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Snoring is a typical and intuitive symptom of the obstructive sleep apnea hypopnea syndrome (OSAHS),
which is a kind of sleep-related respiratory disorder having adverse effects on people’s lives. Detecting snoring
sounds from the whole night recorded sounds is the first but the most important step for the snoring analysis of
OSAHS. An automatic snoring detection system based on the wavelet packet transform (WPT) with an eXtreme
Gradient Boosting (XGBoost) classifier is proposed in the paper, which recognizes snoring sounds from the
enhanced episodes by the generalization subspace noise reduction algorithm. The feature selection technology
based on correlation analysis is applied to select the most discriminative WPT features. The selected features
yield a high sensitivity of 97.27% and a precision of 96.48% on the test set. The recognition performance
demonstrates that WPT is effective in the analysis of snoring and non-snoring sounds, and the difference is
exhibited much more comprehensively by sub-bands with smaller frequency ranges. The distribution of snoring
sound is mainly on the middle and low frequency parts, there is also evident difference between snoring and
non-snoring sounds on the high frequency part.

Keywords: snoring recognition; wavelet packet transform; feature selection; machine learning.
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1. Introduction

The obstructive sleep apnea hypopnea syndrome
(OSAHS) is a chronic sleep-related disease affecting
the general adult population ranging from 6% to 17%
(Senaratna et al., 2017), which is characterized by in-
termittently partial or complete collapse of the upper
airway, resulting in frequently sleep-disordered breath-
ing events (SDB). This kind of disease greatly affects
the quality of life and even is an independent risk factor
for diseases such as neurocognitive dysfunction, arte-
rial hypertension, metabolic disorders, and cerebrovas-
cular disease (Wang et al., 2017; Hui et al., 2015;
Dafna et al., 2013). The traditional and golden stan-
dard for clinically diagnosing OSAHS is Polysomnog-
raphy (PSG) (Jiang et al., 2020) with multiple sen-
sors that must be directly connected to the body to
monitor serious biological signals during sleep. How-
ever, the complex equipment, professional technicist,

time-consuming process, and expensive cost limiting
its wide application, makes OSA a significant but un-
derestimated threat to public health (Ayas, 2013).
An inexpensive and reliable technology to diagnose
OSAHS is urgently needed. Studies have indicated that
snoring is a typical and intuitive symptom of OSAHS
(Dafna et al., 2013; Hui et al., 2015; Jiang et al.,
2020; Ng et al., 2008; Senaratna et al., 2017; Wang
et al., 2017) reported in more than 80% of OSAHS pa-
tients (Kapur et al., 2002; Young et al., 1997), which
has been reported to be a potential method to monitor
OSAHS. It is a kind of sleep-related noise caused by
oscillations of the soft tissue structures in the upper
airways (Lechner et al., 2019) because of a reduction
of the muscle tone and slackening of soft tissue nar-
rowing down the upper airways.

Automatic extracting snoring episodes from recor-
ded sleep sounds throughout the night, including
breathing, speaking, and other noises, is the first but
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the most important step during the whole process of
analyzing snoring sounds, which has been studied by
many studies (Dafna et al., 2013; Hwang et al., 2015;
Lim et al., 2019; Ng et al., 2008; Nonaka et al., 2016;
Wang et al., 2017). Most of their studies focused on
differencing snoring sounds and non-snoring sounds
from acoustic features derived from the time domain,
frequency domain, and time-frequency domain. Speci-
fically, Jiang et al. (2020) designed a snoring sound
detection system based on a non-contact microphone
that extracted 127-dimensional time and spectral fea-
tures to obtain an accuracy of 98.2% in the validation
group. The work of Ng et al. (2008) achieved a high ac-
curacy in the classification of snoring and non-snoring
sounds using formant frequencies. Cavusoglu et al.
(2007) implemented the snoring and non-snoring clas-
sification by the sub-band energy of sound episodes
and robust linear regression with an accuracy of 90.2%
from the combined dataset of 18 simple snorers and 12
OSAHS patients. Nonaka et al. (2016) developed the
human auditory image model to extract snoring sounds
automatically. These studies mainly focused on the low
frequency part or some specific frequency bands rather
than analysis of all sub-band, which might ignore the
information on the high frequency part.

The wavelet transform (WT) is another way to di-
vide the signal into sub-bands with different frequency
ranges, which has been demonstrated to be effective in
the speech signal and electroencephalogram process-
ing (Li, Zhou, 2016; Wu et al., 2008; Wang et al.,
2020). Wang et al. (2020) proposed a novel method
of speaker-independent emotion recognition based on
the wavelet packet analysis, which performed better
than frequency features. Li and Zhou (2016) imple-
mented the classification of electrocardiograms using
the wavelet packet entropy and random forests. Wu
et al. (2008) extracted features of electroencephalo-
gram signals such as the energy of special sub-bands
and corresponding coefficients of the wavelet packet
decomposition, which had maximal separability ac-
cording to the Fisher distance criterion. Qian et al.
(2016; 2017) adopted energy features derived from the
wavelet packet transform (WPT) to discriminate snor-
ing sounds from different snoring sites with much bet-
ter performance than features derived from time and
frequency domains. These works indicate that wavelet
transform works effectively in the analysis of biological
signals.

Table 1. Information (gender, age, apnea/hypopnea (AHI), and body mass index (BMI)) of the subject.

Simple Mild Moderate Severe
Gender (M/F) 4/0 3/2 5/3 5/2
Age (years) 25± 5 35± 5.05 46.6± 11.58 49.9± 9.36

AHI 3.8± 0.73 10.8± 4.13 21.69± 3.46 36.77± 3.83
BMI 27.5± 4.57 30.24± 0.87 35.09± 1.05 39± 1.48

To explore the relationship between snoring and
non-snoring sounds on different frequency bands, an
automatic snoring detection system based on WPT
features with an XGBoost (Chen, Guestri, 2016)
classifier was proposed in this study. The system in-
cludes three major steps. Firstly, the recorded sleep-
related sounds were enhanced and segmented by a ge-
neralization subspace noise reduction algorithm, and
signal presence probability based on energy, respec-
tively. Then, WPT features from different wavelet
functions and decomposition layers were extracted
from segmented sound episodes and selected based on
a series of correlation analyses. Finally, snoring sounds
were detected from the trained XGBoost classifier. The
contribution of the work incorporates: 1) it used WPT
to extract sub-band features and yielded comparable
accuracy in recognizing snoring sounds compared with
existing related studies (Adesuyi et al., 2022; Arse-
nali et al., 2018; Jiang et al., 2020; Sun et al., 2022);
2) it discovered that signal would be exhibited much
more comprehensively by sub-bands with smaller fre-
quency ranges. And the difference between snoring and
non-snoring sounds is getting more evident with the
frequency range getting smaller, which is more bene-
ficial for classifying; 3) it demonstrated that although
the distribution of snoring sound is mainly on the low
frequency part, the information on the high frequency
part also cannot be ignored, where there is also evident
difference between snoring and non-snoring sounds.

2. Material and methods

2.1. Data acquired

In this study, 24 subjects composed of simple snor-
ers and OSAHS patients were selected from the First
Affiliated Hospital of Guangzhou Medical University.
All subjects have been informed and agreed with the
monitoring process during the whole night. The de-
tailed information about these subjects was described
in Table 1. During sleeping, a microphone (RODE,
NTG-3, Sydney, Australia) and a digital audio recorder
(Rowland, Edirol R-44, Japan) were placed approx-
imately 45 cm above the patient’s mouth and nose
to record the original sleep sound signals for approxi-
mately seven hours, with a sampling rate of 44.1 kHz
and 16-bit resolution. PSG equipment (Alice-5, Pitts-
burgh, Pennsylvania, USA) was simultaneously used
to monitor the subject’s PSG signals.
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2.2. Pre-processing

During the process of recording sleep-related sounds,
the noncontact nature of signal acquisition is often
susceptible to external noise distortion. The additive
background noise is inevitably superposed to a snor-
ing sound, which will affect the fidelity of signals. Most
studies (Dafna et al., 2013; Jiang et al., 2020; Lim
et al., 2019;Wang et al., 2017) conducted the noise re-
duction process before its further analysis effectively.
In the work of Karunajeewa et al. (2008), differ-
ent enhancement algorithms were implemented to yield
different snoring recognition results. Different from
common noise suppression methods, generalized sub-
space snoring signal enhancement based on the noise
covariance matrix estimation was implemented (Ding
et al., 2021). It was verified by our previous work that
this algorithm could well update noise in real-time by
recursive averaging its past values adjusted by a time-
varying smoothing parameter controlled by the snor-
ing signal presence probability during the noise sup-
pression process. Objective quality measurements and
the spectrum analysis demonstrated that this method
could reduce most background noise with less signal
distortion. Moreover, the enhanced snoring signal was
detected and segmented by the signal presence prob-
ability, which is determined by the ratio between the
local energy of the noisy signal and its minimum within
a specified time window to detect the sound episode.

Figure 1 shows the process of pre-processing in-
cluding noise reduction and episode segmentation. The

a)

b)

c)

d)

Fig. 1. Example of sound enhancement and detection:
a) the original recorded noisy sound; b) the enhanced sound
by subspace noise reduction algorithm; c) the signal pre-
sence probability of enhanced recorded signal; d) the de-

tection result of sound episodes.

segmented episodes were further labeled as snoring
sounds and non-snoring sounds based on PSG signals
by ear-nose-throat (ENT) experts. 26561 labeled sound
episodes including 17704 snoring sounds and 8857 non-
snoring sounds were obtained from all 24 subjects. All
labeled sounds were randomly divided into the train-
ing and test sets with proportions of 70% and 30%,
respectively.

2.3. Feature extraction

The wavelet packet decomposition was applied to
divide the signal into sub-bands with different fre-
quency bands. Acoustic features including wavelet
packet coefficients, log energy, Shannon entropy, wave-
let transform cepstral coefficient, and sound pressure
level based on sub-band signals were extracted for fur-
ther analysis. All signals were framed by the hamming
window function with 20 ms frame length and 50%
overlap. Amplitude normalization was conducted to
eliminate the influence of sound intensities. The statis-
tic functions including the mean and variance of all
frames in each signal were calculated to represent each
signal. Table 2 shows the detailed information on the
features.

Table 2. Information of the extracted features.

Feature Description
Dimension

(layer 4/layer 5/
bark sub-band)

Coefficient Mean,
variance value

32/64/34

Log-energy Mean,
variance value

32/64/34

Shannon entropy Mean,
variance value

32/64/34

Sound pressure
level

Mean,
variance value

32/64/34

Wavelet transform
cepstral coefficient

Mean,
variance value

26/26/26

Mel-frequency
cepstral coefficient

Mean,
variance value

26/26/26

2.3.1. Wavelet packet model

The WT (Sharma et al., 2020) is a typical method
to transform the time-domain audio signal into a time-
frequency domain consisting of the continuous wavelet
transform and discrete wavelet transform. The WT of
the signal x at the time y and scale z is defined by the
inner product with a wavelet function:

Wf(y, z) = ⟨x,uy,z⟩ =
1

√
y

∞

∫
−∞

f(t)u∗ (
(t − z)

y
) dt, (1)

where u(t)∗ represents the complex conjugate of the
wavelet function u(t). WPT applies the transform
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step on all frequency bands. It is calculated through
time-domain filtering with a sub-signal representation
obtained from frequency components with each sub-
band. Figure 2 shows an integrated wavelet packet tree
of a signal. The original signal is first decomposed into
two sub-bands in the first decomposition layer: the low
frequency part-1 (1, 0) and the high frequency part-2
(1, 1). Then the low frequency part-1 and part-2 will
be further decomposed with increasing decomposition
layers to obtain sub-bands with much finer frequency
bandwidth. The frequency bandwidth of the k-th sub-
band in the j-th decomposition layer is fs

2j+1
Hz; fs is

the sampling rate with a value of 44.1 kHz in this
work. With the increase of the decomposition layer,
the finer the frequency is decomposed with much more
sub-bands. There are Nj = 2j sub-bands in the j-th
layer. There are 16 sub-bands in layer 4 with a band-
width of 1378 Hz and 32 sub-bands in layer 5 with
a bandwidth of 689 Hz. Moreover, we constructed bark
sub-bands from decomposition layers 4 and 5 of WPT
with a dimension of 17, which is based on auditory
characteristics of humans. The detailed composition of
bark sub-bands is shown in the last layer of Fig. 2.

Fig. 2. Decomposition process of WPT and the construc-
tion of wavelet bark.

In the work of Monson et al. (2014) “high frequen-
cy” referred to a frequency above about 5 kHz which
has traditionally been neglected in speech research.
The “middle and low frequency” is defined below 5 kHz
in this paper. As Fig. 2 shows, the bark sub-band is
constructed by sub-bands in layer 4 and layer 5 which
is considered a common division method for audio
signal processing that accurately matches the human
ear’s auditory perception chrematistics (Korniienko,
Machusky, 2018). The bark and layer 5 decomposi-
tion structure have the same sub-band distributions in
the middle and low frequency part (0–5.5 kHz) com-
posed by (5,0)–(5,7), while layer 5 has much finer sub-
bands in the high frequency. Studies have indicated
that the energy of snoring sounds is mainly concen-
trated below 2 kHz (Perez-Padilla et al., 1993). The
frequency range of the first sub-band at layer 4 is
0–1378 Hz that most snoring information locate in this
frequency band. To explore the influence of the fre-
quency bandwidth of the sub-band on the classification

result, and the difference between snoring and non-
snoring sounds in the middle and low frequency part
and high frequency part, acoustic features extracted
from layer 4, layer 5, and bark sub-bands are discussed
in the work.

2.3.2. Wavelet packet coefficients

The coefficients by WPT can reveal the local cha-
racteristics of signals. The mean values of the coeffi-
cients of the k-th sub-band in the j-th layer are de-
scribed as:

wj,k =
∑
n
vj,k,n

Nk
, n = 1,2, ...,Nk, k = 1,2, ...,2j , (2)

where Nk is the number of the coefficient component
in the k-th sub-band with the value of 882; vj,k,n re-
presents the n−th coefficient component of the k-th
sub-band in the j-th decomposition layer. There are
Nj = 2j coefficients in the j-th decomposition, which
are wj,1,wj,2, ...,wj,2j .

2.3.3. Log-energy

The log-energy of the k-th sub-band signal in the
j-th level can be calculated by:

logEj,k =
Nk

∑
n=1

v2
j,k,n. (3)

2.3.4. Shannon entropy

The probability of the n-th coefficient at its corre-
sponding node can be calculated by:

pj,k,n =
Ej,k,n

Ej,k
=

v2
j,k,n

Nk
∑
n=1

v2
j,k,n

, (4)

moreover, Shannon entropy (SE) is defined by the pro-
bability distribution of energy pj,k,n as Eq. (4), which
is a measure of uncertainty associated with random
variables in information theory:

SEj,k = −
Nk

∑
n=1

pj,k,n ⋅ log (pj,k,n). (5)

2.3.5. Wavelet transform cepstral coefficient

WPT can be treated as a filter to divide the fre-
quency to some sub-bands with the equal bandwidth,
just like Mel-filter. Then the cepstral coefficient of the
signal after the WPT filter can be calculated using
discrete cosine transform (DCT), which is called the
wavelet transform cepstral coefficient (WTCC):

WTCCm =

√
2

Nj

Nj

∑
j=0

log (Ej,k) cos(
πm (2j − 1)

2Nj
),

(6)
where Nj is the number of sub-bands in the j-th layer;
m indicates the m-th DCT spectral line, which was set
as 13 in the work.
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2.3.6. Mel-frequency cepstral coefficients

The study (Jiang et al., 2020) has indicated that
there are obvious differences between snoring and
non-snoring sounds via Mel-frequency cepstral coeffi-
cients (MFCC). The MFCC of the original signal with
13-dimension is also extracted for snoring sound recog-
nition.

2.4. Wavelet function

As described in Eq. (1), the WPT is based on
the wavelet function. Different wavelet functions may
result in different WPT features. There are many
wavelet function families such as BiorSplines, Coiflets,
Daubechies, Symlets, and so on. The Daubechies
wavelet family (DB1, DB2, DB3, DB4, DB5, DB6,
DB7, DB8, DB9, DB10) has been widely used in the
processing of speech and other biological signals. Also,
the work of Qian et al. (2017) indicated that the
Daubechies function (DB3, DB10) performed better
on recognition of a snoring site. In this paper, we ex-
plore their performance in differentiating snoring and
non-snoring sounds.

3. Classification and result

3.1. Classification model

In the study, XGBoost classifier was adopted in this
study. XGBoost is an improved algorithm with good
performance and high efficiency based on the gradient
boosting decision that can construct boosted trees ef-
ficiently and operate in parallel. The core of the algo-
rithm is the optimization of the value of the objective
function (Torlay et al., 2017). The parameter of the
XGBoost classifier is essential for classification per-
formance. Based on a 10-fold cross-validation of the
training set, the optimal parameter was obtained.
The number of base trees was set as 400, the max depth
of trees was 6, and the learning rate was 0.3. Other pa-
rameters were set as the default value of XGBoost in
Scikit-learn (Pedregosa et al., 2011).

