using a variational approach. This ap-
proach can yield a solution that is more advantageous

compared to simply solving the Helmholtz equation.
To achieve this objective, a modified variational ap-
proach (Chien, 1983; Qu et al., 2013a; 2013b) is em-
ployed to define the distribution of sound pressure.
This technique involves seeking the minimum value of
the corresponding modified variational function:

∭
Vg

1

2
[pg jk

ρ0c0
pg − (∇pg)T j

ρ0ω
(∇pg)] dV

+ ∬
SMPP1

pgv1 dS − ∬
SMPP2

pgv2 dS = 0. (17)

Using Eq. (17) we get:

∭
Vg

1

2
[pg jk

ρ0c0
pg − (∇pg)T j

ρ0ω
(∇pg)] dV

+ ∬
SMPP1

pg (γ1v1,p + σ1∆p1
Z1

)dS

− ∬
SMPP2

pg (γ2v2,p + σ2∆p2
Z2

)dS = 0, (18)

where ∆p1 = p0 − pg and ∆p2 = pg − pe.
The characteristic equation may be found by in-

serting the admissible function specified in Eqs. (13),
(15), and (16) into Eq. (18), and then carrying out
the variational operation in terms of the generalized
coordinate vector.

The resultant equation for the air gap is as:

[Kg + jωZg + ω2Mg]Pg + ω2Cpg,w1
WMPP1

− ω2Cpg,w2
WMPP2 + jωCpg,pe

Pg = jω {P0,w1
}. (19)

In the same manner, for the acoustic enclosure, we get:

[Ke + jωZe + ω2Me]Pe + ω2Cpe,w2
WMPP2

+ jωCpe,pg
Pg = {0e}. (20)

By setting the integral of a weighted residual of the
modal function to zero, an arbitrarily accurate double
series solution can be obtained. For the current dou-
ble MPPs partition system, the integral equations are:

∬
SMPP1

(D1∇4w1 −M1ω
2w1)ϕmn(x, y)dxdy

= ∬
SMPP1

p0ϕmn(x, y)dxdy

− ∬
SMPP1

pgϕmn(x, y)dxdy, (21)
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∬
SMPP2

(D2∇4w2 −M2ω
2w2)ϕmn(x, y)dxdy

= ∬
SMPP2

pgϕmn(x, y)dxdy

− ∬
SMPP2

peϕmn(x, y)dxdy. (22)

By substituting Eqs. (13), (15), and (16) into
Eqs. (21) and (22) and subsequently engaging in metic-
ulous yet straightforward algebraic manipulations, the
matrix equations for the MPPs are derived:

[Kp1
+ ω2Mp1]WMPP1

+CT

pg,w1
Pg = {P ′0,w1

}, (23)

[Kp2
+ ω2Mp2

]WMPP2 −CT

pg,w2
Pg

+CT

pe,w2
Pe = {0} . (24)

The enclosure and the air gap Eqs. (19) and (20) and
the MPPs Eqs. (23) and (24) form a set (Ne + Ng +
MMPP1 +MMPP2) of coupled equations that may be
put in matrix form as:

[K + jωC + ω2M]X =Q, (25)

where M and K are diagonal matrices representing the
mass and stiffness of the whole system, respectively,
and X is the vector of the unknown complex modal am-
plitudes. The MPP and cavity modal components that
couple with the external pressure are correspondingly
represented by the generalized excitation vector Q.

To study the effect of a source room on the trans-
mission properties of multi-layered MPPs. The pre-
vious theoretical formulations could also be extended
to include a secondary acoustic enclosure as a source
room.

The acoustic pressure in the emitting enclosure sat-
isfies the wave equation including the continuity con-
ditions on the boundaries:

∇2ps + k2ps = jωρ0Qδ(x − x0)(y − y0)(z − z0),
∂ps

∂z
= jωρ0v1, (26)

where ps is the acoustic pressure inside the enclosure,
Q is the source strength, and (x0, y0, z0) is the position
of the acoustic source.

Similarly making use of the modified Fourier se-
ries for the acoustic pressure and then carrying out
the variational operation in terms of the generalized
coordinate vector. A new set (Ns +Ne +Ng +MMPP1 +
MMPP2) of coupled equations can be obtained.

2.3. Sound transmission loss

The transmission loss or sound reduction index of
a double MPP connected to a receiving enclosure is
defined by:

TL = 10 log10 (Πinc

Πrad

) [dB], (27)

where Πinc and Πrad are the sound power incident and
radiated by the double MPP structure, respectively, at
a given frequency.

The incident acoustic power can be defined as:

Πinc = 1

2
Re∬

A

pi.v
∗

i dA. (28)

The conjugate of a complex variable is denoted by∗, vi is the acoustic velocity, and pi the incident sound
pressure. When the incident wave is plane and the
acoustic medium is air, the incident power is (Cha-
zot, Guyader, 2007; Xin et al., 2008):

Πinc = p2i cos(ϕ).S
2ρ0c0

. (29)

The potential energy in the receiving enclosure is
used to compute the partition’s radiated power.

In the second case where the multilayered MPPs
are connected to both a receiving and the source room,
we define the sound transmission loss as (Løvholt
et al., 2017):

STL = 20 log10 ( ∣pre∣∣pso∣ ) , (30)

where ∣pre∣ and ∣pso∣ are the absolute values of the pres-
sure averaged over the receiving room and the source
room, respectively.

3. Numerical model

The numerical model is constructed using COM-
SOL Multiphysics. In this model, a plane wave is ap-
plied to the incident section. The air in the incident
field, receiving enclosure, and air gap is considered
to be compressible, with no consideration for ther-
mal conductivity or viscosity. Therefore, the pressure
acoustics module within COMSOL, which is suitable
for all frequency-domain simulations, is employed.

During the simulation, the MPP are represented
as isotropic linear elastic materials using COMSOL’s
Solid Mechanics module. It is important to note
that the simulation accounts for the thermal conduc-
tion and viscosity of the air within the small pores. To
handle this, the thermal-acoustics module is utilized.

In the case where a source enclosure is coupled to
the multilayered MPPs, the incident field is replaced
by an enclosure and the pressure acoustics module is
employed.

3.1. Boundary conditions

In the finite element (FE) model, it is assumed
that at the interface between the pressure acoustic
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field and the solid panel, the normal accelerations of
the air and the panel are equal. Furthermore, the FE
model enforces continuous normal stress, acceleration,
and adiabatic conditions at the interface between the
thermal acoustic field and the pressure acoustic field.
Additionally, the air velocity at the interface between
the thermal acoustic field and the solid panel coupling
boundary is set to be equal to the velocity of the panel,
and temperature variation is treated as isothermal.

The FE model also takes into account the boundary
conditions of the MPP, the acoustic enclosure, and the
air gap. Tetrahedral elements are used to mesh the FE
model, as depicted in Fig. 3. It is important to note
that the dimensions of each part have an impact on
the size of the elements used in the model.

Incidence field

Acoustic enclosure

0.2

0

0.1

0.2

0.6

0.4

0.2[m]

[m] [m]

0

MPP1

Air gap

MPP2

Fig. 3. FE model of a double MPP coupled to an acoustic
enclosure.

4. Numerical results and discussions

In this section, the model is validated and a para-
metric study is conducted by the theoretical modeling
and solution approach outlined in the preceding sec-
tions of the paper. Comparison between the STL of
the double MPP structure, in both cases, obtained us-
ing the current approach and FEM is carried out first
to assess the limit of applicability and verify its relia-
bility and accuracy. Then, parametric research on the
effect of the coupled system parameters on the sound
transmission loss is also carried out, including acoustic
enclosure dimension and impedance, micro-perforation
of the MPPs, air gap thickness, and the influence of the
absorbent material introduced in the gap.

4.1. Validation of the analytical formulation

The numerical precision and accuracy of the ana-
lytical formulation are assessed on a double MPP con-
nected to a receiving enclosure and both a source and
receiving enclosure.

In this study, we consider MPPs made of aluminum
plates with the following material properties: Young’s
modulus E = 7.2 × 1010 Pa, Poisson’s ratio v = 0.34,
density ρp = 2700 kg/m3, and the loss factor is assumed
to be η = 0.01. The sidewalls around the air gap cavity
and the enclosure are perfectly rigid. The properties of
air are ρ0 = 1.2 kg/m3 and c0 = 343 m/s, and the vis-
cosity is η0 = 17.9 × 10−6 kg/m ⋅ s. The flexible MPPs
have a dimension of 0.2 m× 0.2 m, and 1 mm thick.
The depth of the air gap (ha) and the receiving enclo-
sure (he) considered are 0.1 and 0.5 m, respectively. In
the case when the double MPPs structure is connected
to both a receiving and source enclosure, a point source
of strength Q0 = 10−4 m3/s placed at (0.15, 0.12, 0.4)
in the source enclosure. The dimensions of the source
enclosure are: Lx ×Ly × he2 = 0.2 m× 0.2 m× 0.6 m.

The clamped boundary conditions for both the flex-
ible MPPs are considered in the present solution tech-
nique. The MPP parameters are σ1 = σ2 = 0.1% and
d1 = d2 = 0.8 mm.

The primary factor influencing the accuracy of the
solution is the number of modes employed for decom-
posing both displacement and acoustic pressure. To
ensure the calculation accuracy, the number of modal
truncations (N) and (M) is checked for both the struc-
tural and acoustic domains based on the FE calcula-
tion results. Typically, precision can be enhanced by
increasing the number of modes until convergence is
obtained within the desired frequency range. For the
dimensions of the coupled system, when N1 = N2 = 7
and Mx =My =Mz = 4, a satisfactory level of accuracy
is obtained.

Figure 4 illustrates the sound transmission loss re-
sults of a double MPP structure under sound excita-
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Fig. 4. Comparison of calculated STLs using the present
approach and FEM results for double MPP coupled to a re-

ceiving enclosure.
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tion using the current approach and FEM simulation.
As depicted, the STL predictions obtained through
the present technique align closely with the results ob-
tained through FEM simulation, demonstrating good
agreement between the two methods.

Figure 5 illustrates the STL results of a double
MPP structure when connected to a receiving and
source enclosure was examined using the current ap-
proach alongside FEM simulations. As illustrated, the
STL derived from the current method employed in
this study agrees with the outcomes obtained through
the FEM simulation.
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Fig. 5. Comparison of calculated STLs using the present
approach and FEM results for double MPP coupled to

both the receiving and source enclosure.

4.2. Comparison with impedance tube

Comparisons are made between the predicted TL
when the finite partition is mounted on a rectangu-
lar impedance tube, and when it is coupled to acous-
tic enclosures. Particularly, we have selected the study
provided by Kim et al. (2020b), which examines the
propagation of two-dimensional plane waves over an
insulating partition of a finite size 0.26× 0.21 m con-
sisting of two flexible MPPs mounted on the rectan-
gular Kundt tube separated by an air gap of 0.03 m
with clamped supported boundaries. Simulations were
conducted using the same physical parameters as in
the selected study (Kim et al., 2020b): the MPPs are
made of aluminium with the following physical prop-
erties; Young’s modulus of 7.2× 1010 Pa, the density of
2700 kg/m3, Poisson’s ratio of 0.34, structural damp-
ing ratio of 0.01, 1 mm thickness, 0.8 mm diameter
holes, and a perforation ratio of 0.05%. The chosen di-
mensions for the MPPs are 0.26× 0.21 m. The dimen-
sion of the receiving acoustic enclosure is Lx×Ly×he =
0.26 m× 0.21 m× 0.4 m.

Figure 6 displays the findings for the TL when the
double MPPs are excited by a plane wave coupled
to a receiving enclosure, and when an emitting room
is connected to the coupled system. Comparing these
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Fig. 6. Computed STL for double MPP coupled to acous-
tic enclosures using the same physical parameters as in

(Kim et al., 2020b).

findings to those of the finite double MPP partition
put on an impedance tube reveals that the suggested
modal formulation can predict the TL’s general trend
with high accuracy over a broad range of frequencies.
Also, the STL is improved at plate-cavity-plate res-
onance in the coupled configuration similarly to the
impedance tube case. It can be observed that there
are visible and separated natural frequencies of the
receiving room. As a result, intense dips and fluctu-
ations marked the TL in addition to those presenting
the modal behavior of the structure. However, it can be
remarked that the STL is slightly degraded when cou-
pled to an acoustic enclosure. The acoustic resonances
present in the enclosure offer further information on
the modal effects on the sound transmission. The TL
drops turn negative (Fig. 6), while the TL remains pos-
itive in Kundt’s tube example. This paradoxical fea-
ture is due to the resonance of the coupled system.
To further study the effect of the source room on the
transmission properties of the structure, a secondary
enclosure is coupled to the multilayered MPPs as an
emitting room. The dimensions of the source enclosure
are Lx×Ly×he2 = 0.26 m× 0.21 m× 0.3 m with a source
strength Q0 = 10−4 m3/s placed at (0.15, 0.12, 0.2).
From Fig. 6, the predicted TL for the multi-layered
MPPs when it is connected to a source and receiving
an enclosure. It can be seen that the modal behavior of
the emitting room is still present at very low frequen-
cies presented by the dips and fluctuations on the STL
curve corresponding to the excited acoustic modes in
both the source and receiving enclosures.

4.3. Parametric analysis

Numerical modeling is used to investigate the im-
pact of various system parameters on the sound trans-
mission of the double MPPs structure. Numerical ana-
lysis is employed to assess various critical system pa-
rameters. These include factors such as the dimensions
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and impedance of the acoustic enclosure, the perfora-
tion ratio of the MPP, the thickness of the air gap,
and the incorporation of absorbent materials within
the gap. In the first case, the upper MPP is under
acoustic excitation and an acoustic point source of
strength Q0 = 10−4 m3/s is placed at (0.15, 0.12, 0.4)
in the source room in the second. In numerical simu-
lations, the dimensions of the coupled enclosures are
defined as follows: the dimension of the enclosure
is Lx×Ly ×he1 = 0.5 m× 0.35 m× 0.6 m, the dimension
of the source enclosure when coupled to the system
is Lx ×Ly ×he2 = 0.5 m× 0.35 m× 0.7 m, and the phys-
ical properties of the MPPs are kept the same as in
the previous section. The air gap depth (ha) is 70 mm
and the hole diameter is 0.3 mm.

4.3.1. Effect of acoustic enclosure dimensions on STL

To investigate the modal effects of both the receiv-
ing enclosure and emitting enclosure on STL, a set of
numerical simulations with varying he is conducted.
Figure 7 displays the impact of different receiving en-
closure depths on the sound transmission loss of the
double MPP structure when connected to an acoustic
enclosure under acoustic excitation.

0 200 400 600 800
Frequency [Hz]

20

10

0

10

20

30

40

50

60

S
TL

 [d
B

]

hₑ = 0.5 m
hₑ = 0.6 m
hₑ = 0.7 m

Fig. 7. Sound transmission loss of double MPP for different
dimensions of receiving acoustic enclosure, σ1 = σ2 = 0.1%.

Using the potential energy in the receiving cham-
ber for calculation, Fig. 7 illustrates the corresponding
transmission loss. The introduction of the receiving en-
closure has notably influenced the previous results, pri-
marily due to its modal properties playing a role. Be-
low the first mode controlled by the enclosure, energy
transmission is primarily influenced by structural res-
onances. The observable difference in the curves arises
because the modes of the coupled enclosure amplify
the mean square pressure within it for a given panel
excitation. Additionally, changes in the enclosure size
lead to modifications in the resonance frequencies, re-
sulting in shifts in the dips corresponding to excited
enclosure modes. It is worth noting that a decrease
in the cavity depth results in an increase in the asso-
ciated frequencies of the acoustical cavity, as seen in

Fig. 7. For instance, the dip generated by the acoustic
mode at 678 shifts to 592 Hz when the depth changes
from 0.5 to 0.6 m. In the second case when the dou-
ble MPPs is connected to a source room, the depth
of the emitting enclosure is varied (he2 = 0.6, 0.7,
and 0.8 m) while maintaining the receiving enclosure
depth constant and equal to 0.6 m. It can be seen from
Fig. 8 that additional dips and peaks are present. This
can be explained by the sensitivity of the diffuseness
of the acoustic field to many parameters such as the
source position and the room geometry. The presence
of receiving enclosure or a source and receiving enclo-
sure wield a significant influence on the STL of double
MPP structures. Hence, the transmission loss of dou-
ble MPPs connected to acoustic enclosures necessitates
thorough examination in each case.
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Fig. 8. Sound transmission loss of double MPP for different
dimensions of source acoustic enclosure, σ1 = σ2 = 0.1%.

4.3.2. Effect of acoustic enclosure impedance on STL

The coupled system transmits the acoustic exci-
tation into the enclosure. The enclosure’s boundary
conditions may affect the acoustic properties of the
enclosure and further influence the transmission of en-
ergy via the double MPP structure. Consequently, it is
crucial to examine the influence of wall impedance on
energy transmission. Figure 9 shows how the coupled
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Fig. 9. Effect of impedance on STL, σ1 = σ2 = 0.1%.
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system’s sound insulation properties change when the
impedance is modified. Note that impedance bound-
ary conditions are accounted for by modifying Eq. (2).
The impact of the impedance’s real component is in-
vestigated.