3.2. Feature selection

Feature selection is a vitally important step dur-
ing the classification task because it can reduce the
redundancy of features to improve the robustness of
the model and reduce the computation complexity. In
this paper, feature selection based on the correlation
analysis is conducted to select distinguishing features.
Two Pearson correlation coefficients were calculated in-
cluding correlation coefficients between features and
their related labels with a value of P1 and correla-
tion coefficients among features with a value of P2.
Features with high correlation with labels and low cor-
relation with other features were selected by thres-

holds a and b, respectively. There were two steps for
feature selection. Firstly, features were reserved if P1
was higher than a. Then, the reserved features were
dropped out if P2 was higher than b to obtain rela-
tively independent features. To fully make use of the
limited dataset, the 10-fold cross-validation was used
in the training set to optimize the model and select
features. The threshold a and b were obtained by ex-
periment to set as 0.8 and 0.7, respectively. Moreover,
the effect of the decomposition levels and wavelet func-
tions on the classification of snoring and non-snoring
sound is explored.

3.3. Model evaluation

To evaluate the performance of the proposed recog-
nition system of snoring sound, evaluating indexes such
as sensitivity, accuracy, precision, and F1 score are ex-
pressed as follows:

Accuracy =
(TP +TN)

(TP + FP +TN + FN)
, (7)

Sensitivity =
TP

(TP + FN)
, (8)

Precision =
TP

(TP + FP)
, (9)

F1 =
2Precision ⋅ Sensitivity
(Precision + Sensitivity)

, (10)

where TP represents the number of snoring sounds
classified as snoring sounds (true positive), TN is the
number of non-snoring sounds truly detected as non-
snoring sounds (true negative), FP represents the num-
ber of non-snoring sounds falsely recognized as snoring
sounds (false positive), and FN is the number of events
corresponding to the false detection of snoring sound
as non-snoring sound (false negative).

3.4. Classification results

Figure 3 shows the distribution of coefficient 1 and
WTCC13 which have the first and second highest co-
efficients with labels selected by correlation analysis.
5000 samples were randomly selected from 24 subjects
in the training set. It shows that the distribution of co-
efficient 1 and WTCC13 of snoring sounds is different
from non-snoring sounds, which could distinguish snor-
ing sounds to a certain extent. Figure 4 shows the over-
all accuracy of snoring and non-snoring sounds with
different wavelet functions under different decompo-
sition layers. The WPT features extracted from dif-
ferent decomposition layers and different Daubechies
wavelet functions could work well with accuracies more
than 94%.

It can be seen from Fig. 4a that the overall ac-
curacies of WPT features extracted from layer 5 are
slightly 0.5 percentage points higher than accuracies
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Fig. 3. The distribution of coefficient 1 and WTCC13 of
decomposition layer 5 randomly selected from the training
set of 5000 samples. The coefficient 1 and WTCC13 are the
coefficient and WTCC of the first sub-band and thirteenth
sub-band components. Snoring and non-snoring segments
are denoted by red circle and blue circle symbols, respec-

tively.
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Fig. 4. The snoring recognition result of two kinds of feature
sets under decomposition layer 4, 5, and bark and wavelet
function DB1 to DB10 in Daubechies family: a) WPT fea-

ture set; b) MFCC and WPT combined feature sets.

of layer 4 under most wavelet functions. With the in-
crease of the decomposition level, the frequency of the
signal is divided into smaller bandwidths to obtain
much more detailed information about signals, which
is beneficial for distinguishing snoring and non-snoring
sounds, and yield much better performance. Compar-
ing the recognition rate of layer 5 and bark sub-bands,
there is little difference between these two decomposi-
tion structures. However, layer 5 and the bark sub-
band have the same decomposition construction on
low frequencies (0–5.5 kHz), and layer 5 has much
finer division than the bark sub-band on high frequen-
cies (5.5–44.1 kHz). In other words, the bark sub-band
puts much more emphasis on low frequency. The result
shows that the energy of snoring sound and the diffe-
rence between snoring and non-snoring are mainly on
low frequencies. The information on the high frequen-
cies part also cannot be ignored.

It also can be observed from Fig. 4a that the wa-
velet function also influences the final classification
result. The overall accuracies are different between
wavelet functions in the same decomposition layer.
DB7, DB9, and DB10 in level 5, and DB7 in bark yield
much higher recognition for WPT features among all
test Daubechies wavelet functions, which are 95.2% ap-
proximately, indicating that the wavelet function plays
an important role in the decomposition of the signal.
Comparing Fig. 4, the WPT and MFCC combined fea-
tures yielded accuracy with an average value of 95.5%,
much better than simple WPT features in terms of
overall accuracies under all test wavelet functions and
decomposition levels. The difference in recognition re-
sults of the MFCC and WPT combined features be-
tween decomposition levels and wavelet functions is
not as obvious as simple WPT features. The first three
recognition rates are DB7 in level 5, DB8 in level 5,
and DB9 in L4 which are 95.68%, 95.67%, and 95.65%
respectively under all test conditions.

Table 3 shows detailed results for snoring and non-
snoring recognition of different feature sets including
MFCC, WTCC, WPT features, and WPT+MFCC
combined features under the selected DB7, DB8,
DB9, and DB10 wavelet functions in decomposition
layer 5 and bark sub-bands. It can be known from Ta-
ble 3 that for WPT features, the accuracy of the three
kinds of selected feature sets is comparable, which is
around 95.2%. However, the features extracted from
DB7-Level 5 yield much higher sensitivity with 96.94%,
indicating a higher probability of real snoring sound
being recalled. For WPT−MFCC combined feature
sets, the features extracted from level 5 with the
wavelet function DB7 achieved the best performance
during all test conditions considering sensitivity, pre-
cision, and F1-score, which are 97.27%, 96.48%, and
96.88%, respectively. Compared with MFCC, simple
WPT features, the WPT−MFCC features performed
best, and there is an average improvement of 1 percent-
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Table 3. Detailed classification results and dimensions of selected features of different feature sets including Cepstral
coefficients features, WPT features, and WPT+MFCC combined features under the selected wavelet functions and de-

composition layers selected from Fig. 4.

Feature-set Number of features (total) Accuracy [%] Sensitivity [%] Precision [%] F1 [%] AUC
Cepstral coefficients

MFCC 26 94.76 96.58 95.83 96.20 0.98
WTCC 26 93.57 96.17 94.58 95.37 0.98

WPT
DB7-L5 69 (256) 95.15 96.94 96.21 96.50 0.99
DB9-L5 82 (256) 95.15 96.81 96.18 96.49 0.99
DB10-L5 81 (256) 95.20 96.81 96.23 96.52 0.99

WPT+MFCC
DB7-L5 98 (282) 95.68 97.27 96.48 96.88 0.99
DB8-L5 96 (282) 95.67 97.44 96.30 96.87 0.99
DB9-L4 99 (162) 95.65 97.27 96.27 96.77 0.99

age points and 0.5 percentage points for WPT−MFCC
combined features in terms of overall accuracy, recall,
precision, and F1-score mentioned in the work. The
dimensions of selected features based on the 10-fold
cross-validation are also displayed in Table 3. Fea-
tures with little contribution to the classification are
dropped by the selection technology based on corre-
lation coefficients. Based on the aforementioned dis-
cussion, the features extracted from the wavelet func-
tion DB7 in level 5 decomposition performed better
considering simple WPT features and WPT−MFCC
combined features with dimensions of 69 and 98, re-
spectively.

We also compared two kinds of cepstral coefficients
MFCC and WTCC, which are derived from the Mel-
frequency filter and the wavelet packet transform fil-
ter respectively. The MFCC outperformed the WTCC
with an average improvement of 1 percentage points in
terms of evaluation standards mentioned in the work,
which means that the Mel-frequency could carry more
important information on the upper airway structure
variations than wavelet packet transform does.

4. Discussion

In this work, we proposed a novel system to au-
tomatically extract snoring sounds from the recorded
sounds during sleep based on WPT features. Based
on wavelet packet transform, the snoring sound was
decomposed into different sub-bands with the same
bandwidth and different frequency ranges. Results of
WPT features indicated that the information on snor-
ing sounds and the difference between snoring and non-
snoring sounds were mainly in the middle and low fre-
quency. With increasing decomposition layer, the sig-
nal was decomposed with much smaller sub-bands, and
the difference between snoring and non-snoring sounds

was much more obviously accompanied by a higher
classification accuracy. The snoring sound detection is
the first but vital step during the whole analysis system
of snoring sounds. Many studies have detected snoring
episodes from different kinds of domains.

In previous studies (Han et al., 2006; Karuna-
jeewa et al., 2011; Qian et al., 2015; Solà-Soler
et al., 2007; Sun et al., 2022), acoustic features ex-
tracted from frequency sub-band of the signal have
been demonstrated effectively and widely used in clas-
sifying snoring and non-snoring sounds. Qian et al.
(2015) used the 1000 Hz sub-band features, and power
ratio to detect snoring sound segments. Cavusoglu
et al. (2007) explored the sub-band energy distribu-
tion of snoring and non-snoring segments by divid-
ing the 0–7500 Hz frequency range into 500 Hz sub-
bands, which yielded 90.2% accuracy for simple snor-
ers. These works indicated that the information distri-
bution of snoring sounds is different among sub-bands,
which mainly focus on middle and low frequency parts.
Moreover, since the bark sub-bands focus on the low
frequency part and are sparse in the high frequen-
cy part. The WPT furtherly divided the high fre-
quency part based on bark sub-bands which makes
the difference in the high frequency much more obvi-
ously. And recognition accuracies of layer 5 are slightly
higher than bark sub-bands under most wavelet func-
tion test conditions. Although the distribution of snor-
ing is mainly concentrated in the middle and low fre-
quency parts, the information of snoring sounds in
high frequency part also cannot be ignored. And with
increasing of decomposition layer, the difference be-
tween snoring and non-snoring sounds is getting obvi-
ous, because the signal will be exhibited much more
comprehensively by sub-bands with smaller frequency
ranges.

The results of works (Cavusoglu et al., 2007;
Duckitt et al., 2006; Emoto et al., 2018; Jiang
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et al., 2020; Lim et al., 2019; Qian et al., 2015;
Sun et al., 2022) showed that MFCC and its related
features could yield relatively good performance on
recognizing snoring sounds. Jiang et al. (2020) ex-
tracted the Mel-spectrogram of signal and used a con-
volution neural network (CNN) to classify snoring
and non-snoring sounds with good performance. Sun
et al. (2022) also indicated that different components
of MFCC yielded different contributions to the classi-
fication result. The same result is also shown in this
study. The high effectivity of MFCC and WTCC may
be caused by dividing the signal into different sub-
bands with the same frequency range through Mel-
filter banks based on the mechanism of human hearing.

There are many studies to classify snoring and non-
snoring sounds from other parts shown in Table 4
(Adesuyi et al., 2022;Ankişhan, Tuncer, 2017;Ar-
senali et al., 2018; Jiang et al., 2020; Lim et al.,
2019; Nonaka et al., 2016; Sun et al., 2022) used
the processing way of images to analyze snoring and
non-snoring sound with the recognition accuracy of
95.1% in Mel-spectrogram. In the work of Nonaka
et al. (2016), the auditory image model, which has been
used to numerically explain the auditory phenomenon
of human’s auditory, was developed to automatically
extract snoring sounds from sleep sounds, which could
achieve a sensitivity of 97.2% from 40 subjects. The
work of Lim et al. (2019) and Adesuyi et al. (2022)
yielded the highest 99.0% accuracy compared with all
other studies. However, these results are not convincing
because that there are only 8 and 6 subjects for the two
studies. The diversity of samples too small to demon-
strate the effectiveness of the proposed algorithm. All
these studies are based on subject dependence, which
cannot be directly used in practice. It demonstrated
evident differences between snoring and non-snoring
sounds from all kinds of aspects. The models based
on deep learning perform much better than traditional
machine learning, which also demonstrates the effec-
tiveness of WPT features proposed in this work. It
is worth noticing that these works have yielded com-

Table 4. Classification results of current studies recorded by ambient microphones. Abbreviations include AdaBoost (adap-
tive boosting), CNN (convolution neural network), MNLR (multi-nominal logistic regression), STFT (short-time Fourier

transform), RNN (recurrent neural network), and LLEs (largest Lyapunov exponents).

Author Subjects Features + classifier Accuracy [%] Sensitivity [%]
Jiang et al. (2020) 15 Mel-spectrogram+CNN 95.1 95.4

Nonaka et al. (2016) 40 Audio image model+MNLR 97.3 97.2
Sun et al. (2022) 24 Sub-band features+XGBoost 94.3 96.5
Lim et al. (2019) 8 MFCC, STFT+RNN 98.5 99.3

Ankişhan, Tuncer (2017) 22 Chaotic features+LLEs 94.4 88.3
Arsenali et al. (2018) 20 MFCC+RNN 95.0 92.0
Adesuyi et al. (2022) 6 MFCC+CNN 99.0

This work 24 WPT features+XGBoost 95.15 96.94
WPT+MFCC+XGBoost 95.68 97.27

petitive results on their own limited dataset. However,
there is no sense to compare these accuracies because of
the inconsistent dataset used in studies. The dataset
of each study is established by its own team with sub-
jects from different counties, different recording equip-
ment, and different labeling standards of snoring and
non-snoring sounds. But the result of our work is com-
parable with previous studies in terms of our own
dataset. And it demonstrated that the distribution of
snoring and non-snoring sounds in each sub-band of all
frequency ranges is obviously different.

In conclusion, there are some contributions to this
study. Firstly, it used WPT to extract sub-band fea-
tures and yielded comparable accuracy in recognizing
snoring sounds. Then, it discussed different wavelet
functions and decomposition layers, concluding that
the difference is getting more evident with the fre-
quency range getting smaller, which is more beneficial
for classifying. Thirdly, it demonstrated that although
the distribution of snoring sounds is mainly on the low
frequency part, there are also differences between snor-
ing and non-snoring sounds in the high frequency part.
There are some limitations of the work. The data par-
tition methods mainly included subject dependence
and subject independence which greatly influenced the
classification performance. Subject dependence is an
original data partition method to discuss the features’
influence on classification performance, while the re-
sult of subject independence is more suitable for use
in practice. In this work, the partition of the training
set and test set is based on subject dependence be-
cause of the limited subjects. The subject independent
classification must base on a huge number of training
and validation subjects to make up for the influence of
individual characteristics. There are only 24 subjects
used in the study, which is hard to perform subject
independent classification considering individual cha-
racteristics. It is the next step of the paper to collect
much more snoring sounds from different subjects to
implement detecting snoring sounds based on subject
independence.



L. Ding et al. – Sleep Snoring Sound Recognition Based on Wavelet Packet Transform 11

5. Conclusion

This study proposed a snoring sounds recognition
system based on WPT features and XGBoost classi-
fier. The recorded sleep sounds of 24 subjects, firstly
were enhanced and segmented by a subspace noise
reduction algorithm and signal presence probability
based on the estimation of noise autocorrelation re-
spectively to obtain potential snoring episodes. In the
training set, 10-fold cross-validation was implemented
to select appreciated features and models. Results of
the recognition system showed that features based on
sub-bands could well classify snoring and non-snoring
sounds with accuracy of 95.65%, sensitivity of 97.27%,
and precision of 96.58% in the test set for DB7 fun-
ction and level 5, the best combination of all test condi-
tions. And the comparison among decomposition layers
shows, although the distribution of snoring sounds is
mainly in the low frequency part, there is also evident
difference between snoring and non-snoring sounds in
the high frequency part. However, the MFCC−WPT
combined feature set outperformed the simple MFCC
and WPT feature sets, with accuracy of 95.68%, sensi-
tivity of 97.27%, and precision of 96.68%. These results
have demonstrated that the wavelet packet analysis is
effective in recognizing snoring sounds with less com-
putational complexity, which can be further developed
to analyze OSAHS at home.
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Non-invasive techniques for the assessment of respiratory disorders have gained increased importance in
recent years due to the complexity of conventional methods. In the assessment of respiratory disorders, machine
learning may play a very essential role. Respiratory disorders lead to variation in the production of speech
as both go hand in hand. Thus, speech analysis can be a useful means for the pre-diagnosis of respiratory
disorders. This article aims to develop a machine learning approach to differentiate healthy speech from speech
corresponding to different respiratory disorders (affected). Thus, in the present work, a set of 15 relevant
and efficient features were extracted from acquired data, and classification was done using different classifiers
for healthy and affected speech. To assess the performance of different classifiers, accuracy, specificity (Sp),
sensitivity (Se), and area under the receiver operating characteristic curve (AUC) was used by applying both
multi-fold cross-validation methods (5-fold and 10-fold) and the holdout method. Out of the studied classifiers,
decision tree, support vector machine (SVM), and k-nearest neighbor (KNN) were found more appropriate
in providing correct assessment clinically while considering 15 features as well as three significant features
(Se > 89%, Sp > 89%, AUC > 82%, and accuracy > 99%). The conclusion was that the proposed classifiers may
provide an aid in the simple assessment of respiratory disorders utilising speech parameters with high efficiency.
In the future, the proposed approach can be evaluated for the detection of specific respiratory disorders such
as asthma, COPD, etc.
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1. Introduction

The sound produced by humans to express lan-
guage orally is called speech. As the respiratory system
is the power source, thus, for the production of speech,
to produce vibration in the vocal cord, sufficient airflow
is required (Dogan et al., 2007). Different breathing
patterns depend on the purpose and nature of speech
production. As speaking occurs only during exhalation,

to increase the time available for speech production,
breath out is slower and breath in is fast. Any kind
of airway inflammation can affect the sound of voice
quality. Disorders of the respiratory system may affect
any of the structures and organs which have to do with
breathing (Mohamed, El Maghraby, 2014). Human
speech analysis is a wide research area that helps in
medical condition diagnosis affecting the speech pa-
rameters (Dixit et al., 2014). As per the Global Initia-
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tive for Chronic Obstructive Lung Diseases (GOLD),
respiratory diseases are affecting 400 million worldwide
(Halpin et al., 2020). To treat respiratory disorders
promptly and appropriately, correct diagnosis is essen-
tial. Initially, diagnosis involves auscultation, i.e., the
use of a stethoscope for examining lung sounds. Ana-
log filtering and sound amplification is the basic re-
quirement of standard stethoscopes to be interpreted
by trained professionals. Then the pulmonary function
test (PFT) which measures lungs volume and capacity,
airflow rates, and gas exchange is performed. PFT can
be done by two methods: spirometry or plethysmogra-
phy. Along with these, chest X-rays and CT scans are
performed. Still, misdiagnosis, under-diagnosis, and
delayed diagnosis may occur in the treatment. The rea-
son may involve the expertise needed for performing
PFT and auscultation, overlapping among the disease,
and the complexity of the disease. The prediction of
the disease in the initial stage is very important in the
medical field, as death may occur if a proper treatment
got delayed.

Thus, we proposed a computerised analysis of speech
signals for normal individuals and patients affected by
different respiratory disorders.

1.1. Literature review

A comparative study between parametric and
non-parametric methods, involving the mathemati-
cal transformations in the analysis of speech for
the detection of disease has been demonstrated in
(Sonu, Sharma, 2012). Mel-frequency cepstral coeffi-
cient (MFCC) for feature extraction and dynamic time
warping (DTW) for feature matching were used. Al-
though it was a time-consuming process, voice signal
could be an alternative approach for respiratory disor-
der analysis.

A comparison of the performances of various clas-
sifiers such as Gaussian mixture model (GMM), mul-
tilayer perceptron (MLP) neural networks, support
vector machine (SVM), and hierarchical fuzzy signa-
ture (HFS) along with the usage of a hybrid classifier,
which also reduced the dimensionality, was reported in
(Alghowinem et al., 2013). It was observed that the
best performance was given by using SVM with GMM
as the hybrid classifier. Out of the three fusion meth-
ods, it was observed that while associating with HFS,
MLP, and GMM, the performance of score fusion was
better, while for SVM, the performance of decision fu-
sion was the best. Feature fusion resulted in very poor
performance as compared to other methods.

An acoustic analysis for asthmatic and normal per-
sons in which jitter, shimmer, noise to harmonic ratio
(NHR), and harmonic to noise ratio (HNR) showed
significant variation was reported in (Teixeira, Fer-
nandes, 2014). Jitter, shimmer, and HNR values for
males and females were recorded. The result obtained

on vowel comparison was found to have no difference
between jitter values but there was a difference for
shimmer and HNR values.

For the diagnosis of chronic diseases, different al-
gorithms of classification have been applied to the
database of diseases and the results are very promising.
Still, a novel classification technique is needed. The dif-
ferent methods of acoustic feature extraction and clas-
sification that can help in detecting the disease in the
prior stage are to be developed so that the process of
diagnosis can be simplified.

The different methods of acoustic feature extrac-
tion and classification that can help in detecting the
disease in the prior stage leading to the discrimination
between the voice of healthy and unhealthy persons
were discussed in (Saloni et al., 2014). Digital sig-
nal processing (DSP) techniques were used for feature
extraction whereas vector quantization (VQ), DTW,
SVM, GMM, and artificial neural network (ANN) were
used for feature classification. It was observed that
different classification techniques may not be com-
pared directly due to being measured on a different
database.

An automatic disease diagnosis system that was
adaptive based on SVM was developed in (Gürbüz,
Kılıç, 2014). For the detection of disease in a bet-
ter way, a new kind of SVM, “Adaptive SVM” has
been introduced, showing 100% correct classification
rates. The result showed that the proposed method
demonstrated a higher success rate than an adap-
tive method as compared to non-adaptive methods. The
method was not disease-specific and as practical as it
separates the bias parameters space into subfragments.

To determine the level of asthma, a numerical for-
mula was demonstrated in (Walia, Sharma, 2016).
Voice parameters like jitter, shimmer, fundamental fre-
quency, and maximum phonation time were used for
generating the formula. On analysis, it was found that
the jitter value was low for healthy and high for asth-
matic patients while maximum phonation time was
vice versa.

The myAirCoach decision support systems design
aspects were proposed in (Kocsis et al., 2017) with
the focus on the analysis of three machine learning ap-
proaches (SVM, random forests, AdaBoot) as support
tools. In comparison with SVM and AdaBoot, the ran-
dom forests algorithm shows better accuracy.

SVM, Naïve Bayes, decision tree, and ANN are
considered to be the most widely used classifiers for
chronic disease prediction, but Jain and Singh (2018)
put focus on adaptive and parallel classification sys-
tems that enhance the rate of success and reduce the
time taken in making the decision. In this proposed
method only for feature selection, the filter method was
found to be more efficient. However, by applying hy-
brid approaches to disease databases, redundant, noisy,
and insignificant features may be reduced.
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After applying machine learning to self-manage-
ment asthma, it was found that both Naïve Bayes and
logistic regression-based classifiers provided the high-
est accuracy (AUC > 0.87) in (Tsang et al., 2020).
Asthma Mobile Health Study (AMHS) dataset was
used. Several prevailing machine learning classifiers,
both probabilistic and deterministic models and linear
and non-linear were used. Along with AUC, geomet-
ric mean accuracy (GMA) was employed due to the
skewed nature of the data.

A feasible method of disease detection using analy-
sis of voice was proposed in (Gore et al., 2020). For
feature extraction, MFFC and feature matching DTW
were applied. Various voice analyses were presented
and verified to track characteristics variation in pa-
tients’ voices.

For the passive assessment of pulmonary func-
tions, two algorithms were proposed in (Chun et al.,
2020). One of them was used for distinguishing be-
tween healthy and affected with pulmonary disease and
the other one to estimate the FEV1/FVC (Forced Ex-
piratory Volume to Forced Vital Capacity) ratio us-
ing speech features. Data sets from the research study
and in-clinic study were used to develop and validate
the algorithms. It was observed that the classifica-
tion accuracy was obtained to be 73.7% while the F1
score was 84.5%. Also, a mean absolute error of 8.6%
was observed with FEV1/FVC ratio in regression ana-
lysis.

Even though so much work has already been done
in the speech analysis area and respiratory disorders
but still, less work has been done for combining both.
In the speech area, recognition and emotional patterns
have been considered while the respiratory function
is generally assessment done using lung sounds. So,
this paper deals with the assessment of respiratory
disorder using speech parameters by comparing diffe-
rent classifiers on the same dataset. As per the liter-
ature survey, the main drawback was the use of va-
rious datasets which makes the comparison even more
complicated.

Therefore, for the comparison of classifiers, there is
a need of using the same dataset.

In this article, we have compared 5 classifiers on
the basis of multifold cross-validation and the hold-
out method, and 15 features were extracted from the
speech of each of the 20 participants.

Summary of the study contribution:
– in this study, we have proposed a speech signal-

based detection of affected speech. Different
speech features were extracted from the speech
signal and evaluated using classification tech-
niques to detect abnormalities in the speech pa-
rameters;

– we also implemented and evaluated different ma-
chine learning classifiers capable of differentiating
healthy speech and affected speech.

2. Materials and methods

This section presents different steps involved in the
systematic classification of speech features.

2.1. Data collection

The dataset comprises speech samples of 20 indi-
viduals aged between 24–65 years, 10 healthy (6 males
and 4 females), and 10 patients (10 males and 0 fema-
les). All the participants have given their written con-
sent.

Samples were recorded using Goldwave software
with the sampling frequency of 11 025 Hz by a micro-
phone located 2–3 cm in front of the participant’s lips.
The participants were asked to repeat specified words
in Hindi while sitting and to adopt pitch and loudness
with which they were usually comfortable. Each indi-
vidual recorded the speech for two minutes in a contin-
uous manner. Only one recording was obtained from
each patient.

The database consisting of a sustained phonation
was created. The input signal waveforms of healthy
and affected people’ speech are shown in Fig. 1.
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Fig. 1. (a) Healthy person’s input signal waveform;
(b) affected person’s input signal waveform.

From Fig. 1 it was observed that for the healthy per-
son, the waveform was uniform but for the affected
person, the waveform contains deformities.

For the lung assessment, a spirometry test had been
performed before speech recording for all participants.
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This test estimates the amount of air that can be
breathed in and breathed out of the lungs, as well as if
the air can be blown out of the lungs, fast and easily.
In spirometry, participants were asked to inhale deeply
and hold for 6 seconds then exhale completely. Thus,
the forced expiratory volume in 1 second (FEV1), de-
fined as the amount of air that can be forced from
the lungs in one second, and peak expiratory flow rate
(PEFR) which measures how much air flows through
the bronchi and displays the level of obstruction in the
lungs, were recorded.

All the participants were subjected to a spirometry
test before categorising them as healthy or affected un-
der clinical supervision. The values of FEV1 and PEFR
were used as the gold standard to differentiate the two
groups. A participant was considered affected if the
values of FEV1 and PEFR were observed to be less
than 60.

The vital information such as age, gender, height,
weight, occupation, and medical history was also noted
down and included in the final analysis other than
spirometry.

2.2. Feature extraction

A set of 15 speech features, namely, formant frequen-
cies, F1, F2, and F3, pitch, intensity, jitter (rap, %),
mean autocorrelation, jitter (local, %), mean NHR,
shimmer (local, %), mean HNR, amplitude mean (Pas-
cal), total energy (Pa2 ⋅ s), mean power (intensity), and
standard deviation in a channel (Pascal) was extracted
with the help of PRAAT software.

The following speech parameters are explained as
follows:

– Formant frequencies: speech producing different
frequency components of the sound signal is called
formant frequencies.

– Pitch: pitch is defined as the ordering of sound
property on a scale that is frequency-related.
Thus, the relative highness or lowness of a tone
is considered pitch.

– Intensity: the power of sound per unit area is
known as intensity. Also defined as the amplitude
of the vibrations that affect loudness.

– Jitter: jitter may be defined as frequency parame-
ters variation from cycle to cycle.
Relative jitter or local jitter is defined as the ratio
between the average differences between consecu-
tive periods, relative to the overall average period.
It is given in percentage:

Jitter (relative) =

1
N−1

N−1

∑
i=1

∣Ti − Ti−1∣

1
N

N

∑
i=1
Ti

⋅ 100, (1)

where Ti is extracted F0 period lengths, N is num-
ber of extracted F0 periods.

Jitter (rap): the average absolute difference be-
tween a period and the average of it and its two
neighbors, divided by the average period is defined
as jitter (rap). It is expressed as a percentage:

Jitter (rap) =

1
N−1

N−1

∑
i=1

∣Ti−(
1
3

i+1

∑
n=i−1

Tn)∣

1
N

N

∑
i=1
Ti

⋅100. (2)

– Shimmer: it may be represented as the parameters
associated with the variation of the amplitude of
the sound wave.
Shimmer relative: the ratio between the average
absolute difference between the amplitudes of con-
secutive periods and the average amplitude is de-
fined as shimmer relative, given in percentage:

Shimer (relative) =

1
N−1

N−1

∑
i=1

∣Ai −Ai+1∣

1
N

N

∑
i=1
Ai

⋅ 100, (3)

where Ai is extracted peak-to-peak amplitude
data, N is number of extracted fundamental fre-
quency periods.

– Mean autocorrelation: the relationship between
the current values of variables and their past va-
lues is measured by autocorrelation. The correla-
tion coefficient is usually denoted ρ. For variables,
x and y, each contains N values:

ρ =
∑
i
(xi − µx)(yi − µy)

Nσxσy
, (4)

where the means of x and y are given by µx and
µy, and their standard deviations are given as σx
and σy.

– Harmonic to noise ratio (HNR): the periodic com-
ponents of speech sound divided by non-periodic
components is represent by harmonic to noise ra-
tio:

HNR = 10 ⋅ log10

ACV (T )

ACV (0) −ACV (T )
, (5)

where the autocorrelation coefficient consisting of
all signal energy at the origin is given by ACV (0),
and the autocorrelation component related to the
fundamental period is given by ACV (T ).

– Noise to harmonic ratio (NHR): hoarseness can be
measured effectively by noise to harmonic ratio:

NHR = 1 − autocorrelation. (6)

– Amplitude mean: it is the amplitude of the vi-
brations that affects loudness which is the size of
oscillations of the vocal folds.
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2.3. Statistical significant analysis

Now, to determine the statistical significance of ex-
tracted features, statistically significant analysis using
Statistical Package for Social Sciences (SPSS) was ap-
plied. Each study has a confidence level of 95% and
a p-value of <0.05 considering being statistically sig-
nificant.

2.4. Classification

Classification is a process in which the class of given
data points is predicted and along with targets, in-
put data are also provided. This type of classification
comes under the category of supervised learning.

Thus, to understand the given input variables re-
lated to the class, a classifier utilises some training
data.

There are several classification algorithms varying
in the nature and application of available data.

In the present study, the following classification al-
gorithms were evaluated:

– KNN with all the kernels,
– SVM with all the kernels,
– decision tree,
– logistic regression,
– linear discriminant.

As these algorithms represent a variety of classifiers’
algorithms, they were chosen (Kuncheva, 2014) and
also some of them had performed well in previous stu-
dies (Caruana, Niculescu-Mizil, 2006).

After all the statistically significant features were
obtained, they were used for the classification of
healthy and affected speech. For this, different super-
vised machine learning techniques were applied, ex-
plained as follows:

– Decision tree: as the name specifies, the classifica-
tion or regression models are built in the form of
a tree structure in the decision tree method. The
method applied an if-then rule set that is both
mutually exclusive and exhaustive for the classifi-
cation. One at a time the training data are used
for learning the rule sequentially.

– SVM: for classification and regression problems,
support vector machines are widely used. Figure 2
represents the SVM in a two-dimensional space.
By constructing a hyperplane, it separates two
classes of a sample to distinguish class members
from non-members (Byun, Lee, 2002). A hyper-
plane is constructed as the decision plane in SVM,
separating the positive (+1) and negative (−1)
classes with the largest margin. The maximum
margin of separation between the two classes is an
optimal hyperplane, where the margin is the sum
of the distances from the hyperplane to the closest

support vectors
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Fig. 2. Representation of SVM in a two-dimensional space.

data points of each of the two classes. These clos-
est data points are called support vectors (SVs).
The optimal separating hyperplane is represented
by the solid line in Fig. 2.

In a variety of classification and regression theo-
ries, SVM has been successfully used (Sapankevych,
Sankar, 2009):

– Logistic regression: to model the conditional prob-
ability, the logistic function is used by the statisti-
cal model and this is known as logistic regression.
Basically when the target variable’s value is cat-
egorical then this classification algorithm is used.
Thus, most commonly used when the data in ques-
tion has binary output.
The formula is given:

P =
1

1 + e−(a+bX)
, (7)

where P is the probability of 1 (the proportion of
1 s), e is the base of the natural algorithm, a and b
are parameters of the models, and X is the inde-
pendent variable related to the logistic curve.

– Linear discriminant: linear discriminant analysis
is a simple and effective supervised classification
method, used to create machine learning models
(Amaral et al., 2012). It is used for modelling
differences in groups, i.e., separating two or more
classes.

– KNN: KNN method that uses data and classifies
new data points based on similarity measures is
considered to be the simplest method applied for
regression and classification problems (Amaral
et al., 2013). Classification is done by a maximum
vote from its neighbors. KNN was briefly defined
in the previous works, as KNN calculates the dis-
tance between data points. For this, the simple
Euclidean distance formula is generally used:

d(p, q) = d(q, p) =

¿
Á
ÁÀ

n

∑
i=1

(qi − pi)
2, (8)
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where p and q are two points in Euclidean n-space, qi
and pi are Euclidean vectors, starting from the origin
of the space (initial point), n is n-space.

The block diagram and overall proposed strategy
are depicted in Fig. 3.

Fig. 3. Flowchart of the proposed classification approach.