The influence of the real component of the impe-
dance on the STL is shown in Fig. 9. STLs are com-
puted with specified values of impedance Z0 = j × 108,
Z1 = ρ0c(200−2j), Z2 = ρ0c(20− j2), Z3 = ρ0c(2−2j).
These three numbers represent the corresponding sound
absorption coefficients: rigid, 0.04, 0.58, and 0.86. As
can be observed in Fig. 9, the STL improves when-
ever there is a general rise in the sound absorption co-
efficient. In cases with very low absorption coefficients,
the STL over the whole frequency spectrum that was
investigated, is practically the same as that of rigid
walls. More than 0.04 sound absorption, STL occurs
mostly at the resonance frequencies of the enclosure
but is largely unchanged at the initial resonant fre-
quencies of the system. This is because the real com-
ponent of the impedance increases sound transmission
capabilities by enabling the cavity to dissipate energy
more efficiently. At the resonant acoustic modes, it is
thus plausible to conclude that the actual component
of wall impedance has the greatest effect on sound
transmission.

4.3.3. Effect of perforation ratio of the MPPs on STL

To investigate the effect of the perforation ratio on
the multilayered MPPs for both cases (when the MPPs
are coupled to the receiving room and when the MPP
is coupled to both the receiving and emitting room),
the STLs are plotted for different perforation ratio val-
ues. The micro-perforation ratios of the two MPPs are
equal: σ1 = σ2 = 0.0, 0.05, 0.1, and 0.2%. As shown in
Figs. 10 and 11, as the micro-perforation ratios grow,
the STL deteriorates for both cases with a large gain
at resonances.
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Fig. 10. STL of double MPPs connected to a receiving en-
closure for various perforation ratios when σ1 = σ2.

Perforation ratios of the two MPPs are normally
varied in a typical arrangement to reduce reflections
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Fig. 11. STL of double MPPs connected to an emitting
and receiving enclosure for various perforation ratios when

σ1 = σ2.

and transmissions from internal noise sources such as
those produced by the engine and sent into the pas-
senger compartment or in adjacent rooms. Figure 12
illustrates the calculated STLs for various perforation
ratios in the first case.
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Fig. 12. STL of double MPPs connected to a receiving en-
closure for various perforation ratios when σ1 ≠ σ2.

Similar to the case of equal micro-perforation, the
STLs deteriorate when the plate is perforated, as
shown in Fig. 12. In addition, the STL is dependent on
the variation of perforation ratios of the two MPPs, as
illustrated in Fig. 12, for the case of (0.0, 0.2%) and(0.2, 0.0%). However, a large gain is obtained at reso-
nances with the arrangement (0.0, 0.2%).

Figure 13 displays the sound transmission loss
when the double MPPs is coupled to both the source
and receiving enclosures. Acoustic resonances in the
receiving chamber (dips) are attenuated when the per-
forations are located on the receiving side (0.0, 0.2%).
Similarly, acoustic resonances in the source enclosure
(peaks) are also damped when the perforations are po-
sitioned on the source side (0.2, 0.0%). For the ar-
rangement (0.2, 0.2%), the resonances of both the
receiving and source enclosure are damped. However,
the sound transmission loss is highly degraded.
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Fig. 13. STL of double MPPs connected to an emitting
and receiving enclosure for various perforation ratios when

σ1 ≠ σ2.

4.3.4. Effect of the gap thickness

To assess the influence of varying air gap depths on
STL, a series of numerical simulations were conducted.
Figures 14 and 15 illustrate how the STL of a double
MPP structure responds to different air gap depths
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Fig. 14. Influence of air gap on STL of double MPP parti-
tion, σ1 = σ2 = 0.1%.
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Fig. 15. Influence of air gap on STL of double MPP parti-
tion when coupled to both source and receiving enclosure,

σ1 = σ2 = 0.1%.

(0.02, 0.05, and 0.10 m) when subjected to acoustic ex-
citation and when it is coupled to both the source and
receiving room. As depicted in Figs. 14 and 15, as the
air gap thickness increases, the STL values increase.
This phenomenon is attributed to an increase of system
coupling resulting from the reduced air gap thickness.
As the air gap thickness rises, Figs. 14 and 15 demon-
strate that the transmission characteristics in the case
when coupled to a receiving chamber increase greater
than those of the second case. Thus, each case should
be carefully considered. In conclusion, the thickness
of the air gap significantly affects the sound insulation
capabilities of the structure. In the case, when the par-
tition is coupled to both the receiving and source en-
closure the dissipation properties are significant when
the air gap is increased.

4.3.5. Influence of porous material on sound
transmission loss

To enhance the sound transmission loss at reso-
nant frequencies, we introduce sound-absorbing ma-
terial with a specific flow resistivity into the space
between the MPPs. This absorbent material is rep-
resented as an equivalent fluid, and its material char-
acteristics are determined using the empirical model
developed by Delany and Bazley (1970). The as-
sociated weak form (Eq. (15)) may account for air-
borne propagation through low frame stiffness insu-
lating materials filling the cavity, by replacing c0 and
ρ0 with ca and ρa which are complex and frequency-
dependent. It is important to note that for a com-
prehensive description, poroelastic modeling should be
considered. However, as demonstrated by Beranek in
1947, when sound propagates through soundproofing
materials with relatively low frame stiffness, longitudi-
nal elastic vibrations attenuate significantly more than
acoustic compression waves.

Figure 16 presents a comparison of computational
results for a gap filled with fiberglass as opposed to air
for the case when the partition is coupled to both the
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Fig. 16. Computed STLs for gap filled with fiberglass and
gap filled with air.
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receiving and source enclosure. The findings reveal an
increase in transmission loss. Notably, significant gains
are observed at resonance points. The system’s res-
ponse is predominantly influenced by the damping in-
troduced by the absorbent material. This damping is
primarily attributed to acoustic dissipation resulting
from viscous drag forces and thermal interactions be-
tween the air and the material.

4.4. Sound transmission loss of triple MPPs

In Figs. 17 and 18, we have plotted the sound trans-
mission loss for different perforation ratios for the two
cases. The respective thicknesses and hole diameters of
the three MPPs are consistent at h1 = h2 = h3 = 1 mm
and d1 = d2 = d3 = 0.3 mm, with cavity depths equal to
ha1 = ha2 = 40 mm. The dimensions of the enclosures
remain unchanged.
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Fig. 17. STL of triple MPPs for various perforation ratios
of the MPP when coupled to the receiving enclosure.
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Fig. 18. STL of triple MPPs for various perforation ratios
of the MPP when coupled to both receiving and source

enclosure.

As observed with double MPPs, the modal effect
of the acoustic enclosure is present and the STL val-
ues tend to decrease as the micro-perforation ratio in-
creases, except at the resonant frequencies of the cou-
pled system where large gain is obtained.

5. Conclusion

This study presents the results of a vibro-acoustic
investigation of a double MPP structure coupled to re-
ceiving enclosure or both the source and receiving en-
closure. The transmission loss of this structure was pre-
dicted using an analytical methodology. Using a mod-
ified variational model, the equations governing the
coupled system were derived. The acoustic pressure
within the enclosures is described by the 3D-enhanced
Fourier series. Furthermore, the validity and precision
of this model were confirmed through FE computa-
tions, resulting in a substantial level of agreement.
Then a parametric analysis was carried out aimed at
discerning the influence of enclosure size, air gap thick-
ness, acoustic enclosure impedance, perforation ratio of
the MPPs, and insertion of absorbent material in the
gap on the sound transmission of double MPPs in
the coupled configurations.

The results summarized here are the most signifi-
cant. It has been shown that the presence of an acous-
tic enclosure on the receiving side or both sides may
have a significant effect on the sound transmission
loss of double MPP structures, resulting in additional
dips and peaks associated with the excited acoustic
modes of both the source and receiving enclosure. In
addition, the real component of the wall impedance
dissipates the energy of the enclosure to affect the
sound transmission over the double MPP structure,
and thus primarily influences the sound transmission
at the natural frequencies of the enclosure. As ex-
pected, the STLs deteriorate with the increase of the
micro-perforation ratio of the plate with a gain at res-
onances. In the case where the double MPP is cou-
pled to both the receiving and emitting enclosure, the
sound transmission loss is damped at acoustic res-
onances in the two enclosures. Furthermore, it was
found that as the thickness of the air gap increases, the
Sound Transmission Loss values also increase pointing
out that there is difference in the increase in STL be-
tween the two situations. Additionally, the insertion
of absorbent material into the gap, in the case where
the partition is coupled to both an emitting enclo-
sure and receiving enclosure, leads to an increase in
transmission loss, especially at resonance points. In the
case of triple MPPs, we observe consistent behavior.
Furthermore, when excited by a plane wave and con-
nected to an acoustic enclosure, the plate-MPP-MPP
structure demonstrated optimal performance. On the
other hand, the MPP-plate-MPP configuration exhib-
ited good performance when connected to both receiv-
ing and source enclosures.

The introduction of an acoustic enclosure on the re-
ceiving side or both sides can have a substantial effect
on the sound transmission loss of double MPP struc-
tures. Hence, the transmission loss of double MPPs
connected to acoustic enclosures necessitates thor-
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ough examination in each case. Compared to earlier
methods, this approach offers greater ease in defining
various structural and acoustic boundary conditions.
Moreover, the suggested method allows the direct ap-
plication to more complex geometric models that only
require coordinate transformation to transform irreg-
ular shapes into rectangles.
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1. Introduction

Rail track failures create a significant problem en-
forcing the railroad administration to permanent con-
trol of the integrity of exploited infrastructure. Both
International Union of Railways [UIC] as well as Fed-
eral Railroad Administration in USA issue the legisla-
tive rules for regulating the safety of the subject rail-
road system (UIC, 2022; Federal Railroad Administra-
tion, 2015). A detailed codes of appropriate procedures
of rail track testing can be found in European Union
Standards (EN 16729-3, 2018; EN 17397-1, 2021). A re-
markable challenge related to the testing procedure is
the total length of the railway network, which is by
UIC estimated at 260 000 kilometers.

Railway rails are exposed to high mechanical loads
and challenging environmental conditions such as
rolling contact fatigue, thermal stresses and corrosive
environment. Due to such operational conditions dif-
ferent types of defects can develop in the rail head,

web, and foot (Bray, 2000). The rolling contact de-
fects, like wear, stripping, crushing, and fatigue cracks
are distributed mainly on the surface and in the up-
per part of the rail head. Many of these defects can
steadily grow and finally cause rail breakage, leading to
derailments or more catastrophic events. Such extreme
consequences can be avoided, provided that proper in-
spection procedures are performed and all unaccept-
able defects are detected before they cause the catas-
trophic failure.

A variety of equipment is applied for ultrasonic in-
spection (Papaelias et al., 2008). The simplest solu-
tion is a push-trolley. In this case the operator is mov-
ing across the track with his instrumentation at a walk-
ing pace, simultaneously interpreting the test data on
a flaw detector. When a suspect defect is identified, the
operator stops and manually verifies the defect type
and location. The most efficient solution used for ul-
trasonic rail inspection is the use of specialized wag-
ons or entire inspection trains, as it was described in
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(Heckel et al., 2018). The detailed investigation has
revealed that the efficient operation of the SPZ1 train
is possible below 80 km/h and the practical inspection
speed is highly influenced by the local quality of the
track. The further progress in ultrasonic testing of rail-
way rails depends heavily on computer modeling and
simulations of all aspects of the ultrasonic inspections
process (Heckel et al., 2019). One of these aspects is
quality and stability of acoustic coupling between the
testing probe, and the rail surface. No extensive re-
search on this specific subject has been carried to date.
One of the few published works (Zulian, 2022) ex-
plores the effect of the coupling media type and surface
roughness on contact transfer losses. Unfortunately, in
the case of automatic railway rail inspection, the only
possible coupling agent is water, and the main reason
for the fluctuation of transfer losses is the instability
of the water layer thickness rather than roughness of
the rail surface.

The inspection probes are mounted in specially de-
signed probe holders enabling the fixed position of the
probes over the tested rail. The holders are equipped
with water bleeders, that provide acoustic coupling be-
tween the ultrasonic probes and the rail surface.

The quality of the acoustic coupling between the
probe and the tested rail is one of the key issues, re-
lated to the high speed ultrasonic inspection of rail-
way tracks. Under real test conditions – the gap be-
tween the rail surface and testing probes may vary
due to waviness and dents on the rail surface. To en-
sure the continuous transmission of ultrasonic waves
to the rail body, the gap must be constantly filled with
water without any air bubbles or cavitation. To fulfill
this critical condition, the water coupling system for
high speed scanning must be designed in much greater
detail than for ordinary ultrasonic inspections, where
the water gap is usually undefined and uncontrolled.
An example of such an ordinary probe holder, used in
moderate speed inspection wagons (i.e., 30–40 km/h)
is presented in Fig. 1. In such a solution – both the
lower surface of the probe holder and the surfaces of
ultrasonic probe wedges are pressed directly to the wet-
ted rail surface, without any distance. It means that
the water supplied by the dispensers located at the be-

3

Fig. 1. General view of ultrasonic probe holder used for
inspection in Polish Railways: 1 – signal cable; 2 – water

coupling bleeder connector; 3 – positioning bracket.

ginning of the probe holder, can be wiped off the rail
surface before it fills the gap between the active surface
of the probe and the rail. Such a method has turned
out to be impractical in the case of high speed rail
inspection systems. In that case, other solution prefer
train probe holders equipped with some abrasion resis-
tive slides – to set the gap between the probe surface
and rail surface to 0.2 mm (Heckelet al., 2009). Such
an arrangement ensures better water coupling and en-
hances the probe lifespan.

The objective of the presented paper is to analyze
in detail the influence of the probe – rail gap filled with
water on the transfer loses of ultrasonic energy emitted
and received by ultrasonic transducers. The practical
purpose of these research is to establish optimal thick-
ness of the water coupling layers for ultrasonic probes
of different types (angle probes, normal probes), op-
erating at different frequencies and refraction angles.
It is expected that the optimal gap thickness heavily
depends on ultrasonic waves frequency as well, as on
the angle of incidence on wedge – rail contact. The
analysis should consider not only the absolute mini-
mization of the transfer losses but, also the minimiza-
tion of ultrasonic signal fluctuation, due to inevitable
variability of the water gap thickness under practical
conditions. Minimization of signal fluctuations due to
coupling variations is particularly important to main-
tain the constant sensitivity of ultrasonic inspection
along the whole rail length.

In order to achieve the intended goals, the new
theoretical model for calculation of transmission losses
through the coupling layer was developed. The model
is more general and comprehensive than simplified tra-
ditional solutions, used up to now in ultrasonic non-
destructive testing and described in (Krautkrämer,
Krautkrämer, 1990; Obraz, 1983). The first novelty
is going beyond the case of perpendicular incidence
of the wave on the coupling layer. Due to this, the
model is applicable not only to normal beam longitu-
dinal wave probes, but also to angle beam shear wave
probes, which are commonly used in non-destructive
testing. The second novelty is going beyond the case
of monochromatic wave, and taking into consideration
the wideband nature of modern ultrasonic probes.

The developed model was implemented in the com-
puter program and used for example calculations,
showing its compatibility with existed analytical for-
mulas for normal incidence on the coupling layer.
A very good agreement was also achieved with ex-
perimental results obtained for the typical ultrasonic
probes used in non-destructive testing of railway rails.

2. Theoretical model

2.1. General considerations

In this section the general theoretical model of
transmission of ultrasonic plane wave through the uni-
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form liquid layer is developed. It is more general,
than widely known formulas presented in ultrasonic
textbooks (Krautkrämer, Krautkrämer, 1990),
which consider only the normal incidence of ultra-
sonic wave on the contact layer. It assumes the lon-
gitudinal wave incidence at an arbitrary angle, as it
actually takes place in angle beam ultrasonic probes.
The theoretical treatment follows the one used by
Folds and Loggins (1977) in their paper on trans-
mission and reflection of ultrasonic waves in layered
media. Compared to the mentioned theoretical work
there is one important change. Folds and Loggins con-
sidered transmission of plane wave from one semi-
infinite liquid media to another semi-infinite liquid me-
dia, through a system of plane-parallel solid layers. In
this work, transmission of the longitudinal (L-type)
wave from one semi-infinite solid media to another
semi-infinite solid media through a plane parallel liquid
layer, is considered. Due to this change it is possible
to model, not only direct transmission of longitudinal
wave, but also the transmission with transformation
from a longitudinal to a transversal wave – as it ac-
tually takes place in shear wave angle beam probes,
widely used in ultrasonic testing of railway rails.

The transmission of ultrasonic waves through the
system of plane-parallel layers was extensively inves-
tigated, in the context of underwater sound appli-
cations for optimization of sonar domes, underwa-
ter transducer windows and reflectors. One of the
first theoretical works which considered the trans-
mission of ultrasonic plane wave through the system
of plane-parallel layers at oblique incidence was by
Brekhovskikh (1980). As there were some restric-
tions concerning the validity of equations presented in
that paper, the other authors (Barnard et al., 1975;
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Fig. 2. General scheme of a coupling layer problem.

Folds, Loggins, 1977) improved the solution to be
valid for a system of solid layers with arbitrary param-
eters. However, in all these treatments, it was assumed
that both the initial and final medium is liquid – as it
was natural for underwater applications.

In the case of ultrasonic angle beam probes, used
for nondestructive testing, the ultrasonic wave is trans-
mitted from a solid wedge made of PMMA or Rexo-
lite to a solid rail material (steel), through the liquid
coupling layer (water). Therefore, the considered prob-
lem is somewhat different from the mentioned hydro-
acoustic problems. The general scheme of a wave prop-
agation in a coupling layer problem is shown in Fig. 2.

In the probe wedge (medium 3) there is one inci-
dent longitudinal (L-type), a wave with an arbitrary
incidence angle θ3 and two reflected waves, L-type
and transversal (T -type), with reflection angles, re-
spectively – θ3 and θ′3, given by the Snell law. In
the coupling layer (medium 2) there is only one re-
fracted L-type wave and one reflected L-type wave,
both with angles θ2 to the normal. In the tested ma-
terial (medium 1), there is generally one refracted
L-type wave and one refracted T -type wave, with re-
fraction angles, respectively, θ1 and θ′1. But, if the
incidence angle θ3 is between the first and second
critical angle there is only one, T -type wave – which
propagates in medium 1. This is actually the case en-
countered in angle beam shear wave probes, used in
nondestructive testing. However, it should be noted
that instead of a sinusoidal L-type wave propagating
in the tested material, there exists so called evanescent
L-type wave, exponentially decaying from the material
surface as in the work (Schmerr Jr., 2016). It must
be included in the theoretical model, despite the fact
that it has no practical significance.
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The all three media are assumed to be perfectly
elastic and isotropic with Lame moduli: λi , µi, mass
density ρi, and ultrasonic velocities of longitudinal
waves Cli =

√(λi + 2µi)/ρi, and transversal waves

Cti =
√
µi/ρi, respectively. Index i denotes the num-

ber of medium (1, 2 or 3), as indicated in Fig. 2. For
harmonic waves the time dependence for all consid-
ered waves is given by a factor exp (iωt), which is ne-
glected in further considerations.

The problem is solved using potential functions for
the particle velocity ϕi – for longitudinal waves and ψi

– for transversal waves. The Cartesian coordinate z is
normal to the coupling layer, the coordinate x lies in
the plane of incidence, and the coordinate y is normal
to the plane of incidence. For the geometrical configu-
ration shown in Fig. 2 the explicit forms of potential
functions in media 1, 2, and 3 are:

– in medium 1:
ϕ1 = B1e

−i(∝1z−σx),

ψ1 =D1e
−i(β1z−σx);

(1)

– in medium 2:

ϕ2 = B2e
−i(∝2z−σx) +A2e

i(∝2z−σx),

ψ2 = 0;
(2)

– in medium 3:

ϕ3 = B3e
−i(∝3z−σx) +A3e

i(∝3z−σx),

ψ3 = C3e
i(β3z+σx),

(3)

where αi are the z-coordinates of wave vectors of the
longitudinal wave, βi are the z-coordinates of the wave
vectors of the transversal waves, Ai are the amplitudes
of potential functions for L-type waves traveling in the
positive z-direction, Bi are the amplitudes of poten-
tial functions for L-type waves traveling in the neg-
ative z-direction, Ci are the amplitudes of potential
functions for T -type waves traveling in the positive
z-direction, and Di are the amplitudes of potential
functions for T -type waves traveling in the negative
z-direction.

The σ symbol indicates the x-coordinate of all the
wave vectors. They have to be equal to meet the con-
tinuity conditions at the interfaces. Actually, this is
a condition equivalent to the Snell law, and can be
expressed as:

σ = kl1 sin θ1 = kt1 sin θ
′

1 = kl2 sin θ2

= kl3 sin θ3 = kt3 sin θ
′

3, (4)

where kli =
ω
Cli

is the wave number of longitudinal wave
in the i-th medium and kti =

ω
Cti

is the wave number
of transversal wave in the i-th medium.

Consequently, the z-coordinates of the wave vectors
in the three media are given by the formulas:

– in medium 1:

α1 =

√
k2l1 − σ2, β1 =

√
k2t1 − σ2; (5)

– in medium 2:

α2 =

√
k2l2 − σ2; (6)

– in medium 3:

α3 =

√
k2l3 − σ2, β3 =

√
k2t3 − σ2. (7)

It should be noted that z-coordinate of wave vec-
tor of longitudinal wave in medium 1 (tested material)
can be a real value – for incidence angles below the
1st critical angle or an imaginary value – for incidence
angles above the 1st critical angle. The z-coordinates
of all other wave vectors are real, as we consider only
practical cases, where the incidence angle is below the
2nd critical angle.

The particle velocities and stresses of all considered
waves can be determined from potential functions by
the following formula. For simplicity we neglect the
media indexes i, since the form of these formulas is
the same for all media:

vx(z) = ∂ϕ

∂x
− ∂ψ
∂z

, (8)

vz(z) = ∂ϕ

∂z
+ ∂ψ
∂x

, (9)

Tzz(z) = i

ω
(λ∂vx

∂x
+ λ∂vz

∂z
+ 2µ∂vz

∂z
), (10)

Txz(z) = i

ω
(µ∂vx

∂z
+ µ∂vz

∂z
). (11)

Substituting into these formulas potential functions
given by Eqs. (1), (2), (3) and doing some ordering, the
particle velocities and stresses in each medium can be
expressed as the linear combinations of the amplitudes
of relevant potential functions.

In medium 1:

v1x(z) = iσe−iα1zeiσxB1 + iβ1e−iβ1zeiσxD1, (12)

v(1)z (z) = −iα1e
−iα1zeiσxB1 + iσe−iβ1zeiσxD1, (13)

T (1)zz (z) = −ie1e−iα1zeiσxB1 + ig1β1e−iβ1zeiσxD1, (14)

T (1)xz (z) = ig1α1e
−iα1zeiσxB1 + ie1e−iβ1zeiσxD1, (15)

where e1 = (λ1k2l1 + 2µ1α
2
1
) /ω and g1 = 2µ1σ/ω.

In medium 2:

v(2)x (z) = iσeiα2zeiσxA2 + iσe−iα2zeiσxB2, (16)

v(2)z (z) = iα2e
iα2zeiσxA2 − iα2e

−iα2zeiσxB2, (17)

T (2)zz (z) = −ie2eiα2zeiσxA2 − ie2e−iα2zeiσxB2, (18)
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T (2)xz (z) = 0, (19)

where e2 = λ2k
2

l2/ω and T
(1)
xz (z) = 0 because medium 2

is a liquid and does not transfer shear stresses.

In medium 3:

v(3)x (z) = iσeiα3zeiσxA3 + iσe−iα3zeiσxB3

− iβ3eiβ3zeiσxC3, (20)

v(3)z (z) = iα3e
iα3zeiσxA3 − iα3e

−iα3zeiσxB3

+ iσeiβ3zeiσxC3, (21)

T (3)zz (z) = −ie3eiα3zeiσxA3 − ie3e−iα3zeiσxB3

− ig3β3eiβ3zeiσxC3, (22)

T (3)xz (z) = −ig3α3e
iα3zeiσxA3 + ig3α3e

−iα3zeiσxB3

+ ie3eiβ3zeiσxC3, (23)

where e3 = (λ3k2l3 + 2µ3α
2
3
) /ω and g3 =

2µ3σ

ω
.

Now, we consider the boundary conditions for par-
ticle velocities and stresses at the borders z = 0 and
z = d. Both borders are between solid and liquid
medium and we neglect viscosity of the liquid medium
– in our case water. It follows that there is no conti-
nuity of tangential displacements and particle veloci-
ties at the borders. Consequently the boundary condi-
tions are:

– at the border z = 0:
continuity of normal particle velocities

v(1)z (0) = v(2)z (0), (24)

continuity of normal stresses

T (1)zz (0) = T (2)zz (0), (25)

zeroing of tangential stresses in the solid media

T (1)xz (0) = 0; (26)

– at the border z = d:
continuity of normal particle velocities

v(3)z (d) = v(2)z (d), (27)

continuity of normal stresses

T (3)zz (d) = T (2)zz (d), (28)

zeroing of tangential stresses in the solid media

T (3)xz (d) = 0. (29)

Substituting Eqs. (12)–(23) to the above boundary
conditions there are obtained six complex equations,
for six unknown amplitudes of potential functions: A3,
C3, A2, B2, B1,D1. The amplitude B3 is the amplitude

of incident longitudinal wave, so it is a known value
which can be set to 1.

The obtained set of six linear equations can be con-
veniently expressed in a matrix form to facilitate fur-
ther numerical processing:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α3e
iα3d σeiβ3d −α2e

iα2d α2e
−iα2d 0 0−e3eiα3d −g3β3eiβ3d e2e

iα2d e2e
−iα2d 0 0−g3α3e

iα3d e3e
iβ3d 0 0 0 0

0 0 α2 −α2 α1 −σ
0 0 −e2 −e2 e1 −g1β1
0 0 0 0 g1α1 e1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A3

C3

A2

B2

B1

D1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α3e
−iα3d

e3e
−iα3d

−g3α3e
−iα3d

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (30)

or

[M] [X] = [Y ] . (31)

By inverting this matrix equation, all unknown A3,
C3, A2, B2, B1, D1 amplitudes of potential functions
in media 1, 2 and 3 are obtained:

[X] = [M]−1 [Y ] , (32)

or ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A3

C3

A2

B2

B1

D1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [M]−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α3e
−iα3d

e3e
−iα3d

−g3α3e
−iα3d

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (33)

In this work the main subject of interest is the
transmission coefficient of the ultrasonic wave from
medium 3 (probe wedge) to medium 1 (tested mate-
rial). For the standard angle beam shear wave probes,
i.e., for cases when the incident angle is between the 1st
and the 2nd critical angle, this coefficient is given by:

TL−T
3−1 =

D1

B3

=
D1

1
=D1. (34)

For angle beam longitudinal wave probes, i.e., for cases
where the incident angle is below the 1-st critical angle,
this coefficient is given by:

TL−L
3−1 =

B1

B3

=
B1

1
= B1. (35)

In non-destructive testing procedures, the ultrasonic
pulse passes through the coupling layer twice, first
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when it is introduced to the tested material, and sec-
ond – on its way back, after reflection from the defect.
So, from practical point of view, the most interesting
is the double transmission coefficient, i.e., the product
of transmission coefficients from medium 3 to 1 and
from medium 1 to 3.

For shear wave probes it is given by:

TL−T−L
3−1−3 = T

L−T
3−1 ⋅ TT−L

1−3 . (36)

For longitudinal wave probes it is given by:

TL−L−L
3−1−3 = T

L−L
3−1 ⋅ TL−L

1−3 . (37)

The inverse transmission coefficients TT−L
1−3 and

TL−L
1−3 could be determined from properly redefined

models similar to the one given in Fig. 2. However,
most easily they can be calculated from the direct
transmission coefficients using the so-called Stokes’ re-
lations (Schmerr Jr., 2016). Applying these relations
we obtain, respectively:

TT−L
1−3 = T

L−T
3−1 ⋅ Ct1ρ1 cos θ

′

1

Cl3ρ3 cos θ3
(38)

and

TL−L
1−3 = T

L−L
3−1 ⋅ Cl1ρ1 cos θ1Cl3ρ3 cos θ3

. (39)

Finally, substituting (38) and (39) to (36) and (37),
the sought formulas for double transmission coeffi-
cients, for both types of ultrasonic probes used in non-
destructive testing are obtained. The formulas take
into account the liquid coupling layer of thickness d,
between the probe wedge and tested material:

TL−T−L
3−1−3 = (TL−T

3−1
)2 ⋅ Ct1ρ1 cos θ′1

Cl3ρ3 cos θ3

= D2

1

Ct1ρ1 cos θ
′

1

Cl3ρ3 cos θ3
(40)

and

TL−L−L
3−1−3 = (TL−L

3−1
)2 ⋅ Cl1ρ1 cos θ1

Cl3ρ3 cos θ3

= B2

1

Cl1ρ1 cos θ1

Cl3ρ3 cos θ3
. (41)

The aforementioned formulas, for double transmis-
sion coefficients, are derived for harmonic plane waves
with a strictly defined frequency. In practice, the ul-
trasonic pulses generated by ultrasonic probes have
a specified frequency spectrum, characterized by the
so-called relative bandwidth parameter defined as:

WB =
fu − fl
f0

⋅ 100%, (42)

where fu – upper frequency of the −6 dB frequency
spectrum, fl – lower frequency of the −6 dB frequen-
cy spectrum, f0 =

fu−fl
2

– center frequency of the −6 dB
frequency spectrum.

It means that the actual drop of amplitude of an
ultrasonic pulse, traveling through the coupling layer
from the probe to the tested material and vice versa,
is a certain average of the double transmission coeffi-
cients for all frequencies represented in the pulse spec-
trum. To include this effect in the discussed model,
a certain frequency spectrum is assumed for ultrasonic
pulse incident on the boundary between the probe
wedge and the coupling layer. Such an initial spec-
trum distribution can be reasonably approximated by
the Gaussian function, given by:

Gi(f) = exp(− (f − f0)
2

2σ2
), (43)

where f0 is the center frequency of the ultrasonic
probe. The parameter σ = WB/235 is defined so that
the modeled spectrum has a bandwidth equal to the ac-
tual bandwidth parameter WB of the ultrasonic probe.
The WB parameter is usually presented in the probe
certificate or can be measured according to EN ISO
22232-2 (2020).

The signal waveform of the initial pulse in the time
domain is given by the inverse Fourier transform of its
spectrum:

hi(t) =
∞

∫
−∞

Gi(f)ei2πft df. (44)

After the double passage of the ultrasonic pulse
through the coupling layer its spectrum is modified
by the double transmission coefficient in the following
way:

Gt(f) = Gi(f) ⋅ TL−T−L
3−1−3 (f) (45)1

for the shear wave probes, and

Gt(f) = Gi(f) ⋅ TL−L−L
3−1−3 (f) (45)2

for the longitudinal wave probes.
Knowing the spectrum of the double transmitted

ultrasonic pulse, its signal waveform may be calculated
using the inverse Fourier transform:

ht(t) =
∞

∫
−∞

Gt(f)ei2πft df. (46)

Then, the double transmission coefficient for the ul-
trasonic pulse in a time domain may be calculated ac-
cording to the formula:

T
L−T (L)−L
3−1−3

(f0,WB) = max{∣ht(t)∣}
max{∣hi(t)∣} . (47)

The designation TT (L) denotes here that the formula
is valid for TL−T−L, and for TL−L−L configurations.
The above definition of the double transmission coef-
ficient in the time domain, corresponds to the experi-
mental measurements of this value, where one com-
pares the maximum amplitudes of the ultrasonic pulse
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before and after double passage through the coupling
layer. The arguments f0 and WB, specified to the dou-
ble transmission coefficient in the time domain, indi-
cate that its value depends not only on the central
frequency of the ultrasonic probe (as it is the case
in the monochromatic model), but also on the probe
bandwidth defined by its WB parameter.

2.2. Model implementation and validation

The described theoretical model was implemented
in the prepared computer program TransmissionLoss 1.x
of which the main purpose was to facilitate the de-
sign of ultrasonic probes for the new, high speed in-
spection wagon for the Polish Railways. In contrast to
the known analytical solutions, the program allowed
for calculation of double transmission coefficients and
related transfer losses. It was possible not only for nor-
mal beam longitudinal wave probes, but also for angle
beam shear wave probes and angle beam longitudinal
wave probes, which are used in ultrasonic testing of
railway rails. Moreover, the program took into account
the finite bandwidth of modern ultrasonic probes, what
considerably changes the dependence of transfer losses
on the coupling layer thickness.

To use effectively the formulas quoted in Sec. 2
in the computer program they have to be discretized.
In particular, the continuous initial pulse spectrum de-
fined by Eq. (43) was replaced by a discretized spec-
trum given by dependency:

Gi (n∆f) = exp⎛⎝
− (n−32

32
)2

2σ2

⎞⎠, (48)

where ∆f = f0/32 was specified as a step in the fre-
quency domain and integer n was changing from 1
to 63, to embrace frequency spectrum from 1

32
f0 to

near 2f0. The bandwidth of majority of ultrasonic
probes, used in non-destructive testing, lies between
30% and 80% of f0, so their −6 dB spectrum is within
the range from 0.6f0 to 1.4f0. It means that the as-
sumed discretization range is sufficient for that appli-
cation.