The dataset has been divided into 67% training and
33% testing parts in the case of the holdout method,
while in the case of the multifold cross-validation pro-
cess both 5-fold and 10-fold have been used. After clas-
sification, the healthy speech was distinguished from
the affected speech signals.

2.5. Performance evaluation

2.5.1. Data division protocol

Two groups of the dataset were formed to evaluate
the performance of the proposed classifier models. One
group was used for training purposes while the other
was used for testing, and k-fold cross-validation and
the holdout were applied as two data division proto-
cols. The holdout is the most common method out of
the several existing in which the given dataset has two
groups divided randomly. The train set will be used to
train the data set, and the unseen test data will be used
to test its predictive power. 67% of the samples were
used for training while 33% were used for testing. The
common problem that generally occurs in most of the
models in machine learning is over-fitting. So, to verify
that the model is not overfit, k-fold cross-validation can
be conducted in which random partition of the data set
into k manually exclusive groups each approximately of
the same size is made. For testing, one is kept, while for
training others are used (Refaeilzadeh et al., 2009).
The experiments were conducted with the 5-fold and
10-fold cross-validation.

2.5.2. Performance measures

After training the data, the testing was performed
and the following performance parameters were used
for evaluation. Accuracy, recall, specificity, true posi-
tive rate, sensitivity, false positive rate, precision, and
the area under the receiver operating characteristic
(ROC), and the area under curve (AUC) are some
well known performance criteria (Fawcett, 2006). In
this paper, we have selected accuracy, sensitivity, speci-
ficity, and AUC for ROC curves as they are generally
applied in medical diagnoses:

– Accuracy: accuracy is obtained by dividing all the
correct predictions by the total number of predic-
tions:

Accuracy =
TP +TN

TP +TN + FP + FN
, (9)

where TP – true positive, TN – true negative, FP
– false positive, FN – false negative.

– Sensitivity: sensitivity is calculated by dividing
true positive by true positive plus false negative:

Sensitivity =
TP

TP + FN
. (10)

– Specificity: true negative divided by the sum of
true negative and false positive is defined as speci-
ficity:

Specificity =
TN

TN + FP
. (11)

– Area under curve (AUC): to evaluate the perfor-
mance, a single value metric is used, known as area
under ROC curve, plotted between true positive
rate (TPR) on the y-axis and false positive rate
(FPR) on the x-axis at the various thresholds.

3. Results and discussion

Table 1 presents an independent sample t-test ap-
plied to the database of 15 features. The detailed
statistics of various features were divided into two
classes, i.e., class 0 (healthy) and class 1 (affected) us-
ing SPSS software.

It has been observed that t-values and df -values did
not provide any significant variances but sig (2-tailed)
provided values of mean autocorrelation to be 0.011
and 0.012 when equal variance was assumed and when
it was not assumed, respectively, as presented in Ta-
ble 1. Similarly, mean NHR values were achieved to be
0.009 and 0.010, and mean HNR values were 0.000 for
both the cases, i.e., when equal variance was assumed
and when it was not assumed. This test shows that
only the mean autocorrelation, mean NHR, and mean
HNR were statistically evident in the healthy and af-
fected speech (p-value < 0.05 and confidence interval
of 95%), while the rest features were not statistically
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Table 1. t-test for equality means.

Independent samples test

Speech features Conditions
t-test for equality of means

sig (2-tailed)

F1
Equal variances assumed 0.838
Equal variances not assumed 0.839

F2
Equal variances assumed 0.137
Equal variances not assumed 0.145

F3
Equal variances assumed 0.425
Equal variances not assumed 0.426

Pitch
Equal variances assumed 0.448
Equal variances not assumed 0.451

Intensity
Equal variances assumed 0.973
Equal variances not assumed 0.973

Jitter (local)
Equal variances assumed 0.190
Equal variances not assumed 0.190

Jitter (rap)
Equal variances assumed 0.319
Equal variances not assumed 0.333

Shimmer (local)
Equal variances assumed 0.365
Equal variances not assumed 0.367

mean Auto Correlation
Equal variances assumed 0.011
Equal variances not assumed 0.012

mean NHR
Equal variances assumed 0.009
Equal variances not assumed 0.010

mean HNR
Equal variances assumed 0.000
Equal variances not assumed 0.000

Amplitude mean [Pa]
Equal variances assumed 0.617
Equal variances not assumed 0.621

Total energy [Pa2 ⋅ s] Equal variances assumed 0.672
Equal variances not assumed 0.672

mean Power (intensity) in air [dB]
Equal variances assumed 0.971
Equal variances not assumed 0.971

Standard deviation in the channel [Pa]
Equal variances assumed 0.763
Equal variances not assumed 0.764

significant. Hence these three features were considered
for further classification.

Four performance measures, namely: accuracy, sen-
sitivity, specificity, and AUC were used for evaluation
under three data division protocols, namely: 5-fold,
10-fold, and the holdout. MATLAB software was used
to perform this step.

Table 2 shows the performance of various classifier
models using 5-fold, 10-fold, and the holdout cross-
validation when 15 features were considered. It was
observed that in 5-fold and 10-fold, the decision tree
achieved the highest values of classification accuracy of
90%. The other performance measures, namely, sensi-
tivity and specificity were found to be 90%, and AUC
was 0.82. Whereas logistic regression and linear dis-
criminant achieved the lowest values. Cubic KNN also

shows 90% classification accuracy in the case of the
5-fold method. Also, coarse KNN achieved the least
value of classification accuracy and AUC, i.e., 0.5, but
achieved the highest value for specificity, i.e., 100%,
and zero value for sensitivity.

It was found that in the holdout method, decision
tree, linear discriminant, all the kernels of SVM (except
quadratic SVM), and weighted KNN achieved 100%
sensitivity. Zero specificity was observed in fine Gaus-
sian SVM and fine KNN. Also, zero sensitivity was
again observed in the case of coarse KNN along with
50% of accuracy and 86% of specificity. The decision
tree achieved the highest accuracy of 83%.

Table 3 shows the performance evaluation of three
significant features obtained by statistical analysis us-
ing SPSS, namely: mean NHR, mean HNR, and mean



20 Archives of Acoustics – Volume 48, Number 1, 2023

Table 2. Performance of various classifiers using 15 features under different data division protocols.

Data division protocol Classification techniques
Performance measures

Accuracy [%] Sensitivity [%] Specificity [%] AUC

5-fold

Decision tree 90 90 90 0.82
Linear discriminant 45 40 50 0.45
Logistic regression 45 40 50 0.45
Linear SVM 75 80 70 0.70
Quadratic SVM 65 70 60 0.67
Cubic SVM 45 40 50 0.68
Fine Gaussian SVM 45 60 30 0.41
Medium Gaussian SVM 80 80 80 0.80
Coarse Gaussian SVM 75 80 70 0.75
Fine KNN 60 60 60 0.60
Medium KNN 85 90 80 0.89
Coarse KNN 50 0 100 0.50
Cosine KNN 85 80 90 0.86
Cubic KNN 90 90 90 0.89
Weighted KNN 75 90 60 0.83

10-fold

Decision tree 90 90 90 0.82
Linear discriminant 55 50 60 0.49
Logistic regression 40 50 30 0.42
Linear SVM 65 70 60 0.66
Quadratic SVM 75 90 60 0.82
Cubic SVM 60 60 60 0.67
Fine Gaussian SVM 50 80 20 0.41
Medium Gaussian SVM 80 80 80 0.81
Coarse Gaussian SVM 80 80 80 0.49
Fine KNN 55 60 50 0.55
Medium KNN 70 90 50 0.84
Coarse KNN 50 0 100 0.50
Cosine KNN 80 80 80 0.84
Cubic KNN 70 80 60 0.78
Weighted KNN 75 90 60 0.81

Holdout

Decision tree 83 100 71 0.83
Linear discriminant 67 67 75 0.67
Logistic regression 67 67 75 0.67
Linear SVM 67 100 60 0.56
Quadratic SVM 50 67 67 0.56
Cubic SVM 67 100 60 0.78
Fine Gaussian SVM 50 100 0 0.67
Medium Gaussian SVM 67 100 60 0.89
Coarse Gaussian SVM 67 100 60 0.44
Fine KNN 50 100 0 0.50
Medium KNN 67 67 75 0.67
Coarse KNN 50 0 86 0.50
Cosine KNN 50 67 67 0.56
Cubic KNN 50 33 80 0.61
Weighted KNN 67 100 60 0.56
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Table 3. Performance of various classifiers using 3 significant features under different data division protocols.

Data division protocol Classification techniques
Performance measures

Accuracy [%] Sensitivity [%] Specificity [%] AUC

5-fold

Decision tree 90 90 90 0.82
Linear discriminant 75 70 80 0.76
Logistic regression 75 70 80 0.69
Linear SVM 85 90 80 0.87
Quadratic SVM 80 80 80 0.84
Cubic SVM 70 70 70 0.67
Fine Gaussian SVM 80 70 90 0.89
Medium Gaussian SVM 80 80 80 0.85
Coarse Gaussian SVM 85 90 80 0.85
Fine KNN 85 90 80 0.85
Medium KNN 85 100 80 0.79
Coarse KNN 50 0 100 0.50
Cosine KNN 85 90 80 0.84
Cubic KNN 85 90 80 0.79
Weighted KNN 85 90 80 0.85

10-fold

Decision tree 90 90 90 0.82
Linear discriminant 80 80 80 0.92
Logistic regression 75 70 80 0.81
Linear SVM 85 90 80 0.86
Quadratic SVM 85 90 80 0.81
Cubic SVM 70 70 70 0.63
Fine Gaussian SVM 75 70 80 0.87
Medium Gaussian SVM 80 80 80 0.84
Coarse Gaussian SVM 85 90 80 0.85
Fine KNN 80 80 80 0.80
Medium KNN 85 90 80 0.85
Coarse KNN 50 0 100 0.50
Cosine KNN 85 90 80 0.90
Cubic KNN 85 90 80 0.82
Weighted KNN 85 90 80 0.84

Holdout

Decision tree 100 100 100 1.00
Linear discriminant 80 67 100 1.00
Logistic regression 80 67 100 0.83
Linear SVM 100 100 100 1.00
Quadratic SVM 100 100 100 1.00
Cubic SVM 80 100 50 0.50
Fine Gaussian SVM 80 67 100 0.83
Medium Gaussian SVM 100 100 100 1.00
Coarse Gaussian SVM 80 100 67 1.00
Fine KNN 80 67 100 0.83
Medium KNN 60 33 100 1.00
Coarse KNN 40 0 100 0.50
Cosine KNN 100 100 100 1.00
Cubic KNN 60 33 100 1.00
Weighted KNN 80 67 100 1.00
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autocorrelation that showed significant variance. The
same procedure was adopted and the result was shown.

Table 3 summarises the performance measures of
various classifier methods when only three significant
features were considered using different data division
protocols. It was found that 90% of classification accu-
racy was shown by a decision tree in 5-fold as well as
10-fold cross-validation. The other performance mea-
sures, namely, sensitivity and specificity were 90%, and
AUC was 0.82. Again, coarse KNN showed the small-
est value of classification accuracy, i.e., 50%, and AUC
to be 0.5 but gave the highest value for specificity, i.e.,
100%, and zero value for sensitivity.

Whereas in the holdout method it was found that
decision tree, linear SVM, quadratic SVM, medium
Gaussian SVM, and cosine KNN have shown classifi-
cation accuracy, sensitivity, and specificity to be 100%,
and AUC to be 1. Specificity was found to be 100% in
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Fig. 4. ROC plots for various classifiers: a) decision tree (hold and method); b) cosine KNN (10-fold);
c) cubic KNN (5-fold).

almost all the classifiers except cubic SVM and coarse
Gaussian SVM. Coarse KNN achieved zero sensitivity,
40% accuracy, 0.5 AUC along with 100% specificity.

On analysing Tables 2 and 3, it was observed that
sensitivity, accuracy, specificity, and AUC were found
to be high in the case of the decision tree as com-
pared to the rest of the classifiers. Similarly, the hold-
out method was found to be the best performer out of
all the three data division protocols considering both
15 features and three significant features.

It was also observed that, out of all the kernels of
KNNs, coarse KNN, and out of all the kernels of SVMs,
fine Gaussian SVM was giving poor performance throu-
ghout the experiment.

The diagnostic capability of classifiers and features
can be determined using TPR and TNR. A plot bet-
ween TPR and TNR is called receiver operating cha-
racteristics (ROC). Figure 4 shows the result of the
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best three ROC analyses. It was observed that the AUC
of 1 was obtained by the holdout method for the deci-
sion tree and the AUC of 0.90 and 0.89 were achieved
by k-fold methods for KNN classifiers and verified in
the results of Tables 2 and 3.

The best three ROC curves observed during the
analysis were represented in Fig. 4.

4. Conclusion

It has been observed that on comparing different
classifiers for all features, accuracy, specificity, sensi-
tivity, and area under the curve performance measures
for 5-fold, 10-fold cross-validation, and the holdout
method, the decision tree achieved 90–100% classifi-
cation accuracy. Further, SVMs and KNNs achieved
the lowest accuracy between 40 and 70%. The holdout
method had given a promising result.

Similarly, on comparing the accuracy with three
significant features almost the same result was shown
by both the 5-fold and 10-fold cross-validation meth-
ods for all the various classifiers. For the decision tree,
it was again 90%, for SVM and KNN it was found to be
90–100%. But for logistic regression and linear discrim-
inant, the performance improved to 80–90%. Again,
the holdout method had given almost perfect results.

Thus, it is concluded that using different machine
learning techniques, a comparative analysis of classi-
fiers shows that the decision tree was effective as clas-
sification accuracy achieved 90% along with the hold-
out data division protocol for classification of speech
of healthy and affected individuals.
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A numerical study and simulation of breast imaging in the early detection of tumors using the photoacoustic
(PA) phenomenon are presented. There have been various reports on the simulation of the PA phenomenon in
the breast, which are not in the real dimensions of the tissue. Furthermore, the different layers of the breast
have not been considered. Therefore, it has not been possible to rely on the values and characteristics of
the resulting data and to compare it with the actual state. Here, the real dimensions of the breast at three-
dimensional and different constituent layers have been considered. After reviewing simulation methods and
software for different stages of the PA phenomenon, a single suitable platform, which is commercially available
finite element software (COMSOL), has been selected for simulating. The optical, thermal, elastic, and acoustic
characteristics of different layers of breast and tumor at radiated laser wavelength (800 nm) were accurately
calculated or obtained from a reliable source. Finally, by defining an array of 32 ultrasonic sensors on the
breast cup at the defined arcs of the 2D slices, the PA waves can be collected and transmitted to MATLAB
software to reconstruct the images. We can study the resulting PA wave and its changes in more detail using
our scenarios.
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1. Introduction

Breast cancer is one of the most common forms of
cancer among females, but it is less common among
men. In 2019, the estimated 268,600 new cases of in-
vasive breast cancer were diagnosed among women
and approximately 2,670 cases were diagnosed in men.
Breast cancer typically has no symptoms when the tu-
mor is small and can be easily treated, therefore screen-
ing is vital for early detection (American Cancer So-
ciety, 2019). There are several methods for carefully
screening breast tissue to identify cancerous tumors.
However, a low-risk and non-invasive way that can
detect cancerous tumors early is a priority. Among
the available imaging modalities for breast tomogra-

phy, we discuss the advantages and disadvantages of
only two types of these methods in this paper which
are based on pure optical and pure acoustic imag-
ing. The photoacoustic (PA) approach combines these
two methods and takes the best of both. The main
limitation of the pure optical imaging modalities for
breast cancer detection, such as diffuse optical to-
mography (DOT), fluorescence molecular tomography
(FMT) (Corlu et al., 2007), and optical coherence to-
mography (Boppart et al., 2004) is the scattering of
light in the environment. It lowers the spatial resolu-
tion in deep tissue imaging. Light photons can pene-
trate to a depth of up to 1 mm of living tissue without
scattering, as they are based on ballistic and quasi-
ballistic photons (Wang, 2008). The scattering of ul-
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trasonic waves in living tissue is approximately 2–3 or-
ders of magnitude weaker than in optical waves; there-
fore, pure ultrasonic imaging has a better resolution
than optical imaging. However, in pure acoustic imag-
ing, the image’s contrast is determined by the mechan-
ical and elastic properties of the living tissue. There-
fore, the contrast of the images may not be suitable
for the early detection of a cancerous tumor (Wang,
2004). Photoacoustic imaging (PAI) has become an at-
tractive, low-risk, and non-invasive tool in imaging bi-
ological tissues using non-ionized short laser pulse ab-
sorption and receiving PA signals. The PAI is based
on the PA phenomenon discovered in 1880 by Alexan-
der Graham Bell. It refers to the generation of acous-
tic waves by the absorption of electromagnetic energy
such as optical or radiofrequency. The use of this phe-
nomenon in medical imaging had not been formed be-
fore the advent of the laser light. To generate an acous-
tic pressure wave in the PA phenomenon, the temper-
ature changes in the sample must be variable which
can be achieved by the pulsed laser light or contin-
uous laser light with the power intensity modulated
at a constant or variable frequency. Due to the high
signal-to-noise ratio of pulsed laser light, we use it in
PAI, by considering the maximum permissible pulse
energy and the maximum permissible pulse repetition
rate governed by the American National Standards In-
stitute (ANSI) laser safety standards. To use the PA
phenomenon in tissue imaging and to obtain informa-
tion about the density, sound speed, and geography
of the tissue, a short (instead of long) homogenized
pulsed laser light should be used (Wang, 2017). Then,
by sampling information and signals of the ultrasonic
detector and choosing appropriate image reconstruc-
tion algorithms, the tissue can be imaged. The use of
PAI for breast tissue in the early diagnosis of breast tu-
mors and cancer has been expanded in recent decades
because it combines the high optical contrast of tis-
sue chromophores and the high spatial resolution of
pure ultrasonic imaging (Lin et al., 2018). According
to angiogenesis of breast cancer and subsequent map-
ping of endogenous breast chromophore concentration
including oxy- (HbO2) and deoxyhemoglobin (HHb),
PAI could show high spatial resolution and sensitivity
in the early detection of tumors, including dense breas
(Laufer et al., 2006). Additionally, tissue imaging us-
ing the PA phenomenon (Silverman et al., 2010), es-
pecially in the early detection of cancerous tumors, has
been extensively studied. It is also possible to detect
and track different materials in various environments
such as liquid and gas by using the PA phenomena
(Pogorzelski et al., 1999; Ponikwicki et al., 2019).