After calculation of the discretized initial spec-
trum, the program numerically inversed the ma-
trix Eq. (30) for every discreet frequency n∆f –
within the probe spectrum – and calculates com-
plex amplitudes D1 (n∆f) and B1 (n∆f). Based on
these amplitudes, the double transmission coefficients
TL−T−L
3−1−3 (n∆f) and TL−L−L

3−1−3 (n∆f) were calculated
from Eqs. (40) and (41), for every discreet frequency
in the probe spectrum.

Then the discreet inverse Fourier transforms were
calculated for the initial pulse spectrum Gi (n∆f)
and for the pulse spectrum after double trans-
mission through the coupling layer Gt (n∆f) =
TL−T−L
3−1−3 (n∆f)Gi (n∆f) using the FFT algorithm for

N = 1024 point. As a result, discreet time waveforms
for initial pulse hi (k∆t) and after transmission pulse
ht (k∆t) were obtained, where ∆t is the time step in
the time domain, and k is integer from 0 to N . The
time domain step ∆t is related to the ∆f step and
the number of points in the FFT transform by relation:

∆t =
1

N ⋅∆f =
1

1024 ⋅∆f . (49)

For example, for a typical ultrasonic probe with cen-
tral frequency f0 = 2 MHz and time period T0 = 0.5 µs
the frequency domain step ∆f = f0/32 = 0.0625 MHz,
and the time domain step ∆t = 0.015625, µs = 1/32T0.
It means that the discretization of waveform functions
hi(t) and ht(t) can produce quantization error not
greater than 0.5%, when estimating maxima of these
functions from its discreet representations in Eq. (47).
In non-destructive testing 0.5% error in evaluation of
the ultrasonic signal amplitude is negligible – so the
implemented calculation algorithm is sufficient for the
intended application. On the other hand, it is fast
enough to be executed on a typical personal computer.

In ultrasonic testing practice signal amplitudes re-
lations were commonly expressed using a logarithmic
scale, so the signal amplitude drop, caused by its
double transmission through the coupling layer, can
be conveniently expressed in decibels by the transfer
losses (TL) defined as:

TL = −20 log10 (TL−T (L)−L
3−1−3

). (50)

The TL defined in Eq. (50) include the signal ampli-
tude drops caused not only by the presence of the cou-
pling layer, but also by the impedance mismatch be-
tween the material of ultrasonic probe wedge and the
material tested. In many practical applications, such
as ultrasonic testing of railway rails, the impedance
mismatch is the same throughout the entire inspection
process, and the only changing factor is the thickness
of the coupling layer between the probe and the tested
material. To focus attention on this dependency a more
suitable parameter called coupling losses CL can be de-
fined:

CL(d) = TL(d) −TL(0), (51)

where d is the thickness of the coupling layer and TL(0)
are the transfer losses, calculated for the thickness d
set to 0.

Due to such a definition, the coupling losses were
zero for the best case scenario (the zero coupling layer)
and allow for analyzing changes in the transfer losses,
due to fluctuations of the coupling layer thickness. This
is an important aspect of every mechanized ultrasonic
inspection, as the changes in the transfer losses – due
to fluctuations of the coupling layer thickness – cause
uncontrolled changes in testing sensitivity during ul-
trasonic scanning. Knowing the characteristic of sen-
sitivity changes as a function of coupling layer thick-
ness, some scanning gain corrections can be applied to
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compensate for the predicted sensitivity drops. This
way, the coupling layer thickness fluctuations during
actual examination can only increase testing sensiti-
vity, which is a more secure situation than uncontrolled
sensitivity drops.

The developed model was checked against the
known analytic solution for monochromatic longitudi-
nal plane wave incident on the coupling layer at an in-
cident angle θ3 = 0

○ (see Fig. 2). The analytic formula
for the transmission coefficient through the layer was
taken from work (Obraz, 1983) and rewritten using
the notations defined in this work:

TL−L
3−1 = 2 [(1 + ρ3Cl3

ρ1Cl1
)2 (cos 2π df

Cl2
)2

+ (ρ2Cl2
ρ1Cl1

+ ρ3Cl3
ρ2Cl2

)2 (sin 2π df

Cl2
)2]

−
1

2

. (52)

The reverse transmission coefficient TL−L
1−3 can be cal-

culated from Eq. (52) by interchanging indexes 1
and 3. Then the double transmission coefficient from
medium 3 to 1 and back can be calculated as TL−L

3−1 ⋅
TL−L

1−3 in the same way as in Eq. (37) of the model
developed in this work.

The example calculations executed using the above
analytic formula and our more general numerical
model, in which we assumed the monochromatic wave
and incident angle θ3 = 0

○, were shown in Table 1. The
calculations were performed for typical conditions en-
countered in a railway rail inspection – i.e., for 2 MHz
L-type probe with the PMM wedge and assuming wa-
ter coupling layer changes from 0.0 to 0.5 mm.

Table 1. Comparison of coefficient TL−L−L
3−1−3 , calculated for

2 MHz longitudinal monochromatic wave and incident an-
gle θ3 = 0

○, applying the proposed model (Eq. (41)) and by
the analytic Eq. (52).

d [mm]
TL−L−L
3−1−3

model analytic formula

0.00 0.242355 0.242355

0.05 0.156465 0.156465

0.10 0.085844 0.085844

0.15 0.061231 0.061231

0.20 0.057934 0.057934

0.25 0.072430 0.072430

0.30 0.120302 0.120302

0.35 0.221854 0.221854

0.40 0.201053 0.201053

0.45 0.106440 0.106440

0.50 0.067703 0.067703

The aforementioned calculations were performed
using double precision arithmetic. As can be seen from
Table 1, the results of the presented numerical model
and the known analytic solution match up to six deci-
mal places. It could be expected, as both approaches

assume the same problem geometry and boundary con-
ditions. It is a prove however, that the rather compli-
cated model implementation, based on the numerical
solution of a complex 6× 6 equation set, does not con-
tain any errors in the program algorithms.

3. Experimental verification of modeling results

The preliminary experimental verification of the
developed model was performed using the commercial
ultrasonic probe Panametrics A106 integrated with
a delay line (probe wedge) made of PMMA. The
probe was of the longitudinal wave and of the straight
(θ3 = 0

○) beam type, with the nominal frequency
2.25 MHz and the transducer diameter of 12.5 mm.
The spectral characteristic of the probe with the
PMMA delay line was determined using the laboratory
system comprising Panametrics Epoch 650 Pulser/Re-
ceiver/Digitizer, Calibration Block No 1 (according to
ISO 2400), and proprietary software implementing the
Fourier transform using the FFT algorithm.

The details of the experimental setup are presented
in Fig. 4. The central frequency f0 and −6 dB band-
width BW were determined according to EN 12668-
2:2010 applying the measured transmitting-receiving
spectral characteristic. The lower band frequency was
fl = 1.17 MHz, and the upper fu = 2.58 MHz. Applying
the abovementioned data, the central frequency and
relative bandwidth of the probe coupled with the de-
lay line, were calculated using the following standard
formulas:

f0 =
(fl + fu)

2
=
1.17 + 2.58

2
= 1.88 MHz, (53)

BW =
2(fu − fl)(fu + fl) 100% =

1.41

1.88
100 = 75%. (54)

The parameters BW and f0 were introduced to the
presented model, that takes into account the band-
width of the probe. It was performed applying Eq. (43)
to calculate CL introduced by a thin water layer placed
between the delay line of the probe and the steel
block representing the tested material. The conceptual
scheme of this experimental setup is shown in Fig. 3.

According to this diagram, the piezoelectric trans-
ducer of the ultrasonic probe transmits to the PMMA
delay line a short pulse of longitudinal wave, which
travels to the coupling layer of a thickness d on the bor-
der between the delay line and the steel block. Part of
the ultrasonic energy reflects on the border layer, cre-
ating on the screen of the ultrasonic receiver the first
ultrasonic echo (so called interface echo with ampli-
tude A0), which is normally of no importance for ultra-
sonic testing. The other part of the ultrasonic energy
passes through the coupling layer to the steel block
and reflects from its bottom giving a so-called back
wall echo of amplitude A1. The amplitude of this echo
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A0

A1

Fig. 3. Scheme of the experimental setup used for verification of theoretical models for calculation of CL, introduced
by water coupling layer between PMMA delay line and the steel block (look for a description in the text).

depends on the double transmission coefficient through
the coupling layer, but also on all other factors affect-
ing the pulse on the way from the sending transducer
to the bottom surface of the steel block, and after re-
flection on the way back to the receiving transducer:

A1 = A0Sa3Sd3Sa1Sd1R1 T
L−L−L
3−1−3 , (55)

where A0 – the initial amplitude of the ultrasonic pulse
near the sending transducer, TL−L−L

3−1−3 – the two way
transmission coefficient through the coupling layer, Sa3

– attenuation of the signal amplitude in the PMMA de-
lay line (medium 3), Sd3 – diffraction divergence losses
in the PMMA delay line, Sa1 – attenuation of the sig-
nal amplitude in the steel block (medium 1), Sd1 –
diffraction divergence losses in the steel block, R1 – re-
flection coefficient at the bottom surface of the steel
block.

The double transmission coefficient, and in conse-
quence the amplitude of the back wall echo A1, de-
pends on the thickness of the coupling layer d. For
practical applications, this dependence is most conve-
niently expressed in terms of CL, defined by Eqs. (51)
and (50). In the presented experiment, coupling losses
are determined by the ratio of back wall echo am-
plitudes, obtained for the coupling layer of a thick-
ness d to the back wall echo amplitude for the coupling
layer thickness equal to zero. It is expressed in decibels
by the formula:

CL(d) = −20 log10 (A1(d)
A1(0)). (56)

It should be noted, that in an experimental ap-
proach described here, it can be determined the cou-
pling losses without considering the ultrasonic atten-
uation and beam divergence in the PMMA delay line

and the steel block as well as considering the reflec-
tion coefficient of the ultrasonic pulse at the bottom
of the steel block. All these factors obviously affect the
measured amplitudes of back wall echoes but are in-
dependent of the thicknesses of the coupling layer and
are reduced in the fractional expression of Eq. (56).

The photograph of the experimental setup, used
for determination of CL, depending on the coupling
layer thickness d, is shown in Fig. 4. The distance d
between the PMMA delay line and the steel block was
adjusted using three fine-pitch screws. This distance
was controlled using a dial micrometer with accuracy
of ± 0.001 mm. During measurements the steel block
and a lower part of the delay line were immersed in

Fig. 4. Photograph of the experimental setup to determine
CL, introduced by water coupling layer existing between

a PMMA delay line and a steel block.
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water to ensure complete filling with water of the gap
between these objects.

The first step of the performed procedure was to de-
termine the back wall echo amplitude for the coupling
layer of zero thickness – A1(0). During this step, the
distancing screws were released and the PMMA plate
was slightly pressed against the steel block to remove
any remaining water between them. Within the next
steps the distance between the coupled objects, rep-
resenting the thickness of the water coupling layer d,
was steadily increased, and back wall echo amplitudes
A1(d) were measured. Finally, the measured echo am-
plitudes were substituted to Eq. (56) and CL in depen-
dence of d, were determined. The measurements were
performed for a water layer thickness in the range from
0.0 to 0.8 mm, which embrace the coupling layer thick-
ness fluctuations, that can be reasonably expected in
actual rail testing.

The results of experimental measurements of CL(d)
are presented in Fig. 5 with discreet points (squares).
The range of measurement errors was determined
based on the spread of twelve measurements for each
point. The continuous line presents a theoretical curve
calculated for the considered setup using the wide-
band model, and the dashed line depicts the theo-
retical curve calculated from the basic monochromatic
model. It can be seen that in an initial layer thickness
range (up to ca. 0.15 mm), the agreement between ex-
perimental results and both theoretical curves is very
good. Then the experimental results and model pre-
dictions start to diverge. The curve calculated from
the monochromatic model presents much larger devi-
ations from the experimental data than the curve cal-
culated applying the wideband model. This is espe-
cially visible for the layer thicknesses above 0.2 mm,
where the more precise model still gives reasonable
approximation of experimental data, while the basic
monochromatic model completely fails showing nonex-
istent minima and maxima of coupling losses. In gen-
eral, the wideband model predicts slightly higher val-
ues of coupling losses then experimental data, however,
the difference does not exceed 1.0 dB at any measure-
ment point. This can be assessed as a quite sufficient

CL
 [d

B]

Fig. 5. Comparison of experimentally determined CL in-
troduced by water coupling layer with theoretical calcula-
tions using the proposed wideband model and a commonly

known monochromatic model.

modeling accuracy from the point of view of practical
applications in automated ultrasonic examinations.

4. Exploration of model implications

for railway rail testing

One of the most important factors, affecting the re-
liability of ultrasonic inspections of railway rails, is de-
pendence of testing sensitivity on the random changes
of coupling between scanning probes and the rail sur-
face. Fluctuations of coupling layer thickness during
high speed ultrasonic scanning are unavoidable due to
waviness of the rail surface and spring suspension of
ultrasonic probes.

According to widely known monochromatic Eq. (52)
dependence of CL on the water layer thickness d is peri-
odic – as shown in Fig. 6 – with a black color curve. The
results were calculated for the probe of a longitudinal
wave and of θ3 = 0

○ beam type. In this approximation
the minima of the coupling losses occur periodically at
d = nλ2

2
that is, at multiples of half the wavelength in

the coupling layer. It is rather a theoretical result not
observed in the ultrasonic testing practice.
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Fig. 6. Dependences of CL versus the water layer thickness,
calculated for 2 MHz L-type probes, with different relative

bandwidths WB.

To investigate this problem in more detail, there
was calculated, applying the wideband model, coupling
losses characteristics for the same 2 MHz frequency,
but assuming three typical bandwidths of commercial
ultrasonic probes, ranging from 20 to 80%. The calcu-
lation results are shown in Fig. 6 with colored curves.
For the typical narrow band probe (WB = 20%) the
characteristic is similar to the monochromatic case,
but successive minima are getting shallower and cou-
pling losses reach zero value only for the layer thickness
equal to zero. For most common medium band probes
(WB = 50%), there is only one additional minimum at
d = λ2

2
but it is much shallower than the minimum

observed at the zero thickness layer. For wide band
probes (WB = 80%), there is no additional minima
and only one maximum of coupling losses observed at
d = λ2

4
. After this maximum, the characteristic flattens

out and shows no significant changes in coupling losses.
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The presented results confirm the statement, that
the bandwidth of ultrasonic probes has a significant ef-
fect on the coupling losses during ultrasonic scanning,
and should be taken into account when designing and
during calibration of ultrasonic inspection systems. For
a typical 2 MHz L-type probe with medium bandwidth
(parameter WB = 50%), the maximum coupling losses
of 12.3 dB occur at the coupling layer thickness of
0.18 mm, and falls rapidly to zero with reduction of the
layer thickness. It corresponds to 12.3 dB fluctuations
in testing sensitivity between different sections of the
tested rail, regarding the worst case scenario. To avoid
such big changes in testing sensitivity, the minimum
thickness of the coupling layer should be limited to
ca. 0.1 mm, by fixing a distancing pins made of the
hard material in the probe scanning surface. In this
way, the fluctuations of testing sensitivity could be re-
duced from 12.3 to about 8 dB.

In addition to the analysis of the operation of
2 MHz L-type probes, it is interesting to determine
how the coupling layer thickness affects the transfer
losses determined for angle beam shear wave probes,
commonly used in railway rail inspections.

As can be seen from Fig. 7, coupling losses char-
acteristics are almost the same for L-type probe and
T -type probes with refraction angles of 45○ and 70○,
assuming they have the same central frequency and
bandwidth. However, if the central frequency of the
probe would change, the coupling losses characteris-
tic also change considerably, as can be seen in Fig. 8.
Increase of the probe frequency from 2 to 4 MHz con-
tracts the characteristic curve by a factor 2 on the
layer thickness axis. It means that for 4 MHz probes
the minimum separation between the probe faces and
the rail surface could be reduced to 0.05 mm, without
negative consequences for testing sensitivity fluctua-
tions. The reduced fluctuations of CL of the order of
8 dB are rather high and still can cause problems dur-
ing rail inspections.
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Using the presented model, one can search for other
methods to reduce fluctuations of coupling losses. One
of the possibilities is replacement of water with a cou-
pling medium of higher acoustic impedance, e.g., glyc-
erin. Unfortunately, this solution is impractical for
a high speed ultrasonic inspection of railway rails due
to environmental and technical constraints. Instead,
one can investigate another solution consisting in re-
placing the conventional probe wedges made of PMMA
with probe wedges made of Rexolite, that is a relatively
new material which already entered ultrasonic applica-
tions. The Rexolite has lower acoustic impedance than
PMMA (2.4 versus 3.2 Rayls) which is closer to water
used as a coupling medium.