2. Materials and methods

Following this section: we describe the different
simulation software that we have used in various steps

of the PA phenomenon and finally choose the most
suitable simulation software. Later the governing equa-
tions of the PA phenomenon are briefly discussed. We
show the simulated shape of tissue in our COMSOL
simulation by expressing the actual structure of breast
tissue and its different parts. Different modules of
COMSOL software and their necessary parameters
have also been stated by relevant mathematical rela-
tions. In addition, the image reconstruction method
has been discussed using MATLAB code for the re-
construction of 2D tomographic image slices of breast
tissue. The remaining sections concern the study of re-
ports resulting from simulation.

2.1. Simulation of the photoacoustic phenomenon
using different software

To have a risk-free environment and insight into
dynamics, visualization, increasing accuracy, handling
uncertainty, and saving money and time, we first de-
cided to use PAI simulation modeling. There are some
methods for simulating different parts of the PA phe-
nomenon. In the following subsections, we briefly de-
scribe some of the techniques that we have used and
choose the best one.

2.1.1. Software for modeling the homogenizing system
of laser light

To transfer the laser energy uniformly to the 2D
tomographic slices, in the 3D imaging process of the
tissue, it is critical to shape and homogenize the laser
light with suitable optical systems. For this purpose,
various methods such as refractive, diffractive, and mi-
crolens (imaging and non-imaging) beam homogeniz-
ers (Ai et al., 2017) are available for which VirtualLab
Fusion has been used. This part of the simulation is
essential in PA system building.

2.1.2. Simulation of light tissue interaction and PA ge-
neration and propagation

The Monte Carlo method is an approach used to
solve forward modeling problems in many different
fields of physics. It is also used to simulate how pho-
tons are transported and absorbed in turbid media.
The Monte Carlo model of steady-state light trans-
port in multilayered tissue (MCML) helps us deter-
mine the amount of light absorption in the studied tis-
sue (Wang, Jacques, 1992; Jacques, Wang, 1995).
After acquiring light tissue interaction data, for simu-
lation of PA generation and propagation, we must im-
port the absorption data matrix into the K-wave MAT-
LAB toolbox and simulate the time-domain PA prop-
agating for homogeneous or heterogeneous medium in
one, two, and three dimensions (Treeby, Cox, 2010).

Furthermore, a finite element (FE) – based simula-
tion model has been developed incorporating light pro-
pagation, PA signal generation, and sound wave prop-
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agation, in soft tissues using a commercial FE simu-
lation package, COMSOL Multiphysics. By using the
simulation mentioned in the first part, MCML for light
and tissue interaction, and K-wave MATLAB toolbox
for photoacoustic propagation, the simulations are in-
termittent and incoherent. However, MCML is very
time-consuming (Cassidy et al., 2018; Wang et al.,
2012). In the case of MCML and K-wave toolbox, we
cannot maneuver on the actual shape, size, and geo-
metry of the tissue (Akhlaghi et al., 2019). According
to the above-mentioned reasons and the fact that the
PA phenomena is multiphysics, it seems that the FEM
should be a suitable option for this simulation. The
FEM method is an efficient and accurate approach for
PA phenomena simulation. Thus, we switch to a single
platform, COMSOL, to carefully model and solve the
problems expressed.

2.1.3. The final software selected for this research

This research has used commercially available finite
element software (COMSOL) as a single platform for
simulating PAI in the breast tissue. Based on the latest
reports (Sowmiya, Thittai, 2017) concerning numer-
ical modeling of PA, the tissue should be performed in
tiny dimensions and an unrealistic shape to reduce the
calculations and complexity of simulations. With re-
gards to our modeling, the actual dimensions of breast
tissue with its various components, including muscle,
mammary glands, and fat, have been considered. Each
stage of the PA signal generation process, including the
effect of penetration of the radiant laser, the conversion
of absorbed light into heat, the expansion of the tissue
in volume and stress generation, and consequently me-
chanical expansion generating acoustic pressure wave
propagating in the tissue would be fully modeled in
COMSOL. Moreover, by changing the tumor location
to different areas of breast tissue and its diameter, we
maneuver the PA signal resulting from different condi-
tions and positions. Besides all this, the arrangement
of ultrasonic sensors is very similar to the real state.
Finally, the PA signal obtained from an array of the
detector on breast tissue in COMSOL software is con-
verted into images by image reconstruction algorithm
codes written in MATLAB.

2.2. A brief description of mathematical equations

Using linear fluid dynamics equations, a pair of cou-
pled differential equations for temperature and pres-
sure can be developed. According to Morse and In-
gard, changes in temperature (T ) and pressure (P )
from their ambient values can be expressed as follows
(Wang, 2017):

∂

∂t
(T −

γ − 1

γα
P) =

k

ρCp
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2T +
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ρCp
(1)

and

[∇
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−
γ

v2
s

∂2

∂t2
]P = −

αγ

v2
s

∂2

∂t2
T, (2)

where γ is the specific heat ratio, α (pressure expansion
coefficient) = (

∂P (pressure)
∂T (temperature))V (volume)

, k is the ther-

mal conductivity, Cp is the specific heat, p is the am-
bient density, vs is the sound speed, t is the time, and
H is the energy per unit volume and time deposited
by the optical radiation beam (Wang, 2017).

The aforementioned equations did not include the
effects of viscosity or energy relaxation. Assuming
γ = 1, which for most fluids is a common and accept-
able assumption, and assuming heat conductivity is set
to zero (∇T = 0), then Eqs. (1) and (2) reduce to an
equation for heat diffusion and a wave equation relat-
ing pressure to the speed of sound:

[∇
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s
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]p = −

β

Cp

∂H

∂t
, (3)

where β = ( 1
V
)(∂V

∂T
)
p
and α =

ρβv2s
γ

, V is volume, and

T is temperature (Wang, 2017).
To improve the optimal feature of the PA signal,

the duration of pulsed laser light radiation (τ) must
be a few nanoseconds to include the following two con-
ditions:

– thermal confinement, which represents the neglect
of thermal diffusion during laser light irradiation
(Li, Wang, 2009):

τ < τth =
d2
c

4DT
, (4)

where τth is the thermal confinement threshold,
DT is the thermal diffusivity, and dc is the desired
special resolution;

– stress confinement means neglecting the volume
expansion of the absorber during laser light irra-
diation:

τ < τst =
dc
VS
, (5)

where τst is the stress confinement threshold and
VS is the speed of sound.

Under two conditions, irradiation time can be
treated as a delta function (Li, Wang, 2009).

Therefore, we are able to rewrite Eq. (3) in this
form:

[∇
2
−

1

v2
s

∂2

∂t2
]p(r, t) = −

p0

v2
s

∂δ(t)

∂t
. (6)

The acoustic wave p(r, t) at the position (r) and time (t),
prompted by an initial source, p0(r) = Γ (r)Ae(r),
where Ae(r) is a spatial electromagnetic (EM) absorp-
tion function and Γ (r) = v2

sβ/Cp is the Grüneisen pa-
rameter (Wang, 2017).
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2.3. FEM model

2.3.1. Breast model in simulation

Breast tissue consisting of some similar sections is
called the lobe, which is made up of many smaller
parts called lobules. The milk produced from the lobe
is passed to the nipple through tiny vessels named
ducts. Fibrous tissue and fat fill the spaces between
the lobules and ducts. In addition, fat is present in
different regions: subcutaneous, retro-mammary, and
intra-glandular. Figure 1 shows a cross-section of the
human mammary in detail. Most of the initial devel-
opment of cancer occurs inside the glandular tissue.
Breast cancer can be in either lobes or ducts. Based on
the starting location, ductal carcinoma in situ (DCIS)
and lobular carcinoma in situ (LCIS) are the two main
types of in situ breast cancer (American Cancer So-
ciety, 2019). This study aims to model breast tissue
in real dimensions for accurate screening of PA sig-
nals. In modeling, different parts of the breast tissue
are separated to discriminate the distinct characteris-
tics of each part required in the steps of the PA signal
propagation.

Fig. 1. Cross-sectional image of the normal breast: 1 – chest
wall; 2 – pectoralis muscles; 3 – lobules; 4 – nipple; 5 –
areola; 6 – milk duct; 7 – fatty tissue; 8 – skin (Lynch,

Jaffe, 1987).

The breast has been modeled as a hemisphere with
different layers, as shown in Fig. 2. A tumor at a dia-
meter under 20 mm with a spherical shape has been
supposed to investigate early-stage cancer (Hammer
et al., 2008). Breast tissue is considered as a hemi-
sphere with a diameter of 80 mm. The size of the breast
is based on the actual available sizes (Bengtson,
Glicksman, 2015). The entire tissue is enclosed inside
a semi-ellipsoid chamber of water. The inner layers of
breast tissue are simulated as semi-ellipsoid layers con-
sisting of the gland, adipose, and muscle of appropriate
size in realistic dimensions. The laser source is located
as a point source near tumor side of the breast tissue in
the aqueous environment, the distance of laser source
to the tissue is about 3 mm in coordinates as follows:
x = 77 mm, y = 36 mm, z = 53 mm (Fig. 2b).

a)

12 mm

28 mm

40 mm

5 mm 5 mm70 mm

20 mm

Tumor

Water

Gland

Adipose

Muscle
z

y x

b)

z

y x

Water chamber

Adipose

Gland

Muscle

Laser point
source

Tumor

Fig. 2. a) Schematic of the cross-sectional view of the breast
model at LOT1 scenario with dimensional details; b) 3D
computational domain of breast model in COMSOL Mul-

tiphysics.

For a complete study of simulation and subsequen-
tly PA signal, we have considered various scenarios
for breast tumor, different positions, and sizes, which
change in each scenario as abbreviated and listed in
Table 1. In all scenarios mentioned, the location and
power of the laser light has not changed. Three scenar-
ios for tumor location change were defined: 1) entirely
inside the glandular tissue (LOT1); 2) entirely inside
the adipose (LOT2); 3) between the gland and adipose
(LOT3). Also, compared to the base scenario: (LOT1),
in LOT2 and LOT3, the tumor location just along the
z-axis increased by 10 and 25 mm, respectively.

Table 1. Various scenarios considered in the simulation.

Scenario
name

Location of tumor
Diameter
of tumor
[mm]

LOT1 Inside gland 19
LOT2 Inside adipose 19
LOT3 Between gland and adipose 19
DOT1 Between gland and adipose 40



M. Ahangar Darband et al. – Numerical Simulation of Breast Cancer in the Early Diagnosis. . . 29

Absorption of the laser light 
by the sample

Increase in breast and tumor tissue 
temperature: more temperature increment 

in tumor than breast

Thermal expansion: more 
thermal expansion in tumor 

than breast

Photoacoustic wave propagation

Studying the effect of tumor 
displacement at breast layers 
in the magnitude of PA wave

Studying the effect of tumor at 
different sizes in the 

magnitude of PA wave

End

YesYes

Figure 3: Flowchart description of the procedure of the PAI and the simulations.
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LOT
scenarios

DOT
scenarios

Homogenized laser pulse radiated on 
the sample

NoNo

Fig. 3. Flowchart description of the procedure of the PAI and the simulations.

In the scenario of increasing the tumor size (DOT1),
the tumor radius compared to previously defined sce-
narios has increased from 9.5 mm to 20 mm without
changing the coordinate position of the tumor. Howe-
ver, due to the increase in tumor diameter, it will be
located between adipose tissue and glands. For a bet-
ter conception of the PAI process and the procedure
of the simulations, a schematic flowchart is illustrated
in Fig. 3.

We used four modules of COMSOL Multiphysics to
simulate PA propagation in the breast. We described
all of these in the following.

2.3.2. Light propagation

The initial local acoustic pressure wave (p0) could
also be estimated with the following equation to eval-
uate the amount of EM energy absorption effectively
(Wang, 2017):

p0(r) = ΓηthµaF, (7)

where Γ is the Grüneisen parameter, ηth is the percent-
age of optical absorption that is converted into heat,
µa is the optical absorption coefficient [cm−1], and F is
the optical fluence [J/cm2]. The optical fluence of ra-
diated laser light is directly related to the amplitude of
acoustic pressure waves. Therefore, to obtain a strong
PA signal, we must maximize the laser fluence on tis-
sue. In the diffusion regime:

F (r) =
F0

4πDr
e−(µeff)r, (8)

where r is the distance from the source, F0 is the
fluence at the source, D is the diffusion constant
(D = 1/(3(µa + µ

′
s))), and µeff = (

√
µa/D) is the ef-

fective attenuation coefficient. According to Eq. (8),

the penetration depth of the laser is defined by (µeff)

which is dependent on the laser wavelength. In PAI,
red, and near-infrared (NIR) wavelengths usually are
preferred because, in this wavelength range, the op-
tical attenuation of biological tissue is at its lowest
level. HbO2, HHb, and water are assumed to be the
main absorbers in this study. In particular, a wave-
length of around 800 nm is the isosbestic point of the
molar extinction spectra of HbO2 and HHb (Wang,
2017). Here, we modeled a radiated laser source as
the Gaussian pulse in the 800 nm wavelength, with
power, Wp = 8 mJ/cm2, pulse duration τp = 10 ns, and
τcenter = 30 ns. The radiated laser fluence is modeled
by the “coefficient form PDE” interface in COMSOL.
The optical properties of the tumor and glandular tis-
sue depend on the assumed magnitude of absorbers
that have a dramatic effect at the given wavelength.
Once the optical properties are obtained at each wave-
length, we can calculate the absorption coefficient of
light, µa [cm−1], of an absorber by using one of these
equations (Jacques, 2013):

µa = −
1

T

∂T

∂L
, (9)

T = e−µaL = 10−εCL = e−4πn′′L/λ, (10)

where T (dimensionless) is transmitted or surviving
fraction of the incident light after an incremental path
length ∂L [cm], n′′ is the imaginary refractive index of
the medium, ε is the extinction coefficient [cm−1M−1],
and C(M) is the concentration of chromophore. The ab-
sorption coefficient of a tissue is the sum of all main
absorbers:

µa = ln (10)∑
i

Ciεi. (11)
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Table 2. Related parameters of the breast tissue sections and tumor at 800 nm in the first module of COMSOL.

Materials Density ρ
[kg/m3]

Refractive index µa at 800 nm
[mm−1]

µ′s at 800 nm
[mm−1]

Adipose 930a,b 1.455 c 0.00193 1.52
Glandular 1050a,b 1.4 c 0.00436 1.12
Muscle 1030d 1.4d 0.230d 0.785d

Water 994b 1.3290 e 0.00196 f 0.0000402 e, f

Tumor 1050a ∼1.4g 0.00302 0.625
a(Soltani et al., 2019); b(Hasgall et al., 2018); c(Dehghani et al., 2005); d(Wang et al., 2012);
e(Hale, Querry, 1973; Polyanskiy, 2016); f(Downing, 2008); g(Metwally et al., 2014).

Table 3. Required parameters in the “bioheat transfer” module.

Materials Thermal conductivity k
[W ⋅m−1 ⋅ k−1]

Specific heat capacity Cp

[J ⋅ kg−1 ⋅K−1]
Coefficient of thermal expansion β

[K−1]
Adipose 0.21a 2770a 3E-5a

Glandular 0.48a 3770a 4.5E-5a

Muscle 0.49b 3421b 26.73E-5 c

Water 0.60d 4178d ∼24E-5 e

Tumor 0.54a 3852a 6.5E-5a

a(Soltani et al., 2019); b(Singh, Repaka, 2018); c(Wilkie, 1953, Lan et al., 2019); d(Hasgall et al., 2018);
e(Oraevsky et al., 2001).

Also, the reduced scattering (or transport scattering)
coefficient of light, µ′s [mm−1], the spectrum of tissue
has been shown to fit well to an empirical approxima-
tion to the Mie scattering theory given by (Dehghani
et al., 2009):

µ′s = aλ
−b, (12)

where a and b are the scatter amplitude and the scatter
power, respectively, at any wavelength in µm.

The percentage of absorbent ingredients of tumor,
glandular tissue, and adipose of breast is based on
(Dehghani et al., 2009). The spectral characteristics
of HHb, HbO2, and water at 800 nm are taken from
references (Hale, Querry, 1973; Prahl, 2017). The
optical parameters of breast tissue sections and tumor
used in “coefficient form PDE” module at COMSOL
are listed in Table 2.

We entered the effect of radiant laser light as
a point source in the finite element-based numerical
model irradiated onto breast tissue surrounded by an
aqueous medium. The boundary conditions are also
based on references (Wang et al., 2012).

2.3.3. Heat transfer

The second part of the acoustic pressure wave pro-
duction in the PA phenomenon process is converting
the penetrating energy of the radiant laser into heat
of which the tumor will have the highest absorption
amount according to its material properties. This part
can be described by the “bioheat transfer” module of
COMSOL. We can connect this module by the heat
source that can be inserted in an equation by multi-

plying the optical absorption coefficient and the optical
fluence rate estimated previously. The required ther-
mal properties of breast tissue and tumor used in the
heat transfer module are listed in Table 3.

2.3.4. Thermal expansion

Due to the increase in tumor temperature, the
tumor subsequently undergoes thermoelastic expan-
sion, which was modeled using a “structural mechanics”
module. All related parameters entered in this module
are listed in Table 4.

Table 4. Related parameters in the “structural mechanics”
module.

Materials Poisson’s ratio
Adipose 0.49a

Glandular 0.49a

Muscle 0.45b

Water 0.4995 c

Tumor 0.49d

a(Bhatti, Sridhar-Keralapura, 2012; Gefen et al.,
2007; Soltani et al., 2019); b(Grimal et al., 2005);
c(Gefen et al., 2007); d(Soltani et al., 2019).

2.3.5. PA signal generation

Finally, the pressure wave propagation can be stud-
ied using the “pressure acoustics, transient” module in
COMSOL. Table 5 lists all related parameters in the
module of this section.
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Table 5. All related parameters in the last module
of COMSOL.

Materials Speed of sound Cs

[m/s]
Young’s modulus

[Pa]
Adipose 1440.2a 18E3b

Glandular 1505.0a 50E3b

Muscle 1588.4a 675E3 c

Water 1482.3a Bulk modulus
= 2.1790576 GPad

Tumor 1540 e 106E3b

a(Hasgall et al., 2018); b(Soltani et al., 2019);
c(Grimal et al., 2005); d(Zhutovsky, Kovler, 2015);
e(Li et al., 2009).

2.3.6. Image reconstruction

In this section, we describe the algorithm used in
the image reconstruction section. There are various
algorithms and their reformation for reconstruction
of a proper image such as universal back-projection,
time reversal, etc. (Dobrucki, Opieliński, 2000;
Tasinkevych et al., 2018, Wang, 2017). For PAI re-
construction, a phase-controlled algorithm was used in
this study. For each reconstructed pixel in the image,
Pm, we have the following formula (Zhou et al., 2011):

Pm =
K

∑
k=1

D (θ)kP (tmk), (13)

where m is the spatial vector of the PA source, k is
the position of the k-th detector, and K is the total
number of working detectors, D (θ) is defined as the
projection intensity weight function of θ, the projection
angle which is no more than the maximal acceptance
angle of the array element, P (tmk) is the signal value
collected by the k-th detector at position m. The tmk
represents the time when PA pulses spread from posi-
tion m to k. The rmk is the distance between the PA
source at position m and the k-th detector. The v is
the average velocity of the acoustic wave in tissue. Ac-
cording to Eq. (13), the volumetric data collected by
the plane transducer array in a single laser pulse can be
used to reconstruct 2D projection image slices at var-
ious z-axis depths. To have the final 3D image of the
breast, proper processing software could merge these
slices.

3. Results and discussion

Using the finite element (FE) based simulation
models, light propagation, absorption, conversion to
heat, PA wave formation from the target (tumor), and
its propagation in breast tissue were successfully sim-
ulated. For a better demonstration of our simulation
process, captured PA signals in the L1 model of COM-
SOL simulation have been converted to 2D tomogra-
phy image slices using MATLAB code. For 3D data

visualization, processing, and analysis we can convert
these slices to 3D images using special software. Con-
verting 2D image slices to 3D breast tissue have not
been done by the relevant software in this project. Fi-
nally, comparative results of all simulations concerning
the tumor location and size were studied in detail.

3.1. Simulation model in detail

A laser source as the Gaussian pulse radiated on
tissue as a point source is showed in Fig. 4. The co-
ordinates and geometric position of discussed points
in this section are shown in Fig. 5. We have chosen
6 points, two points inside and outside of the tumor
near the wall to study the accuracy of the tumor edge
detection in our PAI simulation, a point inside the adi-
pose region, a point in the glandular region, and the
two other points inside the tumor on the other axis for
studying stress.

Time [s]

Po
w
er

 [W
]

Laser pulse

Fig. 4. Function diagram of laser pulse radiated as a point
source on tissue, with power Wp = 8 mJ/cm2, pulse dura-

tion τp = 10 ns, and τcenter = 30 ns.
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Fig. 5. Coordinate location of points mentioned in simula-
tion studies.

The radiated laser fluence shown in Fig. 6, repre-
sents the laser fluence variation in time at four points
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Fig. 6. Radiated laser fluence of four points: inside and
outside the tumor close to the wall, center of the tumor
and inside a muscle layer, in the L1 simulation model.

of interest. The next step is converting the effect of
laser light to heat and studying the behavior of tissues
and tumors.

The temperature variations of four points are se-
lected as representative of four places: inside and out-
side the tumor, near the wall of the tumor to determi-
ne the accuracy of detecting the edges of the tumor,
a point in the muscular region, and a point in the glan-
dular region. These are shown in Fig. 7. As is shown
in Fig. 7, due to the amount of absorption of the laser
energy, the temperature change of points is different, it
is greater for the point inside the tumor and depends
on the different optical and thermal characteristics of
the tumor (all these specifications are listed in Tables 1
and 2) compared to breast tissue. The increase in tem-
perature inside the tumor is approximately 0.0046 de-
grees in Kelvin, while the temperature of the study
points slightly outside the tumor wall and in the adi-
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Fig. 8. Temperature gradient distribution of breast and tumor tissues on cut surfaces in the z–y plane at x = 33 mm
and t = 30 ns.
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Fig. 7. Temperature changes in Kelvin, four points: inside
and outside the tumor, one in glandular and the other in

the adipose regions according to time variables.

pose region has not changed much. Due to muscle tis-
sue’s thermal and optical characteristics, a slight in-
crease in temperature is observed at the point located
in this section, which can be ignored according to the
increased value in the tumor temperature. In all calcu-
lations, the human body temperature, 310 degrees in
Kelvin, is considered.

For further clarity on temperature changes in tis-
sue and tumor, a cut surface was considered in the z–y
coordinate plane passing through the center of the tu-
mor in x coordinate (x = 33). Figure 8 indicates an
increase in a temperature gradient in the tumor region
compared to other parts of the tissue at time = 30 ns.
High levels of the laser light absorption by the tumor
tissue and its conversion to heat are the reason for
the increase in heat of tumor tissue compared to other
parts of breast tissue.

Increasing the temperature of the tumor compared
to other parts of the tissue will cause the tumor tis-
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sue to expand. Figure 9 shows the internal expansion
changes of the three internal points of the tumor. The
increase in the internal expansion of the tumor is about
3 N/m2.
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Fig. 9. Internal expansion changes of the three internal
points of the tumor.

Expansion changes inside the tumor will cause an
acoustic wave inside the tumor tissue and propagate it
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Fig. 10. Acoustic pressure wave gradient distribution at two steps and times on cut surfaces
in the z–y plane at x = 33 mm.

into the breast tissue. In the latest module of COM-
SOL, we have studied the propagation of acoustic pres-
sure waves around tumor tissue. The images of the
acoustic pressure wave propagation gradient in the sur-
face z–y at x = 33 mm are shown in Fig. 10 in two steps
and times as the first cycle of acoustic wave propaga-
tion.

The last step is to transfer information obtained
from COMSOL simulation to MATLAB software and
reconstruct the 2D tomographic image slices. The sen-
sor’s data that contain ultrasonic wave information are
defined as “Domain Point Probe” in COMSOL, and
32 number of these “Domain Point Probes”, according
to previous statements, are located around the breast
cup on the arc of 2D tomographic slices. Fifteen 2D
tomographic slices of breast tissue have been consid-
ered according to Fig. 11, while these slices cutting
the breast tissue Perpendicular to the x-axis, are lo-
cated at a distance of about 1 cm from each other.
Each “Domain Point Probe” information is exported
from COMSOL as a matrix whose dimension depends
on the simulation time and number of sensors.

The exported matrices are to be used for subse-
quent processing in MATLAB. The data of four sensors
is simply drawn in Fig. 12.
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Fig. 11. Fifteen 2D tomographic slices of breast tissue used
in this simulation.
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Fig. 12. Simple plotting of four ultrasonic sensors data.

2D tomographic reconstructed image slices for 3D
image creation should be repeated in different coordi-
nates; here we just showed two slices in Fig. 13: a cut
surface, the y–z surface, at x = 33 mm and x = 37 mm.
MATLAB code results for the reconstruction took
a 1 minute processing. Finally, by Amira (version 5.5,
TGS Template Graphics Software) software, we could
visualize these 2D reconstructed slices to 3D, for oper-
ator of device, but here for our analyzing the 2D slices
and sensor’s data are adequate.
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Fig. 13. 2D tomographic image in one slice of simulation,
derived from MATLAB code, at x = 33 mm and x = 37 mm.

According to the anatomy of the breast tissue, the
muscle layer is at the junction of the breast tissue
with the chest wall, and due to the proximity of the
characteristics of muscle and tumor, a certain error in
image reconstruction is shown. This error could be eas-
ily removed based on the fixed location of the muscle
and its specific shape and brightness.

3.2. Effect of tumor location

According to Table 1 and the different scenarios
we have considered for the tumor location and size, in
this section, we study the changes in temperature and
intensity of the emitted pressure wave based on the
change in the tumor location compared to the LOT1
mode.
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According to the chart in Fig. 14 and the values of
temperature changes for the tumor in different places,
it was observed that for the case where the tumor was
located in the adipose tissue, the absorption of radiant
laser energy by the tumor would be higher than others;
consequently, temperature changes were high.

Fig. 14. Temperature changes based on different scenarios.

Based on the chart in Fig. 15, the amount of pres-
sure change created in the tumor located in the adipose
tissue is also high. This is because of the large differ-
ence in optical and thermal properties between the tu-
mor tissue and the adipose tissue. By studying the
tissue property tables (Tables 2 to 4), the cause can
be observed.

Fig. 15. Pressure changes based on different scenarios.

Increasing the temperature and pressure changes
will cause the acoustic pressure wave to propagate
more intensely, resulting in more accurate and easier
tumor detection.

The final result of our study for the tumor location
in different layers of breast tissue is completely consis-
tent with the results of breast imaging by the thermoa-
coustic method (Soltani et al., 2019). In both meth-
ods, the tumor placement in the adipose tissue results
in a strong PA wave. In other words, it would be eas-
ier to diagnose a tumor that is located in the adipose
section compared to other layers.

3.3. Effect of tumor size

To study the effect of increasing the diameter of
the tumor, two scenarios have been considered: one

with a diameter of 19 mm (LOT1); the other with
40 mm (DOT1). The choice of a tumor with a diame-
ter of less than 2 cm is to evaluate the ability of PAI to
detect the tumor in the early stages (Hammer et al.,
2008).

Based on the charts in Figs. 16 and 17, which show
a comparison of the increase in temperature and pres-
sure changes in the two scenarios respectively, it is ob-
vious that the magnitude of the temperature change of
a large-diameter tumor is greater than that in a small-
diameter tumor.

Fig. 16. Temperature changes based on different scenarios.

Fig. 17. Pressure changes based on different scenarios.

The reason for this is obvious. As the size of the
tumor increases, the amount of energy absorbed by
the radiant laser light will be higher. Compared to the
thermoacoustic method (Soltani et al., 2019), our re-
sults also indicate that the amplitude of the PA wave
will increase with increasing tumor diameter.

4. Conclusions

In this study, breast tissue tomography was sim-
ulated using the PA phenomenon in real dimensions
and different constituent layers in suitable and effi-
cient software. To select the proper software, various
software were examined to select the most suitable op-
tion. Attempts were also made to consider the different
layers that make up breast tissue and enter all the re-
quired specifications in the simulation completely and
accurately. In all the stages, the simulation process
tried to be as close as possible to the real state to
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cite the results of this simulation implementation of
the PAI system and evaluate the strengths and weak-
nesses of the PA breast tissue imaging system. The
simulations were performed for four different scenar-
ios based on the size and location of the tumor to
investigate the changes in the resulting PA signal in
different states. It is possible to define different sce-
narios. In each scenario, the magnitude of tempera-
ture changes and consequently the acoustic pressure
magnitude were obtained. Due to the optical, thermal,
elastic, and acoustic characteristics of different layers
of breast tissue and tumor which show a greater dif-
ference between the adipose tissue and the tumor, it
was expected that the absorption of radiant laser light
will be high if more tumor forms in the adipose layer
of breast tissue.

Consequently, temperature changes and the result-
ing acoustic pressure will have a large amplitude. How-
ever, the acoustic pressure magnitude will be the low-
est for tumors located in the glandular layer and make
diagnosis more difficult. Also, by examining the simu-
lation for a tumor with a larger diameter and the con-
sequent increase in the acoustic pressure amplitude, it
is quite clear that large tumors can easily be identi-
fied. But due to the capability of the PA phenomenon
and incorporation of optical and ultrasound imaging
advantages, it was able to detect tumors smaller than
2 cm in size so that cancerous tumor tissue could be
detected in early stages.
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In situ time series measurements of ocean ambient noise, have been made in deep waters of the Arabian Sea,
using an autonomous passive acoustic monitoring system deployed as part of the Ocean Moored buoy network
in the Northern Indian Ocean (OMNI) buoy mooring operated by the National Institute of Ocean Technology
(NIOT), in Chennai during November 2018 to November 2019. The analysis of ambient noise records during the
spring (April–June) showed the presence of dolphin whistles but contaminated by unwanted impulsive shackle
noise. The frequency contours of the dolphin whistles occur in narrow band in the range 4–16 kHz. However,
the unwanted impulsive shackle noise occurs in broad band with the noise level higher by ∼20 dB over the
dolphin signals, and it reduces the quality of dolphin whistles. A wavelet based threshold denoising technique
followed by a subtraction method is implemented. Reduction of unwanted shackle noise is effectively done and
different dolphin whistle types are identified. This wavelet denoising approach is demonstrated for extraction
of dolphin whistles in the presence of challenging impulsive shackle noise. Furthermore, this study should be
useful for identifying other cetacean species when the signal of interest is interrupted by unwanted mechanical
noise.
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1. Introduction

Sounds produced by marine species are often iden-
tified using time-frequency representations for extrac-
tion of salient and distinguishing features of their vo-
calization. The problem of extracting the sound from
the spectrogram can be compounded by low signal to
noise ratio and the obstruction of acoustic files with
non-stationary anthropogenic sound sources. Wavelet
transforms are preferred over a conventional method
using the fast Fourier transform (FFT) in identifying
a predominant biological noise source using the multi-
resolution denoising algorithm (Powell et al., 1995;
Learned, Willsky, 1995). The wavelet transform is
used by Huynh et al. (1998) in classifying whale and
porpoise sounds. A wavelet based threshold denoising

technique followed by a subtraction method is imple-
mented here that can be used for marine species iden-
tification. The algorithm is demonstrated for identifi-
cation of dolphin whistles from noise data corrupted
with mechanical noise.