The coupling losses characteristic for 2 MHz probes
with wedges made of PMMA and Rexolite are shown
in Fig. 9. The maximum of the coupling losses for the
Rexolite wedge is about 4.5 dB lower than the maxi-
mum for the PMMA wedge. After restriction of the
minimal coupling layer to 0.10 mm, the amplitude of
the testing sensitivity fluctuations will be reduced from
8 dB for PMMA wedges to 5 dB for Rexolite wedges.
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The latter is a reasonably low value which may be com-
pensated by scanning gain correction.

5. Conclusions

Losses determined for the case of beam transmis-
sion through the coupling layer between the ultra-
sonic probe emitting longitudinal or transverse waves
and tested object, are presented in the article. As
a standard, formulas for double transmission coeffi-
cients have so far been derived for harmonic waves
of a strictly defined frequency. However, in practice,
the pulses generated by modern ultrasonic probes used
in non-destructive testing have a relatively wide fre-
quency bandwidth. This means that the actual de-
crease in the amplitude of the ultrasonic pulse pass-
ing through the coupling layer from the probe to the
tested material and vice versa is a certain average of
the double transmission coefficients for all frequencies
represented in the pulse spectrum. The numerical pro-
cedure presented in the paper takes into account the
finite bandwidth of modern ultrasonic probes, which
significantly changes the dependence of coupling losses
on the thickness of the coupling layer. Contrary to the
known analytical solutions, the model and program
presented in the work allowed for precise calculation
of coupling losses not only for normal beam probes
producing longitudinal waves, but also for angle beam
probes producing transversal waves, which are com-
monly used in non-destructive testing. Therefore, the
developed model can be a significant improvement to
the testing methodology for high speed ultrasonic in-
spection of railway rails, which can also be applied to
other kinds of ultrasonic inspections, where fluctuation
of the coupling layer thickness is an issue.
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1. Introduction

The aerospace and automotive industries use
acoustic damping and noise reduction devices to re-
duce low-frequency noise, a subject considered in many
studies (Jiang et al., 2021; Chen et al., 2021; Iannac
et al., 2021; Atmojo et al., 2021). In these industries,
beyond simply enhancing passenger comfort, the ad-
vantages also help to minimize errors in precision in-
struments caused by vibration (Zuo et al., 2016; Song,
2015).

The composite columnar local resonant unit is
a valuable structural form for engineering purposes
(Zhao et al., 2015; Li et al., 2016). In the studies of
Wen et al. (2005) and (2008), acoustic crystal plates
were constructed with a periodic array of columnar lo-
cal resonant units attached to it. These studies demon-
strated the presence of a local resonant bandgap, ef-
fectively suppressing the vibration transmission of the
acoustic crystal plate. Pennec et al. (2008) designed

and calculated a crystal consisting of a periodic array
of cylindrical dots deposited on a thin layer of uniform
material, with the number of bandgaps increasing with
the height of the cylinders.

Oudich et al. (2010; 2011) created an acoustic
metamaterial plate using two types of local resonant
units: a single-layer rubber column and a composite
rubber column. They analyzed how the unit parame-
ters affected the bandgap characteristics. Additionally,
they investigated an acoustic metamaterial plate with
regularly attached single-layer rubber columns and
confirmed the presence of local resonance bandgaps
in this structure. Hsu (2011) designed an acoustic
metamaterial plate with a stepped local resonant unit
and a two-dimensional phononic crystal composed of
a stepped resonator array. Badreddine Assouar and
Oudich (2012), and Badreddine et al. (2012) con-
ducted a study on the impact of a double-sided ar-
rangement of columnar resonant units on a thin plate.
Their findings suggest that this arrangement effectively

https://acoustics.ippt.pan.pl/index.php/aa/index
mailto:bingfeiliu2@126.com
https://creativecommons.org/licenses/by/4.0/
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broadens the damping frequency band. Also, they de-
signed two-dimensional acoustic crystals utilizing short
cut-off plates on both sides.

Hsu et al. (2013) explored the band gap and wave-
guide properties of cylindrical acoustic metamaterial
plates with a stepped structure. Similarly, Yu et al.
(2013) put forward the idea of two-dimensional phonon
crystals composed of stepped resonator arrays. Zhao
et al. (2015) examined the vibration isolation prop-
erties of a raised phonon crystal sheet in three dif-
ferent structural forms: single-sided single oscillator,
single-sided double oscillator, and double-sided sin-
gle oscillator. Meanwhile, Li et al. (2015) designed
two-dimensional binary local resonant phonon plates.
He and Wen (2018) studied the sound insulation prop-
erties of acoustic metamaterial plates that contained
columnar local resonance units. They also explored
how the sound insulation properties were affected by
different lattice constants.

Zhou et al. (2020) proposed the use of multilayer
rubber cylinders and metal cylinders attached to a thin
plate. By combining units with different geometrical
parameters, the resulting metamaterial demonstrated
improved low-frequency sound insulation efficiency. In
their respective studies, Yang et al. (2020) and Zhou
et al. (2021) proposed novel solutions for low-frequency
vibration and noise reduction problems in engineer-
ing. Yang et al. (2020) introduced a two-dimensional
conical scatterer phonon crystal plate, while Zhou
et al. (2021) designed a double-sided composite res-
onator structure and demonstrated a hybrid phonon
crystal plate through simulations and experiments.
Nakayama et al. (2021) presented a practical design
for sheet acoustic metamaterials that could be poten-
tially used in industrial applications. Their aim was to
develop lightweight and compact materials that could
effectively insulate against noise generation effects.

Some properties of phononic crystals hold good ap-
plication prospects, such as exploring acoustic focusing
properties and defect state properties of phononic crys-
tals to guide the design of acoustic functional compo-
nents. Qiu and Liu (2006) used phonon crystals to ob-
tain a directional sound source. Liang et al. (2009) de-
veloped an acoustic diode model utilizing phonon crys-
tals. Building upon this work, Maldovan (2013) fur-
ther investigated the practical applications of phonon
crystals, demonstrating the theoretical and experimen-
tal feasibility of using them for acoustic diodes and
cloaks. At the same time, programmable smart meta-
materials have also emerged (Yin et al., 2022). The
use of phononic crystals in designing of automotive,
marine, and aircraft structures has also gained trac-
tion as phonon crystal research continues to advance
(Ma et al., 2018; Zhang et al., 2016a).

Numerous studies highlight the attention given
by scholars to the noise control problems in plate
structures, resulting in important achievements. How-

ever, the law governing low-frequency sound insulation
of cladding acoustic metamaterials (especially below
600 Hz) remains underexplored. However, the influ-
ence of low-frequency noise cannot be ignored in prac-
tical production and engineering applications. There-
fore, the three-component cladding acoustic metama-
terial plate structure was selected as the research ob-
ject in this paper, aiming to explore the law of low-
frequency wideband sound insulation by changing the
structural and material parameters of the metamate-
rial plate. The paper is organized as follows: Sec. 1
provides the introduction, Sec. 2 presents the models
and research methods, and Sec. 3 shows the results and
discussion. Finally, conclusions are given in Sec. 4.

2. Models and methods

2.1. Experimental methods

The material chosen for the cladding in the exper-
iments is the methyl vinyl polymer (VMQ) silicone
rubber, the substrate material is epoxy resin, and the
scatterer material is aluminum. The relevant proper-
ties of the materials are given in Table 1. The con-
nection between the epoxy resin plate and the rubber,
as well as that between the rubber and the cladding,
were realized by superglue with a tight fit. In order to
facilitate experimental tests with the ZK1030 circular
impedance tube, the plate-type acoustic metamaterial
was designed as a circular sample (Figs. 1a and 1b)
during the preparation of the acoustic isolation test
samples. The circular sample is 100 mm in diameter
and contains seven hexagonal acoustic metamaterial
cells. The thickness of the substrate is e = 1 mm, the
single-cell lattice constant a = 30 mm, and the radius
and height of the cladding layer remain unchanged at
R = 6 mm and H = 9 mm, respectively. For compar-
ative experiments, the radius of the scatterer is se-
lected to be r1 = 4 mm and r2 = 5 mm. The corre-
sponding heights of the scatterer are h1 = 4.75 mm
and h2 = 4.32 mm, respectively.

Table 1. Material constants of the components.

Materials
Mass

density
[kg/m3]

Young’s
modulus

[Pa]

Poisson’s ratio

Tungsten 19 100 3.54× 1011 0.35

Lead 11 600 4.08× 1010 0.42

Copper 8960 1.1× 1011 0.35

Steel 7780 2.1× 1011 0.30

Aluminum 2700 7× 1011 0.33

Epoxy resin 1180 4.35× 109 0.38

Silicone rubber 1300 1.37× 105 0.47

This experiment uses the ZK1030 impedance tube
test system, which includes the B&K-23750 power
amplifier, Type-3160-A-042 data acquisition instrument,
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Fig. 1. Circular acoustic metamaterial samples (a); place-
ment of the specimens in the experiment (b); sound insu-

lation experimental test systems (c).

computer (installed with B&K acoustic test software)
and impedance tube and other equipment (Fig. 1c).
The impedance tube is 100 mm in diameter and
consists of a large standing wave tube (including
a loudspeaker and sample holder), a sample tube (for
0–100 mm wide samples), and a receiver tube. The test
procedure is as follows: firstly, the relevant components
of the impedance tube test system are installed and
fixed in accordance with the requirements, ensuring
that the whole impedance tube is on a horizontal line.
Then, the B&K Acoustic Test Software is started and
opened, and the relevant settings for the sound insu-
lation items are set up. After no warnings have been
given for the signal-noise ratio measurement, the sam-
ple tube is opened and the sample is placed into it,
keeping the sample in a vertical plane as far as possi-
ble. Then, the sound insulation test is conducted and
the sound insulation of the specimen can be obtained
by substituting the sound pressure value into the trans-
fer function.

2.2. Finite element simulation methods

In engineering practice, the sound insulation per-
formance of structures is generally evaluated by sound
transmission loss (STL). Noise reduction materials uti-
lize various components, structures, or systems to hin-
der the spread of sound and diminish its energy once

it has passed through the material. To elucidate the
sound insulation properties, the STL of the plate-type
acoustic metamaterials is calculated.

In the x–z plane, there is an infinite homogeneous
thin plate with thickness h, the top and bottom of
which are in contact with the air, the speed of sound
in the air is c, and the density of the air is ρ0 (Fig. 2).
There is a simple harmonic plane wave Pinc incident
from the z side, with acoustic wave amplitude P0, in-
cident angle θ, ω is the incident angular frequency,
and the wave vector of the incident wave k0 = ω/c.
By decomposing k0 into two-dimensional coordinates,
the projected components in the x and z squares are,
respectively, kx and kz. According to Eq. (1), it can
be observed that the plate vibrates under acoustic ex-
citation, and the surface couples with the air to emit
transmitted acoustic wave Ptr and reflected acoustic
wave outward Pref :

kx = k0 sin θ,

kz = k0 cos θ.
(1)

Fig. 2. Infinite homogeneous thin plate in the x–z plane.

According to the small amplitude one-dimensional
plane wave equation Pinc can be assumed as:

Pinc = Pi0e
−i(kxx+kzz)eiωteiϕ0 , (2)

where Pi0 is the incident wave amplitude and ϕ0 is the
initial phase of the incident wave at t = 0. Similarly,
the reflected wave Pref , transmitted wave Ptr and plate
displacement w can be obtained as:

Pref = Pr0e
−i(kxx−kzz)eiωteiϕ,

Ptr = Pt0e
−i(kxx+kzz)eiωteiϕ,

w =W0e
−ikxxeiωteiϕ.

(3)

The equation of motion for an ideal fluid medium leads
to Eq. (4):

∂p

∂z
= −ρ0 ∂v

∂t
= −ρ0 ∂2w

∂t2
. (4)

According to the bending equation of a homogeneous
thin plate, it can be obtained as:

D
∂4w

∂x4
− ρhω2w = Pinc∣z=0 + Pref ∣z=0 − Ptr∣z=0 ,

D =
Eh3

12(1 − γ) ,
(5)
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Fig. 3. Schematic illustrations of the unit cells of the plate-type acoustic metamaterial models (a)
and schematic illustration of the calculation of the STL (b).

where E is Young’s modulus of the plate material, D is
the bending stiffness of the plate, and γ is Poisson’s
ratio.

Through Eqs. (2)–(4), the relationship between
acoustic amplitude and plate amplitude can be ob-
tained as:

Pr0 − Pi0 = −ρ0iω2W0

kz
,

Pt0 =
ρ0iω

2W0

kz
.

(6)

Then, substituting Eq. (6) into Eq. (5) to obtain Pi0 as:

Pi0 =

W0 [D (k0 sin θ)4 − ρhω2]
2

+ ρ0iω2W0

k0 cos θ
. (7)

The acoustic transmission coefficient τ and the STL
can be obtained as:

τ(θ) =
∣Pt0∣2 /2ρ0c∣Pi0∣2 /2ρ0c

=
2ρ0iω

2

[D (k0 sin θ)4 − ρhω2]k0 cos θ + 2ρ0iω2

, (8)

STL(θ) = 10 log10 ( 1

τ(θ)
). (9)

An acoustic metamaterial type plate cell model
was developed in COMSOL Multiphysics software
(Fig. 3a). The basic parameters of the cell are: sub-
strate thickness e = 1 mm, and individual cell lattice
constant a = 30 mm. The radius and height of the
cladding panel are r2 = 6 mm and h2 = 9 mm. In ad-
dition, the radius and height of the scatterer vary de-
pending on the research scenario. Based on the acoustic
metamaterial cell, we conducted an acoustic isolation
simulation (Fig. 3b). The acoustic metamaterial type
plate cell under study is shown in dark color at the cen-
ter. There are two layers of air domains above and be-
low the monocell. The uppermost layer serves as a per-
fect matching layer to absorb sound waves and simu-
late a non-reflective sound field. The lower air domain

of the wall plate is set as the background pressure field
for acoustic excitation. The simulation uses acoustic-
structure interaction and applies the perfectly matched
layer (PML) to the model. A background pressure field
(P0) is applied on the back of the plate. In this study,
Eq. (8) is expanded to apply to the sound insulation
simulation model structure, i.e., Eq. (10):

τθ =
Fin

Fout

, (10)

Fin = ∫
Sin

P 2

inc
cos θ

2ρ0c
dS, (11)

Fout = ∫
Sout

P 2
outc cos θ

2ρ0c
dS, (12)

where Fin and Fout are the acoustic energies on the two
surfaces S1 and S2, Sin and Sout are the areas of S1 and
S2, respectively, Pinc and Poutc are the sound pressures
of S1 and S2, respectively, ρ0 is the air density, c is the
velocity of sound waves propagating in the air, and
θ is the pitch angle of sound waves incident on the
sound waves. By combining Eq. (9) and Eq. (10), we
can calculate the STL.

3. Results and discussion

3.1. Sound insulation (simulation and experimental)

In order to verify the simulation results, we carried
out comparative experiments on acoustic metamate-
rial plates with scatterer radius of 4 and 5 mm. The
obtained comparison curves between experimental and
simulation results are presented in Fig. 4.

It can be seen in Fig. 4a that certain inconsisten-
cies exist between the outcomes obtained from the
experimental analysis and the finite element simula-
tion results at the peaks of the sound insulation curve.
Specifically, the frequencies of the peaks are 288 and
309 Hz, with corresponding sound insulation values
of 52 and 45 dB, respectively. However, at the val-
leys of the curve, both the experimental results and
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Fig. 4. Comparison curves between experiment and simu-
lation for scatterer radius of 4 mm (a) and 5 mm (b).

finite element simulation results exhibit a consistent
trend. The sound wave frequencies at these points are
475 and 463 Hz, with corresponding sound insulation
values of 1 and 3 dB, respectively.

As can be seen from the curves in Fig. 4b,
the growth or reduction trend of the sound insula-
tion curves is basically consistent with the simulation
curves. During the rising phase of sound insulation,
the experimental results curve exhibits a faster growth
than the simulation results curve, and there are some
cliff-like decrease places, but the overall trend is still
growing. The frequencies corresponding to the peaks
of the experimental curves are slightly higher than the
simulation results, with frequencies of the peaks of 209
and 198 Hz, and the corresponding sound insulation
values of 61 and 49 dB, respectively. Additionally, the
frequencies corresponding to the valleys of the experi-
mental curves match the simulation results.

During the sound insulation experiment, errors in
the measured sound insulation values and correspond-
ing frequency bands may occur due to various factors

such as test equipment, sample processing, and the ex-
perimental environment. The specific reasons for the
errors are: (1) the sound insulation values and cor-
responding frequency bands may have been affected
due to limitations in the experimental equipment. This
is because the actual tested specimen was a circular
multi-cell specimen, which is different from the hexag-
onal single-cell specimen used in the simulation test;
(2) the experimental measurements of sound insulation
may vary due to potential errors in the manufacturing
of the tested parts.

Overall, although there are some deviations be-
tween the experimental results and the simulation re-
sults, the finite element simulation results effectively
predicts the sound insulation performance of acoustic
metamaterial panels, and there is a certain reference
significance in the overall trend of the sound insulation
curve.

3.2. Limiting the total mass of the scatterers

We classify and discuss the effects of different scat-
terer radii (Fig. 5a) and sinking depth of the scatterer
(Fig. 5b) on sound insulation, when the total mass of
the limited scatterers is maintained constant, with the
unit cell lattice constant a = 30 mm, substrate thick-
ness e = 1 mm, and the cladding radius r2 = 6 mm, and
the total height h2 = 9 mm kept unchanged.

a)

b)

Fig. 5. The total mass of the scatterer is kept constant,
changing the radius of the scatterer, with the height of
the scatterer adjusting accordingly (a) and the radius and
height of the scatterer remain unchanged, only the sinking

depth Z of the scatterer is changed (b).

In order to quantify the advantages and disadvan-
tages of different lattice constants, the effective sound
insulation band is defined here as the band range in
which the sound insulation is 5 dB higher than that
of a homogeneous plate with the same mass (Zhang
et al., 2016b). Therefore, we choose a range of sound
insulation higher than 30 dB. The red dots marked as
f1 and f2 represent the start and cut-off frequencies
when the sound insulation is 30 dB (Figs. 6a and 6b).
The normalization is calculated using Eq. (13):

∆f =
f2 − f1(f2 + f1)/2 . (13)
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First of all, with the total mass of the scatterer
held constant and only changing the radius of the scat-
terer, the height of the scatterer adjusts accordingly.
We choose the radius r1 of the scatterer as 4, 4.5, 5,
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Fig. 6. a) Sound insulation curves corresponding to scatterers with radius of 4, 4.5, 5, and 5.5 mm; b) effective sound
insulation frequency band and frequency band range corresponding to different scatterer radius; c) normalization curve
for different scatterer radius; d) effective sound insulation frequency band and frequency band range of different sinking

depth Z of scatterers; e) normalization curve for different sinking depth.

5.5 mm, respectively, and the height h1 corresponds to
4.75, 5.3, 4.32, 3.57 mm. It can be clearly seen that the
effective sound isolation band gradually shifts to the low
frequency with an increase scatterer radius, the onset
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frequency decreases from 255 to 163 Hz, the cutoff fre-
quency decreases from 363 to 198 Hz, and the sound
isolation range decreases from 108 to 35 Hz (Fig. 6b).
It is shown that the normalization is 0.34 when the
radius of the scatterer is 4 mm, but it decreases to 0.2
when the radius increases to 5.5 mm (Fig. 6c).

Then, keeping the scatterer radius r1 = 4 mm and
height h1 = 6 mm unchanged, the scatterer sinking
depth Z is changed. Here, Zrepresents the distance
between the upper surface of the scatterer and the up-
per surface of the cladding, with the selection range
of 0 ∼1.2 mm. The substrate material is aluminum, the
cladding material is silicone rubber, and the diffuser
material is copper (Table 1). As the sinking depth Z

increases, the upper and lower limits of the effective
sound absorption frequency band shift to high frequen-
cies, and the frequency range gradually increases from
35 to 85 Hz (Fig. 6d). As the sinking depth increases,
the normalization shows a stepwise growth trend, from
0.11 to 0.17, and then reaches a maximum of 0.17 at
a sinking depth of Z = 1 mm (Fig. 6e).

In summary, when limiting the additional mass of
the resonance unit, the smaller the radius of the scat-
terer or the deeper the sinking depth Z, the closer the
center of gravity of the scatterer is to the substrate, and
the resonance unit as a whole is more stable. The range
of effective sound isolation frequency band is obviously
widened, and the frequency band is gradually shifted to
high frequency, and the degree of normalization is also
gradually increased. The band gap can be maximally
broadened, and the sound insulation at low frequen-
cies below 600 Hz can be realized, thus improving the
low-frequency sound insulation efficiency of acoustic
metamaterials.

3.3. Not limited to additional mass
of the resonance unit

We classify and discuss the effects of different filling
rates f and different materials of different components
on sound insulation, when there are no restrictions on
the additional mass of the resonance unit, with a cell
constant a = 30 mm, substrate thickness e = 1 mm,
the radius and height of the cladding are r2 = 6 mm,
h2 = 9 mm and, additionally, the radius and height of
the scatterer vary depending on the research scenario.

Initially, while maintaining the materials for the
substrate, cladding and scatterer as aluminum, silicon
rubber and copper, respectively, we consider a filling
rate range from 0.3 to 0.6. The filling rate f is calcu-
lated from Eq. (7):

f =
VS

VC
, (14)

where VS and VC are the volumes of the scatterer and
the cladding, respectively. Then, with a constant filling

rate of 0.5, the materials of the scatterer and the sub-
strate are changed. The scatterer materials are tung-
sten, lead, copper and steel, and the substrate materi-
als are aluminum and epoxy resin (Table 1).

The effective sound insulation frequency band, cor-
responding to different filling rates f , shows an overall
trend of increasing and then decreasing. When the fill-
ing rates is in the range of 0.3 to 0.5, the sound insula-
tion range increases from 46 to 155 Hz, and the effec-
tive sound insulation frequency band gradually shifts
to the high frequency. The cutoff frequency also increa-
ses from 252 to 436 Hz. As the filling rates increases
from 0.5 to 0.6, the sound isolation range decreases
and eventually settles at 107 Hz. However, the sound
isolation range remains 27 Hz higher than at the fill-
ing rates of 0.4. This shows that the sound insulation
effect is better when the filling rate is in the range of
0.45∼0.6, and the sound insulation effect is best when
the filling rate is 0.5 (Fig. 7a). As the filling rates in-
crease, the normalization shows a trend of first increas-
ing and then remaining stable, indicating that the fill-
ing rate is more stable in the range of 0.4∼0.6, and
the filling rates selected in this range are preferrable in
practical applications (Fig. 7b).

When the substrate is aluminum, increasing the
density of the scatterer material causes a gradual de-
crease in the upper and lower boundary frequencies
of the effective sound insulation band. However, when
the substrate is epoxy resin, increasing the density
of the scatterer material results in the upper and
lower boundary frequencies of the effective sound in-
sulation band shifting towards higher and lower fre-
quencies, respectively (Fig. 7c). The scatterer mate-
rial is arranged in the following order: steel, copper,
lead, and tungsten, with a gradual increase in den-
sity from 7780 to 19 100 kg/m3. Regardless of whether
the substrate material is aluminum or epoxy resin, the
frequency band range and normalization both exhibit
an increasing trend. However, when the substrate ma-
terial is epoxy resin, the advantages are more obvious,
resulting in a larger frequency band range and normal-
ization compared to aluminum as substrate material
(Fig. 7d).

The scatterer acts like the mass in a spring-mass
oscillator. The density of the scatterers directly affects
the total equivalent mass of the cylinder. A denser scat-
terer not only increases the unit weight of the acoustic
metamaterial, but also increases the resulting bandgap
of frequencies. Therefore, when selecting scatterers, it
is recommended to use high-density and high-elastic
modulus metals such as lead and tungsten to obtain
a wider bandgap range. However, it is important to
consider the impact of the quality factor in practical
applications, making metals such as copper and steel
viable choices as scatterers. Additionally, low density
materials such as epoxy resins should be chosen as sub-
strates when constructing phononic crystals.
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Fig. 7. a) Effective sound insulation frequency band and frequency band range corresponding to different filling rates;
b) normalization curve for different filling rates; c) bar chart representing the effective sound insulation band and the curve
representing the band range – the black color corresponds to the aluminum substrate and the grey color to the epoxy resin

substrate; d) normalization curve for different materials.

4. Conclusion

This paper proposed a plate-type acoustic meta-
material with good sound insulation in low-frequency
ranges. In the study, we used finite element simula-
tion to analyze the sound insulation characteristics of
the three-component cladding acoustic metamaterial
panel, and carried out experimental verification. The
results show that the three-component cladding acous-
tic metamaterial plate can significantly suppress the
propagation of noise across a wide frequency band be-
low 600 Hz. Both theoretical and experimental find-
ings demonstrate that the acoustic metamaterial plate
provide excellent sound insulation, particularly at the
resonant frequency of the local resonance unit. The ef-
fects of structural parameters of the scatterer, the fill-
ing rate of the resonant unit, and the materials of
the components on the sound insulation properties
of the acoustic metamaterials were subsequently in-
vestigated. The following conclusions are obtained.

When limiting the additional mass of the resonance
unit, the smaller the radius of the scatterer or the
deeper the sinking depth, the effective sound insulation
frequency band shifts to high frequencies, and the fre-
quency band range and normalization tend to increase.
When the additional mass of the resonance unit is not
limited, as the filling rate f increases, the effective
sound insulation frequency band and frequency band
range first increase and then decrease. Therefore, in or-
der to obtain a better sound insulation effect, the fill-
ing rate should be kept at around 0.5. When selecting
scatterer materials, it is recommended to use metals
with high density and high-elastic modulus to obtain
a wider bandgap range. Additionally, it is advisable to
opt for a substrate material with a lower density.
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The research reported in this paper deals with the potential of detecting non-simultaneous operation in
on-load tap-changer (OLTC) using an acoustic emission method. Tests conducted under laboratory conditions
were carried out using an OLTC model. Three transducers with different characteristics were used: WD 17 AH,
D9241A, and R15α, alongside oscillography as the reference method. The use of two new descriptors in the
time domain was proposed. The feasibility of detecting the defect with different piezoelectric transducers was
investigated.

As a result of the analysis of the results, it was found that each piezoelectric transducer can identify non-
simultaneous operation of the switch. The most significant changes in descriptor values occurred in the time
domain, and the most effective transducer turned out to be R15α.
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1. Introduction

Maintaining the appropriate quality parameters of
transmission networks constitutes an important task
for electricity distributors. One of the critical param-
eters is the voltage level, which affects how reactive
power flows through the network. Voltage levels in an
electric power system can fluctuate for various reasons,
including changes in energy demand. The on-load tap-
changer (OLTC) enables to adjust the voltage levels
in power lines by changing the transformer’s turn ra-
tio. This is achieved by changing the number of active
turns in the secondary winding. The OLTC switching
mechanism is designed to work while the transformer
is in use, without the need to shut the unit down.

Power transformers, crucial components of the
transmission network, significantly impact the stabil-
ity of power system operation. Although these devices
have a relatively low failure rate, the potential cost to
power utilities is very high in the event of an incident.

The OLTC is a component of transformers and it has
the highest failure rate, making its diagnosis an im-
portant issue (Majchrzak et al., 2016). The causes of
OLTC damage can be divided into three groups (Jon-
gen et al., 2014):

– failure of the mechanical system, mainly related
to the torque transmission system;

– damage to the main circuit, due to wear or damage
to the contacts;

– damage to the insulation system.

During OLTC operation, the mechanical energy ge-
nerated by the drive is stored in a mechanical energy
accumulator in the form of two parallel springs. If one
spring breaks, the switching process is extended, which
can lead to resistor overheating (Duan, Wang, 2015).

The contacts of the switch are affected by degra-
dation due to arcing. Excessive contact wear can lead
to an increase in contact resistance, which raises the
temperature of these components and accelerates their

https://acoustics.ippt.pan.pl/index.php/aa/index
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degradation (Kang, Birthwhistle, 2001a; 2001b;
Schellhase et al., 2002). If their contact degradation
varies between phases, asymmetrical contact switching
may occur.

The oscillographic method has been established
and widely used for assessing the condition of OLTCs.
It uses the characteristic changes in the current flowing
through the OLTC during switching to determine the
degree of wear in current path components and the me-
chanical system (Boricic et al., 2019; Jongen et al.,
2012). Dynamic resistance measurement takes a simi-
lar course to the oscillographic method. The main dif-
ference is that the resistance between the OLTC termi-
nals is measured during switching instead of the cur-
rent (Aziz et al., 2014; Osmanbasic, Skelo, 2017).
A disadvantage of these methods is that the unit must
be taken out of service. Due to the strategic importance
of transformers in electricity grids, shutting them down
for diagnostic purposes is problematic and it is associ-
ated with additional costs for energy distributors.

Acoustic signals are generated during the OLTC
switching process. Their source may be associated with
the switch’s mechanical system, contacts operation, or
electrical discharges. The switches are mounted in con-
tainers filled with oil, and the acoustic waves generated
are transmitted to the metal walls of the tank. This
makes it possible to record acoustic emission (AE) sig-
nals using piezoelectric transducers. The recorded AE
signals provide information characterizing the opera-
tion of the OLTC, enabling the diagnosis of the de-
vice using these signals (Cichoń et al., 2011a; 2011b;
Li et al., 2012).

The most important advantage of the AE method
is that diagnostic tests can be carried out online, elim-
inating the need to shut down the transformer. In ad-
dition, the AE method can be used simultaneously
to determine the mechanical condition of the switch
and to detect partial discharges (Cichoń et al., 2011b;
2012; Secic, Kuzle, 2017; Seo et al., 2017). However,
acoustic interference generated by the transformer and
surrounding devices can lead to a reduction in the effec-
tiveness of this diagnostic method. Besides, the time
waveforms of the AE signals generated during power
switch operation are difficult to interpret. A correct
diagnosis requires expert knowledge, so artificial intel-
ligence (AI) tools are proposed (Wotzka, Cichoń,
2020; Wotzka et al., 2019).

This article, which constitutes a follow-up of re-
search conducted for several years at Opole University
of Technology, presents the results of measurements
using the oscillographic and AE methods. Tests were
carried out on two systems: one without defects and
another where non-simultaneous operation occurred.
The main goal of the research was to determine the
possibility of detecting non-simultaneous operation of
the OLTC using piezoelectric transducers with differ-
ent transmission characteristics. In addition, a compar-

ative analysis of the used transducers was performed
to determine the most effective means of detecting the
asymmetry in system operation. A proposal for two
new descriptors describing AE signals in the time do-
main is presented. The article presents the differences
in these descriptors between the normal system and
the modelled defect. Also, methods for determining de-
scriptors based on the transducer used are proposed.

2. Experimental setup

The research focused on the analysis of the OLTC’s
operating stage when changes occurred in the selector
tap position under the control of the power switch.
Tests were conducted in a laboratory setting using an
OLTC model with a separate selector and a VEL-110
power switch. An actual OLTC system with a selec-
tor shortened to six taps was used to create the test
bench. The switch, together with the selector, was
placed in a tank filled with insulating oil. There were
pin-outs on the top cover of the tank to allow test-
ing OLTC with the current flow. The measuring sys-
tem was equipped with a motor that allowed switch-
ing. Three single-phase transformers were used to sim-
ulate the impedance of the transformer windings. The
setup utilized in this study provides a range of defects
that can be modeled: contact wear, non-simultaneous
switching, and spring failure. A PLC was also installed
to automate switching operations, thus speeding up
measurements.

The non-simultaneous operation of the OLTC was
simulated by changing contacts from new to worn ones.
The degree of wear was simulated by milling the ap-
propriate thickness of the original contact. The changes
in the contact thickness used during research were as
follows:

– phase A – 2 mm;

– phase B – 3 mm;

– phase C – 0 mm.

During oscillographic measurements, DC flows
through the OLTC. During switching, there occur
changes in the value of the current. The degree of wear
of the device can be determined based on waveform.
The results obtained with this method were used as
a reference for the AE method during the tests.

MT-3, an instrument measuring basic transformer
parameters, was used for oscillographic measurements.
It can measure the dynamic change in current passing
through OLTC during switching. MT-3 samples the
current signal at a frequency of 8120 Hz. The manu-
facturer of the MT-3 also provides OLTC.exe software
to assist diagnosticians in assessing the condition of
the transformer or OLTC (Energo-Complex, 2008).

During switching, the OLTC generates sounds that
are transmitted to the metal tank due to the presence
of insulating oil. The AE waveforms carry information
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about the switching process. The main goal of the re-
search was to determine the feasibility of using these
data for the OLTC diagnosis.

Laboratory tests were carried out using an OLTC
model. Transducers with different characteristics were
used to determine the diagnostic capability of OLTC in
various frequency bands. The summary of their tech-
nical data is presented in Table 1. The transducers are
referred to as 1, 2, and 3. The possibility of using dif-
ferent transducers for AE diagnostics will be evaluated
during the study.

Table 1. Technical data of the transducers used
(MISTRAS Group, n.d.a; n.d.b; n.d.c).

No. Type
Frequency

band
[kHz]

Peak
sensitivity,

Ref V/[m/s]

Peak
sensitivity,
Ref V/µbar

1. WD 17 AH 100–900 56 dB −61 dB

2. D9241A 20–60 82 dB –

3. R15α 50–400 80 dB −63 dB

All transducers were mounted by means of magne-
tic holders. They were connected to amplifiers via pre-
amplifiers. The gains of both components are presented
in Table 2.

Table 2. Preamplifiers and amplifiers gains.