Dolphins are mainly vocal mammalian family, and
the vocal communication plays an important role in
mediating social interactions (Slater, 1983). They are
inhabited in all over the world’s oceans and mostly dis-
tributed in warm equatorial to subpolar regions, and
in coastal as well as offshore waters (Corkeron, Van
Parijs, 2001). Dolphins produce mainly two primary
types of sounds associated with specific behavioral con-
texts: non-pulse tonal frequency modulated whistles
and rapid repetition of burst-pulsed click sounds (Au,
1993; Jones et al., 2020). Whistles are non-pulse char-
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acteristics, longer duration with a narrow frequency
band (Boisseau, 2005;Akiyama, Ohta, 2007). These
whistle sounds play a crucial role in maintaining con-
tact between dispersed individuals (Caldwell et al.,
1990; Janik, Slater, 1998; Sayigh et al., 1999; Janik
et al., 2006; 2013; Rachinas-Lopes et al., 2017),
group cohesion with male-male alliances, vocal commu-
nication between mother and calf pairs, and also pro-
mote as a greeting signal when the groups joining each
other (Smolker et al., 1993; Janik, 2009; Quick,
Janik, 2012; King et al., 2019). The amplitude and
duration of the whistles may vary, however the stereo-
typed frequency contour over time of the whistle seems
to comprise the information for recognition (Janik
et al., 2006). The discrete parameters to classify whis-
tles include: start frequency, end frequency, minimum
frequency, maximum frequency, bandwidth, duration,
and number of inflection points (Janik et al., 1994;
Esch et al., 2009). However, in some instances the
whistle signals are often contaminated by the mechan-
ical noises particular to the rubbing and mooring com-
ponents such as shackles and cables. It is hard to dis-
tinguish the frequency contour of the whistles once the
signal of interest is corrupted with unwanted sounds.
Therefore, it is important to implement the denoising
method which improves the quality of signal.

Denoising is the process of extracting an original
signal from the noise (Bey, 2006). In general, the sig-
nal is corrupted by noise during its transmission, ac-
quisition, reception, and processing (Isabona, Azi,
2012). Many researchers studied different denoising
techniques, such as median filtering, mean filtering,
the Fourier transform, and Wiener filtering which
are a linear approach and suitable for stationary sig-
nals (Chen et al., 2006; Lukac et al., 2007; Zhang,
Xiong, 2009). However, the ambient noise in the
ocean is non-stationary because of the combination
of many oceanic sources including unwanted impul-
sive mechanical mooring noises which are difficult to
extract using a linear approach. Therefore, it is sig-
nificant to implement the non-linear wavelet threshold
denoising approach (Khan et al., 2015). Various non-
stationary signal extraction methods have emerged in
recent years, and the algorithms are wavelet decom-
position, empirical mode decomposition, the Hilbert-
Huang transform, and variational mode decomposi-
tion (Dragomiretskiy, Zosso, 2013; Ukte et al.,
2014; Xiang, Wang, 2015). However, to work these
approaches, certain conditions must be met such as
decomposition levels, modal number, and termination
thresholds. Among these, the wavelet decomposition
method is designed for non-stationary signals, which
combines both the time and frequency domain. Mal-
lat (1989) describes the theoretical and mathematical
approach for understanding wavelet decomposition on
signal denoising. The key advantage of wavelet denois-
ing is to split the data into different frequency compo-

nents and study the noise spikes in each frequency com-
ponent at different resolution (Chang et al., 2000).
The wavelet denoising is an emerging advance tech-
nique in signal processing that used in a various appli-
cations particularly image processing, data compres-
sion, impulsive events characterization, pattern recog-
nition signal extraction and denoising (Yu et al., 2007;
Li, Zhou, 2008). This type of technique will be useful
for removing impact noise produced in the mooring,
when acoustic recorders are incorporated in multisuite
ocean moorings. Also data acquisition during rough
seas creates more platform noise which is unavoidable.
Metal chains and shackles in mooring cause clonking
noise in the same frequency range 100 Hz to a few kHz
(Marley et al., 2017). So the algorithm described in
this paper should be useful for the above mentioned
types of noise.

In this paper, the study area is located in the South
of Lakshadweep Islands with the close proximity to the
Maldives which presents itself a highly varying bathy-
metric and oceanographic environments so, the area
affords a wide variety of cetaceans (Prakash et al.,
2015). It shows as different habitat types particularly
the coral reefs, seagrass beds, rocky and sandy shores,
deep water canyons and trenches that offer a vast ma-
rine biodiversity for cetaceans (Pillai, Jasmine, 1989;
Mallik, 2017). To identify the cetacean species, vi-
sual observation was the commonly used method in
which observers can identify the species in a limited
sighting conditions (weather, seastate, and daylight).
Basing on the visual surveys along with anecdotal ev-
idence, 14 species of cetaceans have been documented
in this area (Panicker et al., 2020). Among them, the
most commonly sited species are dolphins and studies
on acoustic identification is very scarce.

The signal denoising methods would be adequate
to eliminate the noise if the unwanted noise levels are
lower as compared to the source signals. However, noise
removal will be a challenge when the unwanted noise le-
vel is higher than the source signals. In this study,
the unwanted impulsive shackle noise is higher as com-
pared to that of dolphin whistle signals, and both are
non-stationary with transient and vary quickly. How-
ever, the frequency contours of the dolphin whistle
signals are different from that of unwanted impulsive
shackle noise which enables the wavelet denoising tech-
nique effective for implementation.

This study is mainly on identification of whistle sig-
nals produced by dolphins from the passive acoustic
measurements by implementing the wavelet threshold
denoising technique along with the subtraction method
to remove the unwanted impulsive shackle noise of the
mooring system. This study addresses how to tackle
the contaminated acoustic data due to impulsive me-
chanical noise and identify species in a marine based
biological ecosystem which would provide the baseline
information regarding cetaceans.
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2. Materials and methods

2.1. Acoustic measurements

The deep ocean ambient noise measurement system
combined with the Ocean Moored buoy network for the
Northern Indian Ocean (OMNI) buoy was deployed at
the south of Lakshadweep (AD9) in the South East-
ern Arabian Sea at the ocean depth of ∼2100 m dur-
ing November 2018 to October 2019 (Fig. 1). The sys-
tem firmly holds a glass sphere along with hydrophone
(bandwidth 10 Hz to 100 kHz), data acquisition sys-
tem, and power pack. The noise data were acquired
at a sampling rate of 32 kHz for a duration of 12 min
for every half an hour. The hydrophone-sensed acous-
tic pressure fluctuation caused by different sources of
noise, which translates into electrical signals and con-
verts to units of micropascal [µPa] by applying the
receiving sensitivity (−165 dB re 1 V/µPa) of the hy-
drophone.

Fig. 1. Deployment location of OMNI buoy in the Arabian
Sea (AD9) is indicated in blue filled dot.

The oscillogram, spectrograms, and Welch’s aver-
aged power spectral density (dB re 1 µPa2/Hz) were
analyzed using MATLAB (MATLAB R2021a). Multi-
ple spectra were obtained by segmenting the data into
smaller portions using a Hamming window and 2048
point FFT with 50% overlap. The resulting spectra
were then averaged to obtain the final spectrum. The
frequency resolution of each power spectrum is 15.6 Hz,
which is determined by the sampling frequency and the
number of points in the FFTs in each power spectrum.

2.2. Wavelet threshold denoising

The wavelet threshold denoising technique contains
three steps: signal decomposition, thresholding, and
signal reconstruction (Donoho, Johnstone, 1994).
In this method, the signal is decomposed into approx-
imation and detail coefficients at each level. The ap-
proximations are high-scale and low frequency com-
ponents, and the details are low-scale and high fre-

quency components of the signal (Tikkanen, 1999).
The threshold value is very important parameter in the
wavelet threshold denoising technique. There are four
threshold selection methods particularly the univer-
sal threshold, rigorous Stein’s Unbiased Risk Estimate
(SURE), heuristic SURE, and minimax (Donoho,
Johnstone, 1994). In this study, the rigorous SURE
threshold estimation is adopted. The threshold (T ) is
defined by:

T =
√

2 loge (N log2 (N)), (1)

where N is the number of samples in the input sig-
nal. Once the value of threshold is estimated using this
method, a hard or soft thresholding function is needed
to filter the wavelet coefficients which contain un-
wanted noise (Donoho, Johnstone, 1995). For the
hard threshold, the absolute values of wavelet coeffi-
cients below the threshold level are set to zero, and
the values above the threshold are kept unchanged.
In soft threshold, the wavelet coefficients whose values
are lower than the zero threshold, and the coefficients
above the threshold level are also modified (Donoho,
Johnstone, 1995). In this study, the soft threshold
method is considered because the wavelet coefficients
become more stable and smoothening as compared to
the hard threshold. Finally, the in situ signal is de-
noised and reconstructed using modified level coeffi-
cients.

In this study, the in situ time series data of ambient
noise is the combination of unwanted impulsive shackle
noise along with dolphins whistle signals. The noise
level of the impulsive shackle dominates the whistles
of dolphin which is difficult to identify from frequency
contours. Therefore, the wavelet threshold denoising
technique is implemented using the MATLAB function
wden:

signaldenoised = wden (input data, rigrsure, s,

mln, level, wname), (2)

where signaldenoised is the denoised signal, input data
is the original in situ data, rigrsure specifies the adap-
tive threshold selection using the principle of SURE.
The term s denotes soft thresholding, mln indicates
multi-threshold re-scaling at level coefficients, the
level determines the decomposition of the signal us-
ing the syntax level = wmaxlev (N, wname), where
N is the number of samples in the input signal. The
wname is a wavelet family and the function wden
performs wavelet denoise of the input signal. In this
study, we chose the wavelet function Daubechies [db5]
(Daubechies, 1992; Rowe, Abbott, 1995), and es-
timated the decomposition level at 20 using the above
syntax.

After implementing the wavelet threshold denois-
ing technique, the unwanted impulsive shackle noise
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exists and suppresses the resulted wanted signal be-
cause the value of noise is higher as compared to the
signal. Hence a subtraction method is implemented fol-
lowed by the wavelet threshold denoising technique.
A flowchart on the threshold denoising algorithm de-
scribed in this work is shown in Fig. 2.

Input original signal

Wavelet denoising technique

Wavelet decomposition

Rigorous threshold estimation

Soft thresholding

Signal reconstruction

Substraction method

Fig. 2. Block diagram of wavelet based threshold denoising
algorithm.

In this method, a residual signal is estimated by
subtracting the denoised signal from the original in situ
data (Math Works, n.d). The unwanted impulsive
shackle noise is isolated by subtracting the residual
signal from the denoised signal, and the wanted signal
(dolphin whistle signals) is obtained by subtracting the
unwanted impulsive shackle noise from the original in
situ data.

3. Results

In situ time series measurements of deep water
ambient noise in the spring period were considered
for analysis, i.e., April–June, 2019. The in situ time
series data have been recorded as audio files during
the measurement, and analyzed using time-frequency
spectrogram. During the study period, 12 data sets
of recorded audio files resembled dolphin whistles,
which are mostly contaminated by unwanted impul-
sive shackle noise. Among these, Fig. 3a represents the
oscillogram of an in situ data recorded on 31/05/2019
at 11:58 hr. The spectrogram in Fig. 3b shows the mix-
ing of unwanted background noise, impulsive shackle
noise as well as the dolphin whistle sounds. The sounds
produced by impulsive shackle noise in the frequency
range of 0–16 kHz contaminates the dolphin whistle
signals.
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Fig. 3. a) Oscillogram; b) spectrogram of the original sig-
nal; c) spectrogram of the original signal using butterworth
high pass filter up to 3 kHz. The vertical striplines in spec-

trogram are shown as impulsive shackle noise.

A butterworth high pass filter with 3 kHz cut-off
is employed to the in situ data in order to suppress
the unwanted low frequency background noise which is
falling below the dolphin whistles (Fig. 3c). The spec-
trograms in Fig. 4 show the whistles of dolphin which
are subsequently extracted from the original spectro-
gram of Fig. 3c. The results shown here are from in
situ data recorded on 31/05/2019 at 11:58 hr with du-
ration of 12 minutes. The whistles produced by dol-
phins are narrow band with the spectral peak in the
frequency range of 4–16 kHz (Fig. 4). However, it is
difficult to identify the frequency contour of different
whistle types because the signals are indistinguishable
due to the impact of impulsive shackle noise. It is ana-
lysed that the averaged noise level is about ∼82 dB due
to impulsive shackle noise whereas it is about ∼62 dB
produced by dolphins whistle signal (Fig. 4a). When
compared the noise levels of impulsive shackle noise to
that of the dolphin signal, it is observed that the un-
wanted impulsive shackle noise is higher by ∼20 dB as
compared to that of dolphin signals. It means that the
noise level of dolphins whistle signals are significantly
lower and buried under the impulsive shackle noise,
which is difficult to retrieve.

Therefore, to retrieve the dolphin whistle signals,
the wavelet threshold denoising approach has been im-
plemented along with the commonly used subtraction
method. The oscillogram and spectrogram of the pro-
posed wavelet denoising approach is shown in Figs. 5a
and 5b.

The denoised version of the spectrogram (Fig. 5b)
shows the dominance of impulsive shackle noise, since
the noise levels of impulsive shackle are higher than the
noise level of dolphin whistle signals. The residual sig-
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Fig. 4. Spectrograms of dolphin whistle signals (a–p) along with unwanted impulsive shackle noise which are extracted
from Fig. 3c. The time axis represents Time in minutes from the start of the recording till the 12th minute reading from

top panel.
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Fig. 5. a) Oscillogram and b) spectrogram of denoised sig-
nal; c) oscillogram and d) spectrogram of residual signal.

nal is obtained by taking the difference between the ori-
ginal signal and the denoised signal (Figs. 5c and 5d).
In residual output, it contains the combination of
whistle signals along with white Gaussian noise other
than the impulsive shackle noise. However, denoised
signal contains higher values of impulsive shackle noise
and lower values of the whistle signals. Hence, only
shackle noise can be estimated by subtracting the
residual signal from the denoised signal, which is shown
in Fig. 6. Finally, the wanted signal of dolphin whis-
tles can be extracted by subtracting only shackle noise
from the original signal (Fig. 7).
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Fig. 6. a) Oscillogram and b) spectrogram of shackle noise.
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Fig. 7. a) Oscillogram and b) spectrogram of wanted dol-
phin whistle signals.

Table 1. Acoustic parameters of the dolphin whistle types in deep water of Arabian Sea from in situ data recorded on
31/05/2019 at 11:58 hr. These metrics are calculated from time-frequency spectrograms of a single data considering 2048

FFT points.

Whistle types Start frequency
[kHz]

End frequency
[kHz]

Maximum frequency
[kHz]

Minimum frequency
[kHz]

Duration
[s]

Concave 15.90 15.25 15.90 8.21 0.6
Convex 8.25 14.25 14.62 8.25 0.6
Upsweep 4.98 15.39 15.39 4.93 0.6

Downsweep 15.60 8.92 15.60 8.92 0.4
Sine 15.25 4.15 15.25 4.15 0.9

Multi-looped 15.85 11.35 15.85 6.25 1.08
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Fig. 8. Spectrograms of dolphin whistle signals (a–p) which are extracted from the Fig. 7b.

The segmented spectrograms of Fig. 8 are extrac-
ted from the Fig. 7b, which illustrates the removal of
impulsive shackle noise and significant improvement
of dolphin whistle signals. It is easy to detect the
frequency contour and whistle types after the imple-
mentation of wavelet threshold denoising technique
followed by the subtraction method. The frequency of
dolphin whistles are ranged from ∼4 to ∼16 kHz with
the duration ranges from ∼0.4 to ∼1.08 s. Based on the
frequency contours, whistles are classified as different
types such as concave, convex, upsweep, downsweep,
sine, and multi-looped. Table 1 gives a detailed de-
scription of acoustic parameters for each of the dolphin
whistle types. Majority of the whistle types are con-
cave (Figs. 8a, 8c, 8k, and 8l) and convex (Figs. 8e, 8i,



M.M. Mahanty et al. – Acoustic Identification of Dolphin Whistle Types in Deep Waters of Arabian Sea. . . 45

and 8o) followed by upsweep (Figs. 8d and 8j), down-
sweep (Figs. 8f and 8h), multi-looped (Figs. 8g and 8p),
and sine (Fig. 8m).

4. Discussion

In this study, it is observed that the in situ time
series data of acoustic noise have been contaminated
by unwanted impulsive shackle noise, which conceals
the dolphin whistle signals. The results show that the
unwanted impulsive shackle noise is non-stationary,
with the noise levels higher by ∼20 dB as compared
to that of dolphin whistle signals. The wavelet thresh-
old denoising approach followed by the subtraction
method is implemented successfully, and the impul-
sive shackle noise is removed which are overlapped on
dolphin whistle contours. The study suggests that the
optimum conditions of denoising are mainly considered
by Daubechies [db5] along with 20 multilevel wavelet
decomposition and the rigrsure soft threshold method.
The satisfactory results of wavelet denoising for dol-
phin whistle types are obtained and shown in the spec-
trogram of Fig. 8.

Seramani et al. (2006) implemented the wavelet
denoising along with the independent component ana-
lysis to separate dolphin whistles in the underwa-
ter noise environment. Lopez-Otero et al. (2018)
used the discrete wavelet transform to model dolphin
whistle contours for species classification. An earlier
study has also demonstrated the extraction of time-
frequency dolphin contours based on the automated
denoising method (Mallawaarachchi et al., 2008).
However, there is no research paper on the wavelet de-
noising of dolphin whistle contours in the presence of
impulsive shackle noise. In the present study, the use
of the wavelet denoising threshold approach to identify
the dolphin whistle signal has proved to be fruitful to
remove impulsive shackle noise present in the in situ
time series recording. This is because the impulsive
shackle noise has the different temporal and frequency
structure as compared to that of dolphin whistle con-
tours.