No.
Preamplifier gain

[dB]
Amplifier gain

[dB]

1. 20 15

2. 20 3

3. 20 9

t [ms]

I
[A

]
I

[A
]

I
[A

]

a)

b)

c)

Fig. 2. Oscillographic waveforms for a symmetric system: a) phase A; b) phase B; c) phase C.

For recording AE waveforms, the Acquitek CH3160
measuring card was used, operating at a sampling fre-
quency of 350 kHz. It was coupled with a laptop with
the installed AcquiFlex software. Figure 1 depicts the
measurement procedure.

Piezoelectric
transducers Pre-amplifiers Amplifiers

Measurement cardPC

Fig. 1. Measurement procedure.

3. Results

The oscillographic method was used to verify
whether an asymmetry of operation occurred in the
system following its modification. The results obtained
with the AE method will be compared to this method.
The results obtained for normal system performance
are presented in Fig. 2 and the results for the sys-
tem with the modeled non-simultaneous operation are
shown in Fig. 3.

Characteristic points of the waveforms correspond-
ing to individual switching stages are marked with red
lines. For the normal system, it can be observed that
for each phase, the switching steps coincide in time,
while for the modified system, they occur at differ-
ent moments. Based on the results obtained, it can be
concluded that, after the modification, there is a non-
simultaneous operation in the system. A summary of
the characteristic times and the differences between
each phase is given in Table 3.
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Fig. 3. Oscillographic waveforms for an asymmetric system: a) phase A; b) phase B; c) phase C.

Table 3. Characteristic times read and time differences between the phases.

Simultaneous operation

Characteristic times
[ms]

Time difference
[ms]

A B C A–B B–C C–A

16.90 16.80 16.90 0.10 0.10 0.00

28.90 28.90 29.10 0.00 0.20 0.20

41.50 41.40 41.50 0.10 0.10 0.00

50.70 50.70 50.80 0.00 0.10 0.10

Non-simultaneous operation

Characteristic times
[ms]

Time difference
[ms]

A B C A–B B–C C–A

23.10 25.00 15.00 1.90 10.00 8.10

36.00 37.40 32.80 1.40 4.60 3.20

45.20 46.60 41.90 1.40 4.70 3.30

50.70 49.60 55.40 1.10 5.80 4.70

Subsequently, the waveforms for the standard sys-
tem and the modified one were juxtaposed to deter-
mine the possibility of diagnosing the modeled fault us-
ing the AE method. All signals were normalized by di-
viding by the maximum value. No filter was used dur-
ing signal analysis. The results for each of the three
transducers are given in Figs. 4–6.

A clear difference can be observed between the sym-
metrical and asymmetrical systems. The interval de-
scribing contact switching is between 40 and 90 ms.
In this interval, significantly more acoustic events
with smaller amplitudes can be observed for the sys-
tem with non-simultaneous operation compared to the
case of the normal system. This is due to the non-

simultaneous contact closure between the phases. For
the normal system, these events occur simultaneously
for each phase.

For the accurate determination of the technical fea-
sibility of individual transducers, two descriptors were
determined. Firstly, the envelope of the AE signal was
determined and then the time at which the envelope is
above the threshold of 0.05 was determined. The enve-
lope was obtained by determining the local maxima for
which polynomial interpolation was used. The thresh-
old was adjusted by analyzing several time courses and
conducting simulations for different values. An exam-
ple of the determination process is shown in Fig. 7. In
this way, the duration of the switching operation was
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t [ms]

a)

b)

Fig. 4. AE signal generated by OLTC recorded with transducer 1 for:
a) system without asymmetry; b) system with asymmetry.

t [ms]

a)

b)

Fig. 5. AE signal generated by OLTC recorded with transducer 2 for:
a) system without asymmetry; b) system with asymmetry.

t [ms]

a)

b)

Fig. 6. AE signal generated by OLTC recorded with transducer 3 for:
a) system without asymmetry; b) system with asymmetry.
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t [ms]

Fig. 7. AE signal generated by OLTC with plotted envelope. The switching time is determined as the time during
which the envelope values are above the threshold.

t [ms]

Fig. 8. Graphical representation of the descriptor describing the field under the acoustic emission signal envelope.

calculated for all cases. The second designated descrip-
tor covers the area under the envelope, and a visual-
ization of its determination is shown in Fig. 8.

All calculated descriptors and the relative differ-
ences between the values obtained for the symmet-
ric and asymmetric systems are presented in Table 4.
The switching duration increased significantly for the
system with non-simultaneous operation, while the
area under the envelope decreased. The time-frequency

Table 4. Descriptors calculated in the time domain.

Transducer 1 Transducer 2 Transducer 3

Symmetry Asymmetry
The relative
difference

[%]

Symmetry Asymmetry
The relative
difference

[%]

Symmetry Asymmetry
The relative
difference

[%]

Duration
[ms]

8.19 31.54 321.73 13.71 39.43 187.60 7.76 35.74 360.57

Area under
envelope

4.14 2.6 37.20 4.49 2.93 34.74 2.83 2.13 24.73

analysis constituted the next stage in the analysis of
the results. It was utilized not only to illustrate the
differences in the frequency response of the different
transducers but also to visualize the differences in fre-
quencies found in systems with a defect relative to nor-
mal systems.

Figures 9–11 present the results of the time-
frequency analysis of AE signals generated by OLTC
with original and modified contacts. The presented
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Fig. 9. Spectrogram of AE signal generated by OLTC recorded with transducer 1 for:
a) system without asymmetry; b) system with asymmetry.
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Fig. 10. Spectrogram of AE signal generated by OLTC recorded with transducer 2 for:
a) system without asymmetry; b) system with asymmetry.
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Fig. 11. Spectrogram of AE signal generated by OLTC recorded with transducer 3 for:
a) system without asymmetry; b) system with asymmetry.
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results cover the frequency band up to 175 kHz. This
is due to the Nyquist frequency. Since OLTC tests are
performed for mechanical damage, there is no need
to analyze higher frequencies. For the modified sys-
tem, the presence of a large number of acoustic events
in the 40–90 ms range can be seen. These events cor-
respond to individual switch strikes, occurring non-
simultaneously for each phase.

In the case of an unmodified system, more discrete
structures are visible and can be distinguished in time.
In the case of the faulty device, an extension in time of
the individual frequency structures is visible. They are
relatively continuous in time, which makes it possible
to identify a much larger number of unevenly occurring
acoustic events resulting from unevenly switching con-
tacts of the individual phases. In the case of uniform
switching, we have a relatively synchronized switch-
ing cycle because the acoustic signals can be uniquely
isolated from the recording. In the case of a modeled
fault, this cannot be done. It should be noted that such
a phenomenon is visible regardless of the type of trans-
ducer used. The clear differences observed in the spe-
ctrograms allow an unambiguous assessment of the
presence of the defect under investigation.

Each of the transducers used allows the simul-
taneity of the switch to be assessed. However, the dif-
ferences are most pronounced for transducer 3. For this
transducer, the frequency structures describing the in-
dividual beats are most evident at higher frequencies;

Table 5. Amplitude spectrum descriptors.

Transducer 1 Transducer 2 Transducer 3

Symmetry Asymmetry
The relative
difference

[%]

Symmetry Asymmetry
The relative
difference

[%]

Symmetry Asymmetry
The relative
difference

[%]

Max 4.003E–06 5.435E–06 35.76 1.830E–05 8.889E–06 51.41 3.793E–06 1.248E–06 67.09

RMS 1.269E–07 1.583E–07 24.74 3.020E–07 1.961E–07 35.05 9.936E–08 5.535E–08 44.29

Median 3.594E–10 3.498E–10 2.66 2.129E–10 4.017E–10 88.70 5.661E–10 1.468E–09 159.40

Peak
factor

3.154E+01 4.333E+00 86.26 6.059E+01 4.532E+01 25.19 3.817E+01 2.255E+01 40.92

Form
factor

6.207E+00 6.421E+00 3.45 9.573E+00 6.459E+00 32.53 5.754E+00 3.744E+00 34.94

Fmax 21.00 kHz 21.13 kHz 0.60 17.86 kHz 18.97 kHz 6.17 45.53 kHz 46.85 kHz 2.90

Table 6. Power density spectrum descriptors.

Transducer 1 Transducer 2 Transducer 3

Symmetry Asymmetry
The relative
difference

[%]

Symmetry Asymmetry
The relative
difference

[%]

Symmetry Asymmetry
The relative
difference

[%]

Max 1.927E+02 2.245E+02 16.52 4.119E+02 2.871E+02 30.30 1.876E+02 1.076E+02 42.63

RMS 1.377E+01 1.512E+01 9.80 1.710E+01 1.678E+01 1.89 1.266E+01 1.171E+01 7.47

Median 1.826E+00 1.801E+00 1.34 1.404E+00 1.930E+00 37.46 2.292E+00 3.690E+00 61.05

Peak
factor

1.399E+01 1.485E+01 6.11 2.408E+01 1.711E+01 28.96 1.482E+01 9.187E+00 38.00

Form
factor

2.279E+00 2.343E+00 2.84 2.562E+00 2.282E+00 10.92 2.118E+00 1.696E+00 19.91

Fmax 17.86 kHz 18.97 kHz 6.17 1.786E+04 1.897E+04 6.17 45.53 kHz 46.85 kHz 2.90

thus, it is best suited when diagnosing OLTC using
spectrograms of acoustic emission signals.

To avoid relying solely on visual analysis of the ob-
tained waveforms and spectrograms during the diag-
nosis of OLTC, several descriptors were identified and
used:

– maximum value (max);

– root mean squared (RMS);

– median;

– peak factor;

– form factor;

– frequency of highest amplitude.

These descriptors were applied in the analysis of am-
plitude and power density spectrum. For each of the
descriptors analyzed, changes were observed after sys-
tem modification. The results obtained make it pos-
sible to diagnose the switching asymmetry based on
analytical data rather than visual inputs. The same
procedure was performed on the power density spec-
trum. Values calculated for the amplitude spectrum
are shown in Table 5, while in Table 6 values for the
power density spectrum are presented.

The changes between the normal and modified
systems are significant, confirming that it is possible
to diagnose asymmetric performance based on the
proposed descriptors. It can be seen that time series
descriptors undergo the most significant changes. The
system with asymmetric operation had a significantly
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Fig. 12. Relative differences between normal and modified systems for each transducer.

longer switching duration than the normal system. The
changes recorded in the descriptors determined based
on the amplitude spectrum and power density are also
significant.

In Fig. 12, all relative differences in values are plot-
ted. By analyzing the graph, it is possible to determine
the tested transmitters for the case yielding the best
results in terms of diagnosing the studied defect.

4. Conclusion

On the basis of the analysis of the results obtained
in the study, it was found that it is possible to di-
agnose non-simultaneous operation using each of the
piezoelectric transducers subjected to testing. The dif-
ferences are also clearly visible on the spectrograms.
The differences between the time courses for the mod-
ified and unmodified systems are discernible, allow-
ing the OLTC condition to be assessed through visual
inspection. The assessment of the occurrence of non-
simultaneous operations was simplified by calculating
the descriptors given earlier. The differences in desig-
nated values are substantial, ranging up to 300%. This
allows diagnosis to be carried out even by staff mem-
bers who do not have specialized knowledge. In addi-
tion, the ability to carry out OLTC diagnostics without
the need to shut down the transformer offers more fre-
quent measurements to be carried out. It is also pos-
sible to use the AE method for continuous measure-
ments. The results demonstrate that transducers with
different characteristics can be used for AE diagnos-
tics. This opens up the possibility of using transducers
to detect partial discharges to monitor the mechanical
state of the OLTC.

By comparing relative differences between indi-
vidual descriptors, we are able to identify the trans-
ducer that can be the most useful for diagnosing non-
simultaneous operation. The number of descriptors for

which the transducer achieved the highest relative dif-
ference value:

– transducer 1: 4 differences;

– transducer 2: 2 differences;

– transducer 3: 9 differences.

For transducer 3, the highest number of differences
was registered. Therefore, it was concluded that it is
the most suitable one for diagnostic purposes.

Two new descriptors, calculated from time series,
were introduced, one to describe the duration of the
switching event and the other to establish the field un-
der the envelope. These have proven valuable in as-
sessing the symmetry of OLTC operations. Thus, their
use in developing an expert system for OLTC diagnos-
tics will allow more efficient identification of the defect
under investigation.

The results presented in this paper indicate differ-
ences in the AE signals generated by normal system
and asymmetrically switching systems. The significant
advantage of the AE diagnostic method is to perform
diagnosis in a non-destructive way, as it is not neces-
sary to take the unit out of service. Correct interpre-
tation of time courses can be quite a challenging task,
so future work will focus on evaluating the potential
for detecting different kinds of damages using artificial
intelligence.

The research presented in the paper forms one of
the phases of work aimed at creating an expert system
for online diagnosis of OLTC. The descriptors analyzed
in this paper have demonstrated their feasibility in di-
agnosing non-simultaneity and will, therefore, be used
as one of the input parameters for neural network. For
other defects, a similar analysis will be carried out.
This will allow the creation of a set of descriptors that
fully describe the performance of OLTC. Further work
will also focus on examining the possibility of using
the presented method to determine the technical con-
dition of other types of OLTC. It is expected that after
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determining the values of the described descriptors for
undamaged OLTCs of other types, they will be success-
fully used as a reference point for determining defects
occurring in the described devices.
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In general, the amplitude-weighting method for an acoustic transducer array is widely used to improve the
array directivity and reject disturbances. This paper presents a method to effectively reduce the side lobe level
while minimizing the main lobe width increase. This is done using the simulated annealing algorithm (SAA) for
a uniformly spaced arc array of omnidirectional underwater acoustic transducers, even at low signal-to-noise
ratio (SNR). We propose a new cost function for the SAA and obtain the weighting coefficients for all array
elements using the SAA, and next compare them with various amplitude weighting methods.

Through simulation and comparison, it is verified that the proposed method is effective in beamforming of
the uniform arc array of underwater acoustic transducers.
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1. Introduction

Beamforming is used to increase the transmit power
and reduce losses in array antennas. Minimizing the
side lobe level and enhancing the main lobe level is very
important to improve target detection accuracy and
jamming stability for underwater acoustic transducer
arrays.

For an underwater acoustic transducer array trans-
mitting and receiving a sound wave, a time delay for
individual elements steers the acoustic beam in a cer-
tain direction, while array amplitude weighting is used
to reduce side lobe level, improving the SNR, and jam-
ming suppression capability. Weighting methods of the
two-dimensional arrays include the window method
(Nofal et al., 2013; Dessouky et al., 2006; 2007;
Sarker et al., 2016; Schmerr Jr. 2015; Rucksana
Begum, Ramarao, 2015) and various heuristic op-
timization methods (Albagory, Alraddady, 2021;
Singh, Salgotra, 2018; Li et al., 2017; Van Luyen,
Vu Bang Giang, 2017). These optimal search weight-
ing methods generally result in optimal position as
well as magnitude weight values for array elements

if a cylindrical array is used. The window weighting
method with the array elements placed at equal spac-
ing suits the requirements of problem we consider in
this paper.

Conventional weighting methods effectively reduce
the side lobe level. However, it is inevitable that a de-
crease in the level of the side lobe is accompanied by
an increase in the main lobe width. So, we cannot re-
duce the side lobe level indefinitely, and we must also
pay due attention to the degradation of the system
resolution due to the widening of the main lobe.

Originally, designed for the annealing heat process
in metals, the simulated annealing algorithm (SAA) is
now applied to optimal designs. The SAA seeks the
solution that minimizes the value of a cost function
among a number of possible solutions, which is ana-
logous to the process of finding a stable state with the
lowest free energy during annealing. There exist many
examples of the SAA used in various optimization
problems (Zangene et al., 2014; Chen et al., 2019;
Hong et al., 1991; Cretu et al., 2010; Rasdi Rere
et al., 2015; Gintaras et al., 2019; Cardone et al.,
2002). For instance, Zangene et al. (2014) reduced the

https://acoustics.ippt.pan.pl/index.php/aa/index
mailto:si.kang0604@ryongnamsan.edu.kp
https://creativecommons.org/licenses/by/4.0/
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side lobe level while minimizing the main lobe width
increase by applying the SAA to non-uniform circular
arrays used in wireless communication. The authors
optimized the position of elements placed in the cir-
cumference and the element amplitude weight vector
to reduce the main lobe level, and demonstrated that
the proposed method is more efficient than genetic al-
gorithm and uniform weighting methods. An applica-
tion of SAA for acoustic sensors can be found in (Chen
et al., 2019), where it is used to effectively reduce the
sound pressure level in passenger trains. Many previ-
ous methods in which the SAA was used to reduce
the side lobe level of the array antenna mostly focused
on enhancing the beamforming effect in wireless com-
munication systems and adopted the unequally spaced
array.

The SAA was rarely used in underwater signal pro-
cessing and in the case of arrays used for underwa-
ter signal processing, in particular, circular arrays and
cylindrical arrays, it is difficult for engineers to arrange
acoustic elements with non-uniform spacing at any lo-
cation. This is because the size of the elements becomes
very large due to the fact that the sound velocity is five
times higher, and the available frequencies are lower in
water than in air.

To overcome this drawback and improve the trans-
mitter and receiver directivity in the acoustic sensor
array, the SAA is introduced into the beamforming
of uniform arc arrays of underwater acoustic trans-
ducers. We propose a new cost function for the SAA
and use it to obtain the weight coefficients for the ar-
ray elements. Thus, we reduce the side lobe level while
minimizing the main lobe width increase of the array
directivity, even for low signal-to-noise ratio (SNR).

The effectiveness of the proposed method is verified
by comparing it with various array weighting methods,
such as the cosine weighting method, Hanning weight-
ing method, Hamming weighting method, Blackman
weighting method, triangular weighting method, etc.
(Schmerr Jr., 2015).

The paper is organized as follows: Sec. 2 briefly
describes the array weighting method and the SAA;
Sec. 3 presents a new side lobe level reduction method
using the SAA; in Sec. 3, the new cost function of SAA
and the weighting coefficients of the array elements de-
rived using this SAA are presented; Sec. 4 presents the
simulation results, underwater test results, and analy-
sis; Sec. 5 provides the conclusion.

2. Theoretical fundamentals

2.1. Array weighting

Arc arrays are a special case of circular arrays, com-
monly used in underwater acoustic transducer arrays.
The array of interest is a uniform arc array consisting
of 12 omnidirectional elements, each positioned with

identical central angles between them. An illustration
of this arrangement is shown in Fig. 1.

0

n
r

O

1

2

3

4
5

6 7
8

9

10

11

12

n


s(t)

r

𝒔(𝑡)
𝑨(𝜃, 𝐼)

BF(θ, 𝐈) = |𝑨(𝜃, 𝐈)𝑠(𝑡)|
𝐀(θ, 𝐈) = [𝑎1(θ) 𝑎2(θ) … 𝑎𝑁(θ)]
𝐬(𝑡) = [𝑠1(𝑡) 𝑠2(𝑡) … 𝑠𝑁(𝑡)]𝑇

a𝑛(θ) = 𝐼𝑛𝑒𝑗2𝜋𝑓0𝑟 cos(𝜃−𝜙𝑛)/𝑐, n = 1,2, … , N
s𝑛(𝑡) = 𝐴𝑚𝑒𝑗2𝜋𝑓0(𝑡−𝑡𝑛)

𝑡𝑛 =△ 𝑟𝑛/𝑐 = 𝑟 cos(𝜃0 − 𝜙𝑛) /𝑐, n = 1,2, … , N
𝜃 𝐼𝑛

𝑓0, 𝜃0, 𝑟, 𝑐, 𝜙𝑛, 𝑁, 𝐴𝑚

(OO’)

OO'

Fig. 1. Uniform arc array with 12 elements.

We assume the signal incident on the array is s(t),
the steering matrix of the array is A(θ, I), and the
output of the array beamforming is expressed as (Zan-
gene et al., 2014):

B(θ, I) = ∣A(θ, I)s(t)∣, (1)

A(θ, I) = [a1(θ) a2(θ) ⋯ aN(θ)], (2)

s(t) = [s1(t) s2(t) ⋯ sN(t)]T, (3)

an(θ) = Inej2πf0r cos(θ−φn)/c, n = 1,2, ...,N, (4)

sn(t) = Ame
j2πf0(t−tn), (5)

tn = rn/c = r cos(θ0 − φn)/c, n = 1,2, ...,N, (6)

where θ is the angle of interest, I is the weight vector,
In is the n-th weight coefficient of the weight vec-
tor, f0 is the center frequency of the signal, θ0 is the
angle of incidence of the signal, r is the radius of the ar-
ray, c is the propagation velocity of the signal, φn is
the angle from the center line (OO′) to the n-th ele-
ment, N is the number of elements, and Am is the sig-
nal amplitude. The sign of the angle is positive when
its orientation is counterclockwise from the center line
and vice versa.

2.2. Simulated annealing algorithm

The SAA yields good results, although it is rather
time-consuming. This algorithm, deriving its name
from metallurgy, was first proposed by Kirkpatrick
et al. (1983). The SAA used to improve the directivity
of the underwater transducer array minimizes the cost
function obtained from the directivity function of the
array by setting the initial temperature, final temper-
ature, and the initial weight vector and decreasing the
temperature according to certain rules. In subsequent
iterations, the weight vector is updated such that the
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value of cost function decreases with decreasing tem-
perature. The algorithm prevents the value of the cost
function from being trapped in a local minimum and
allows it to reach a global minimum. The global mini-
mum is derived by accepting with a certain probability
the state in which the cost function increases as well
and setting the current state to the state in which the
cost function decreases. During the minimization pro-
cess of cost function, the probability of accepting the
state in which the value of the cost function increases
gradually drops to zero.

The expression shows the probability of accepting
a new state:

P (∆F (I)) = ⎧⎪⎪⎨⎪⎪⎩
e−

∆F (I)
T if ∆F (I) > 0,

1 if ∆F (I) ≤ 0, (7)

where ∆F (I) = Fnew(I+I)−Fcurrent(I) is the difference
between the cost functions for the new and current
states and T is the temperature.

The optimization procedure by the SAA is given as:

1) Generation of the initial solution vector: generate
the initial vector I0 and compute the value of the
cost function.

2) Setting of the initial temperature: in the algorithm,
the initial temperature T0 is very important; if the
temperature is too high, the system cannot con-
verge to the minimum state, whereas if it is too
low, the global minimum cannot be reached.

3) Generation of a new solution: at the temperature
T , the new solution I0 + I is generated.

4) Evaluation of the new solution: calculate the value
of the cost function for the new solution and,
based on Eq. (7), accept or reject the new state
according to the difference ∆F .

5) Decrease of the temperature: decrease the temper-
ature so that the probability of accepting the state
in which the value of the cost function increases
is reduced.

6) Repeat of the above steps: repeat steps 2–5 until
the temperature value reaches the final tempera-
ture set.

3. The side lobe level reduction method

using the SAA

The proposed cost function for reducing the side
lobe level to the maximum while minimizing the beam
width increase of array directivity is defined as follows:

F (W) = α ∣Wd −WI

Wd

∣ + β
M∑
i=1
B (θi, I)

B (θ0, I) , (8)

where θi is the position of the i-th side lobe, M is
the number of side lobes, I is the weight vector,

Wd is the zero beam width of interest by the weight
vector, and WI is the zero beam width by the
weight vector.

While the first term on the right-hand side in
Eq. (8) expresses the deviation between the beam
width of interest and the beam width by the weight
vector, the second term is the ratio of the sum of all
the side lobe levels for Eq. (1) to the main lobe level,
and the cost function is divided by Wd to be dimen-
sionless.

In Eq. (8), α and β are constants that determine
the contributions of the main lobe width and side lobe
level, respectively. While the classical cost function
(Zangene et al., 2014) considered only the third-order
lobe level, the proposed method considers all side lobe
levels. Given an array, it is impossible to simultane-
ously make both the side lobe level and the main lobe
width small. Therefore, to optimize the lobe level while
minimizing the main lobe width increase, α and β are
introduced to reflect the characteristics of the side lobe
level and the main lobe width, respectively. Thus, de-
pending on whether the main lobe width or the side
lobe level is considered, the values of α and β can be
set differently.

In this paper, we theoretically consider the con-
vergence of the proposed cost function for the SAA.
The cost function is related to the directivity function
of the arc array, which is rather complicated and can
only be obtained from numerical calculations. There-
fore, we use the approximate equation for the directiv-
ity function expressed by the zero-order Bessel function
as (Li, 2011):

B(θ) ≈ ∣J0 (4πr
λ

sin(θ − θ0
2
))∣ . (9)

Equation (9) is satisfied for the uniform arc array under
the condition:

1

α0

≥ 2r

λ
+ 1

π
, (10)

where λ is the signal wavelength and α0 is the central
angle between adjacent elements in the radian. Because
the cost function is expressed by the Bessel function,
as in Eq. (9), the proposed cost function can converge
to maintain the main lobe width and simultaneously
reduce the side lobe level with changing the weighting
coefficients.

Let F0 be the initial value of cost function, T0 the ini-
tial temperature, Te the final temperature, I0 the unit
vector, MaxTryT the maximum number of trials at
a given temperature, MaxSucT the maximum number
of successes at a given temperature, MaxRej the max-
imum exclusion number, and trialCountT the number
of trials at a given temperature. First, we find the dif-
ference ∆F = Fnew−Fcurrent between the cost functions
for the new and current states by randomly changing
the weight vector of the array beamforming output.
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The procedure to randomly change the weight vec-
tor is as follows:

1) Generation of random numbers: generate a ran-
dom number vector of size N/2.

2) Sorting of random numbers: sort the generated
random number vectors in ascending order.

3) Symmetrizing of the random number vector: make
a random number vector of size N , symmetrizing
the sorted random number vector.

4) Update of the weight vector: update the weight
vector by adding the random number vector to
the current weight vector.

5) Normalization of the weight vector: normalize so
that the maximum value of the weight vector is
equal to 1.

11 

Initializing
(T0, Te, I0, F0, MaxTryT, MaxSucT, MaxRej) 
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Fig. 2. Computational flow diagram using the proposed algorithm.

Then, the cost function is updated by introduc-
ing the new solution with the transition probability
by Eq. (13). This process is repeated while the trial
number (trialCountT) is less than the maximum num-
ber of trials at a given temperature (MaxTryT) or the
success number (sucCountT) is less than the maximum
number of successes (MaxSucT) that is to be accepted
as a new state. Next, the above process is repeated by
changing the temperature in a certain way.

If the temperature reaches the final temperature
Te set or the number of states rejected (countRej) is
greater than the maximum rejection number (MaxRej)
set, the calculation is ended. The algorithm used in the
simulation is shown in Fig. 2.

The solution obtained by the proposed algorithm
deviates from the local minima and converges to the
global minimum, thus giving good results.
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4. Simulation and discussion

In the simulation, all the array elements are con-
sidered to be omnidirectional. The center angle be-
tween each element is 10○, the center frequency of the
signal is f0 = 50 kHz, the speed of sound in water
is c = 1500 m/s, and the radius of the arc is r = 0.08 m.
For simplicity, let us consider the directivity of the ar-
ray as the incidence direction of the signal to be set
at 0○ and the range of angles as [−60○, 60○], while the
SNR is varied to −5, 0, 5, 10, 20, and 30 dB.

The initial values of parameters used in the simu-
lation are shown in Table 1.

Figure 3 shows the convergence of the cost func-
tion and the temperature throughout the iterative pro-
cess for the simulation using the proposed method. The
temperature drastically reduces until 2000-th iteration
and then gradually converges to 0. It can be seen that
the convergence process of the cost function exhibits
a local minimum around 1445-th iteration, and this is
due to the nature of the SAA, which deviates from
the local minimum and then converges to the global
minimum.

Figure 4 shows the directivity of the arc array
obtained by applying various weighting methods and
compares them with the proposed method. The side
lobe level of the directivity function using the proposed
method is −16.6 dB, even for an SNR of −5 dB, but it
is about −10 dB for the other methods. It can be seen
that the proposed method is effective in side lobe level

Table 1. The initial values of parameters.

Parameters Initial values

Initial temperature T0 1

Final temperature Te 1e-8

Maximum number of trials at a given temperature (MaxTryT) 3000

Maximum Success at a given temperature (MaxScT) 40

Maximum rejection number (MaxRej) 1000

[α, β] [1, 1]
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Fig. 3. Convergence of the cost function and the temperature throughout the iterative process:
a) convergence; b) temperature.

reduction and powerful over noise suppression, even at
low SNRs.

Table 2 presents the weighting factor vectors cal-
culated by the proposed method and the weighting
factor values calculated by different methods. Table 3
provides a comparison of different weighting methods
with the proposed method for the main lobe width and
side lobe level of array directivity at different SNRs. In
Table 3, the front values in each column are the 6 dB
beam width in degrees, followed by the maximum side
lobe levels in dB. From Table 3, it can be seen that
at low SNRs below 0 dB, the proposed method min-
imizes the main lobe width increase, while the side
lobe level is the smallest among the seven methods.
Furthermore, the main lobe width and the side lobe
level do not change significantly at various SNRs. This
indicates that the proposed method exhibits high noise
robustness.

Table 4 shows the main lobe width (6 dB beam
width) and the maximum lobe level of the array di-
rectivity with varying values of α and β. From Ta-
ble 4, it is evident that the main lobe width decreases
and the maximum side lobe level increases as β in-
creases.

Figure 5 shows the comparison between the pro-
posed method and various weighting methods using
the cost function for different SNRs. Only the maxi-
mum side lobe level is used. As shown, the proposed
method maintains a constant cost function value, re-
gardless of the SNR change.
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Fig. 4. Comparison between the proposed method and various weighting methodsfor the different SNRs:
a) −5 dB; b) 0 dB; c) 5 dB; d) 10 dB; e) 20 dB; f) 30 dB.
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Table 2. Weighting vectors by various weighting methods (SNR = 10 dB).

Method Weighting vector

Uniform [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

Cosine [0, 0.2817, 0.5406, 0.7557, 0.9096, 0.9898, 0.9898, 0.9096, 0.7557, 0.5406, 0.2817, 0]

Hanning [0.0000, 0.0794, 0.2923, 0.5712, 0.8274, 0.9797, 0.9797, 0.8274, 0.5712, 0.2923 0.0794, 0.0000]

Hamming [0.0800, 0.1530, 0.3489, 0.6055, 0.8412, 0.9814, 0.9814, 0.8412, 0.6055, 0.3489, 0.1530, 0.0800]

Blackman [0.1200, 0.1526, 0.2799, 0.5344, 0.8560, 1.0870, 1.0870, 0.8560, 0.5344, 0.2799, 0.1526, 0.1200]

Triangular [0, 0.1818, 0.3636, 0.5455, 0.7273, 0.9091, 0.9091, 0.7273, 0.5455, 0.3636, 0.1818, 0]

Proposal [0.2686, 0.4147, 0.5613, 0.7073, 0.8537, 1.0000, 1.0000, 0.8537, 0.7073, 0.5613, 0.4147, 0.2686]

Table 3. Main lobe width and side lobe level for various weighting methods.

Method
SNR [dB]

−5 0 5 10 20 30

Uniform 11.6, −7.4 11.4, −8.3 11.2, −8.6 11.2, −8.6 11.0, −8.7 11.0, −8.7

Cosine 16.0, −9.6 15.2, −12.6 15.0, −14.2 14.8, −14.7 14.8, −15.0 14.8, −15.0

Hanning 19.2, −9.6 18.0, −13.7 17.6, −17.0 17.6, −18.6 17.6, −19.4 17.6, −19.5

Hamming 17.2, 10.0 16.6, −14.2 16.4, −17.5 16.2, −19.2 16.0, −20.0 16.0, −20.1

Blackman 18.0, −10.1 17.0, −14.8 16.6, −19.4 16.6, −22.0 16.6, −22.8 16.6, −23.0

Triangular 17.2, −9.9 16.4, −14.1 16.2, −17.1 16.2, −18.6 16.0, −19.2 16.0, −19.3

Proposal 14.0, −16.6 14.0, −16.6 14.0, −16.6 14.0, −16.7 14.0, −16.7 14.0, −16.7

Table 4. Main lobe width and maximum side lobe level for α and β (SNR = 10 dB).

[α, β] [1,1] [1,3] [1,5] [1,7] [1,9]

Main lobe width [○] 14.0 13.8 13.6 13.5 13.4

Maximum side lobe level [dB] −16.7 −16.5 −16.2 −15.9 −15.5

Therefore, it is obvious that the proposed method is
effective in improving the directivity pattern of the ar-
ray and increasing the azimuthal resolution ability by
significantly reducing the side lobe level while minimiz-
ing the main lobe width increase even for low SNRs.

SNR [dB]
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Fig. 5. Comparison of array directivity using the cost func-
tion for different SNRs.

5. Conclusion

The array weighting by the proposed method can
reduce the side lobe level by about 8 dB lower than

the uniform method while minimizing the main lobe
width increase for low SNRs. Other methods, except
the cosine method, increase the main lobe width con-
siderably, although those may lower the side lobe level
more than the proposed method. Therefore, the pro-
posed method can effectively suppress the noise while
maintaining the resolution of the underwater acoustic
transducer array.

According to the evaluation of directivity by vari-
ous methods based on the cost function, for the SNR
equal to −5 dB, the value of the cost function by the
proposed method is 1.55, 1.44, 1.77, 1.39, 2.69, and 1.41
times lower than those by the uniform method, cosine
method, Hanning method, Hamming method, Black-
man method, and triangular method, respectively.

For uniform arc arrays with underwater acoustic
transducers, it is confirmed that array element weight-
ing with weight vectors obtained by using the proposed
cost function and simulated annealing based on weight
factor updating can effectively reduce the side lobe
level while minimizing the main lobe width increase
of array directivity even at low SNRs.
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