Many previous studies on dolphin whistle types
have been reported worldwide (Janik, Slater, 1998;
Wang et al., 1995; Acevedo-Gutiérrez, Stienes-
sen, 2004; Azevedo et al., 2007; Kriesell et al.,
2004;Heiler et al., 2016). Some researchers have stud-
ied the acoustic detection along with visual observa-
tion of cetacean species in the offshore waters of the
Maldives and Sri Lanka (Clark et al., 2012; de Vos
et al., 2012). However, no detailed identification of dol-
phin whistle types have been studied in shallow and
deep waters of the Arabian Sea. The recent study has
described the acoustic identification of dolphin whis-
tle types in deep water of Lakshadweep in the Arabian
Sea, and analyzed their acoustic parameters which con-
firms the six major whistle types in the frequency range

approximately from ∼4 to ∼16 kHz with the whistle du-
ration ranges from ∼0.4 to ∼1.08 s (Fig. 8, Table 1).

As from the recent study, it has been revealed
that the wavelet threshold denoising approach has
been taken under consideration for removing the non-
stationary impulsive shackle noise, and effectively iden-
tify the dolphin whistle contours. The ability to de-
tect and characterize the different whistle contours
that provides significant information on dolphin com-
munication and behavioral signals. This method of
a wavelet threshold denoising approach identifies the
dolphin whistle sounds, and could be used for future
studies on other cetacean whistle signals which would
be effected by anthropogenic as well as unwanted me-
chanical noise sources.

5. Conclusion

This study details a technique primarily based on
the wavelet threshold approach followed by subtraction
for denoising the dolphin whistle contours. The time
series recordings of noise data are made in deep wa-
ters, where the dolphin whistle signals are contami-
nated by impulsive shackle noise. The results show that
the optimal conditions for denoising are mainly based
on Daubechies [db5] along with 20 multilevel wavelet
decomposition and the rigrsure soft threshold method.
Finally, the contaminated impulsive shackle noise is re-
moved from the dolphin signals by using a wavelet ap-
proach. Based on the frequency contours, whistle types
are identified as concave, convex, upsweep, downsweep,
sine, and multi-looped. Hence, it is proven that, this
method is found suitable to extract other species vo-
calization particularly the non-impulsive signals from
passive acoustic recordings.
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In this paper, we propose using a propeller modulation on the transmitted signal (called sonar micro-
Doppler) and different support vector machine (SVM) kernels for automatic recognition of moving sonar targets.
In general, the main challenge for researchers and craftsmen working in the field of sonar target recognition
is the lack of access to a valid and comprehensive database. Therefore, using a comprehensive mathematical
model to simulate the signal received from the target can respond to this challenge. The mathematical model
used in this paper simulates the return signal of moving sonar targets well. The resulting signals have unique
properties and are known as frequency signatures. However, to reduce the complexity of the model, the 128-
point fast Fourier transform (FFT) is used. The selected SVM classification is the most popular machine
learning algorithm with three main kernel functions: RBF kernel, linear kernel, and polynomial kernel tested.
The accuracy of correctly recognizing targets for different signal-to-noise ratios (SNR) and different viewing
angles was assessed. Accuracy detection of targets for different SNRs (−20, −15, −10, −5, 0, 5, 10, 15, 20) and
different viewing angles (10, 20, 30, 40, 50, 60, 70, 80) is evaluated. For a more fair comparison, multilayer
perceptron neural network with two back-propagation (MLP-BP) training methods and gray wolf optimization
(MLP-GWO) algorithm were used. But unfortunately, considering the number of classes, its performance was
not satisfactory. The results showed that the RBF kernel is more capable for high SNRs (SNR = 20, viewing
angle = 10) with an accuracy of 98.528%.

Keywords: sonar micro-Doppler; automatic recognition; SVM; RBF kernel; linear kernel; polynomial kernel.
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1. Introduction

Due to the increasing use of automatic target recog-
nition systems in various military and commercial in-
dustries, the issue of classification and automatic target
recognition has become one of the favorite interests
of craftsmen and activists in this field (Ehrman,
Lanterman, 2020; Smith et al., 2007). The most im-
portant advantage of using these systems is eliminat-
ing the human role from the target identification and
detection processes (Bhanu, 1986). One of the most
important reasons for replacing these systems with sys-
tems controlled by human operators is a slow human
reaction, low reliability, and high dependence on men-
tal conditions (Zhou et al., 2022). The main element

of many defense and military missions in the sea is the
automatic detection and identification of sonar targets
(Liu et al., 2019). The complex physical properties
of sonar targets and the heterogeneous conditions of
sound propagation at sea have led to many features
being extracted to identify and detect sonar targets
(Khishe, Safari, 2019). Obviously, with increasing
the dimensions of the feature vector, the dimensions
of the data also increase (Saffari et al., 2022a).

The first challenge that sonar researchers face is ob-
taining reliable datasets (Dong et al., 2021; Glover,
Laguna, 2008). Creating a sonar dataset generates
high costs (Chen et al., 2022; Waite, 2002). Ac-
cording to the research, the sonar datasets are usu-
ally acquired by performing a sonar collection scenario
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in a real environment (Kaveh et al., 2019; Qiao et al.,
2021; Saffari et al., 2022b; Wu et al., 2021). Another
solution for collecting sonar datasets is to use a cavi-
tation tunnel (Khishe, Mosavi, 2019; Khishe, Mo-
hammadi, 2019; Khishe, Safari, 2019). The most
important disadvantage of using these methods is the
presence of noise in the environment. In other words,
the dataset is reliable and can be used for practical
systems that perform well even in high-noise environ-
ments. One of the main motivations of this paper is
to provide a practical model for simulating the emit-
ted signals from sonar targets with the ability to ad-
just the SNR value and the target angle of view of the
sonar receiver.

The next step after preparing the data is extracting
the signal’s attribute. All submarines have propellers
for propulsion. When acoustic signals are propagated
toward the target (floating propeller), the propeller’s
rotation reflects the transmitted signal (Clemente
et al., 2013). It can be said that this signal is unique;
in other words, it is known as the corresponding float-
ing frequency signature (Chen, Li, 2022; Tahmoush,
2015). The phenomenon of modulation of rotating
parts (propeller) is known as sonar micro-Doppler.
This phenomenon, called radar micro-Doppler, is wi-
dely used to classify aerial targets such as heli-
copters (Anderson, 2004; Mamgain et al., 2018) and
ground targets such as tanks (Foued et al., 2017;
Molchanov et al., 2013). Unfortunately, we have not
found any researches on the classification of sonar tar-
gets and in particular naval vessels using sonar micro-
Doppler. Therefore, one of the main goals of this re-
search is to investigate the effect of using this method
in the automatic recognition of sonar targets for prac-
tical application.

The next step after feature extraction is the classi-
fier design. There are two general approaches to clas-
sifying data (Koturwar et al., 2015). The first meth-
od is to use definitive computational methods, which
have very high reliability and definitely achieve the
best results, but the disadvantage of these methods
is clearly seen when the size of the data increases
(such as sonar dataset). Then the spatial and tem-
poral complexity increases (Lakhwani, 2020). There-
fore, this method does not work well for sonar data
(Cai et al., 2021). The second approach is to use ar-
tificial intelligence (Jin et al., 2020). The main sub-
set of artificial intelligence is machine learning (Liu
et al., 2019; Sclavounos, Ma, 2018). One of the most
popular supervised learning algorithms is support vec-
tor machine (SVM) (Uddin et al., 2019). SVM has
a relatively simple training phase and, unlike neural
networks, does not fall into local maxima (Xu et al.,
2019). In addition, it works relatively well for high-
dimensional data and, despite providing the optimal
answer, has less time and space complexity than spe-
cific methods (Berthold et al., 2018; Gaye et al.,

2021). According to the explanations given in this pa-
per, sonar micro-Doppler and SVM will be used for the
automatic recognition of sonar targets. In order to have
a fair and comprehensive comparison, considering that
in references (Saffari et al., 2022c; 2022d) artificial
neural network has been used to classify sonar targets,
in this article (Kazimierski, Zaniewicz, 2021), two
types of MLP-NNs with two types of BP and GWO
training are used (Wawrzyniak, Stateczny, 2017;
Zhang et al., 2020).

The paper is organized in such a way that the sec-
ond part explains SVM. In the third section, the micro-
Doppler phenomenon is introduced. The fourth part
introduces the automatic sonar detection system using
sonar micro-Doppler. In the fifth part, the simulation
results are presented. The sixth part is the conclusion.

2. Support vector machines

SVMs are supervised learning algorithms and a sub-
set of heuristic algorithms (Kavzoglu, Colkesen,
2009). In SVM, hyperplanes usually separate the two
classes and the training data set of a hyperplane are
determined. The generalizability can then be verified
using the test dataset. SVMs have been able to per-
form powerfully in many applications (Uddin et al.,
2019; Xu et al., 2019).

To classify a data set with dimensional D, a D-1
hyperplane is required. Figure 1 shows the different hy-
perplanes separating two different classes. However,
only one optimal hyperplane divides data into two
classes with the longest distance (Fig. 2). All points
that limit the width of the margin are called sup-
port vectors. SVMs in binary class mode seek to find
a hyperplane so that the distance between the mem-
bers of each class to the optimal hyperplane is maxi-
mum. For example, it is assumed that a set of train-
ing data with a D sample is represented by {xi, yi}
and (I = 1,2, ...,D), where x ∈ RD is a D-dimensional
space and y ∈ {−1,+1} is a class label (Kavzoglu,
Colkesen, 2009). The optimal hyperplane perfor-
mance is to maximize margins. This hyperplane is de-
fined as w ⋅ xi + b = 0, where w determines the orienta-
tion of the hyperplane in space, x is the points on the
hyperplane, b is the bias of the distance of hyperplane

Fig. 1. Linear separation of data by different hyperplanes.
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Hyperplanes 
w · x1 + b = ±1

Optimum hyperplane 
w · x1 + b = 0

Support vectors

X

Y

b

Fig. 2. Optimum hyperplane and support vectors
for linearly separable data.

from the origin (Fig. 2). Equations (1) and (2) are the
equations of a separating hyperplane for the separable
state of two classes:

w ⋅ xi + b ≥ +1 for all y = +1, (1)

w ⋅ xi + b ≤ −1 for all y = −1. (2)

The aforementioned inequalities can be summed up
in relation (3):

yi(w ⋅ xi + b) − 1 ≥ 0. (3)

Support vectors are all points that exist in two par-
allel hyperplanes with the optimal hyperplane and are
defined by the function (w ⋅ xi + b) ± 1 = 0. If there is
a hyperplane and Eq. (3) is established, the classes
are separated linearly. Therefore, the margin between
these aircrafts is 2/∥w∥, distance to the nearest point.
Minimize ∥w∥2 with the limit of Eq. (3) found the opti-
mal hyperplane. Therefore, the following optimization
problem must be solved to calculate the optimal air-
craft hyperplane:

min [
1

2
∥w∥

2
] . (4)

Of course subject to restrictions:

w ⋅ xi + b ≥ 1 and y ∈ {−1,+1} . (5)

Figure 3 shows the classification of separable non-
linear data. For such data, it is certainly not possible to

Fig. 3. Nonlinear separation of data.

classify data in two classes linearly. Therefore, in such
cases where it is not possible to use a hyperplane with
linear equations on the data, nonlinear decision levels
should be used. Therefore, ξ slack variables replace the
optimization problem (Fig. 4):

min [
∥w∥2

2
+C

r

∑
i=1

ξi] ,

considering the following limitations:

yi(w ⋅ xi + b) ≥ 1 − ξi, ξi ≥ 0, i = 1,2, ...,N, (6)

where C is a constant parameter and balances between
two criteria, error minimization and margin maximiza-
tion. Slack variables ξi show the distance of classified
points from the optimal hyperplane cloud. If it is not
possible to use a hyperplane with linear equations, it
may be mapped into a high-dimensional space (  ِ D)

The simplest kernel function is a linear kernel. inner product of 𝑥𝑖 ∙ 𝑥𝑗 and the constant

coefficient C represents the linear kernel. The relation (8) represents the linear kernel function. 

𝐾(𝑋𝑖 ∙ 𝑋𝑗)= 𝑋𝑖 ∙ 𝑋𝑗 (8)

 Polynomial kernel

D)
through some nonlinear mapping functions (∅).

Hyperplanes 
w · x1 +  b =  ±1

Optimum hyperplane 
w · x1 +  b =  0

X

Y
Margin

b

ξ

Fig. 4. Introducing slack variable for nonlinear data
and generalization of the solution.

As shown in Fig. 5, the point x can be represented
as ∅(x) in the feature space. Complex computations
(∅(x) ⋅ ∅(xi)) are reduced using a kernel function.
Therefore, the decision function for classification is as
follows:

f(x) = sign(
z

∑
i

aiyi ⋅K (X,Xi) + b) , (7)

where each z of the training case, there are Xi vectors
that indicate the spectral response, aiyi are Lagrange
multipliers, andK (X,Xi) is the kernel function, ai de-
pends on parameter C and its value is determined by it.

Kernel functions can be classified into four groups.
In the following, 4 groups of SVM kernels are pre-
sented:

– linear kernel: the simplest kernel function is a lin-
ear kernel. Inner product of Xi ⋅Xj and the con-
stant coefficient C represent the linear kernel.
Equation (8) represents the linear kernel function:

K (Xi,Xj) =Xi ⋅Xj ; (8)
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Input space

Hyperplane

Feature space

Kernel function ∅

Fig. 5. Mapping of the data sets to the high-dimensional
space with a kernel function.

– polynomial kernel: data separation is not possible
linearly when useful features are not extracted or
the amount of noise is high. To solve this problem,
data must be mapped in different feature spaces
so that they can be separated linearly. One of the
kernel functions used in nonlinear separation is
the polynomial kernel:

K (Xi,Xj) = (γXi ⋅Xj +C)
d
, (9)

where C ≥ 0 represents a free parameter in the
polynomial that trades off the impact of higher-
order versus lower order terms;

– RBF kernel: the Gaussian kernel or RBF kernel is
shown in Eq. (10):

KRBF (Xi,Xj) = exp (−γ ∣Xi ⋅Xj ∣
2
) , (10)

where γ is a parameter that used to set the spread
of the kernel.

In this paper, the One-vs-All (OVA) method is used
for classification.

3. Micro-Doppler

Micro-motions, such as vibrations or rotations of an
object or structure on an object (Saffari et al., 2022b;

Yang et al., 2006), cause changes in the extra frequen-
cies on the signal, leading to sidebands on the object’s
Doppler frequency (Saffari et al., 2022b; Tahmoush,
2015). This phenomenon is called sonar micro-Doppler.
Recent research has shown that micro-Doppler tech-
niques can identify or classify a target with its micro-
Doppler properties. To explore the micro-Doppler pro-
perties of an object, time-frequency analysis is used to
provide information about these local properties over
time and frequency (Smith et al., 2007). In most cases,
the micro motion has a unique signature object. Micro-
motion is created directly by the dynamic motion pro-
perties of an object, and the micro-Doppler proper-
ties are a direct reflection of micro-motion. Therefore,
a micro-Doppler signature can be used to classify an
object with unique motion characteristics (Yang et al.,
2006).

3.1. Theory

The analytic signal of a pure tone s(t) is defined
as the signal ŝ (t), such that s(t) 1/4Real{ŝ (t)}, and is
generally expressed in a polar format as (Chen et al.,
2014):

ŝ (t) = ej2πf0t. (11)

A target moving at a constant radial velocity u has the
following Doppler shift relative to the sonar (or radar)
system:

fD = 2f0
v

Cs
, (12)

where f0 is the carrier frequency of the active sensor
and Cs is the speed of propagation of sound in water
(or air). If the target has a number M parts and each
part moves at a velocity component vi(t), the Doppler
shift is the sum of each single Doppler shift:

fD(t) =
M

∑
i=1

2f0
vi(t)

Cs
. (13)

For such a target, the analytical signal of the echo re-
turn is as follows:

ŝR (t) = ej2πf0t ⋅ ej2πfD(t)t. (14)

Mixing the received signal ŝR (t) with the conjugate of
the transmitted signal ŝ (t) is as follows:

ŝR (t) ⋅ ŝ (t)
∗
= ej2πfD(t)t. (15)

The aforementioned relation makes it possible to ex-
tract the Doppler signature from the data. This is the
signal component that contains the micro-Doppler in-
formation on the target, which can be used for target
recognition and classification.
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4. Design of automatic sonar target recognition
system using sonar micro-Doppler signature

Like any other pattern recognition system, design-
ing an automatic sonar target recognition system has
the following steps.

4.1. Data acquisition

One of the severe challenges for sonar research is the
lack of reliable data. On the other hand, such things as
the complex and heterogeneous environment of the sea,
as well as the presence of unwanted signals in the
sea (noise, clutter, and resonance) are the motivation
for preparing a simulated data set using the mathema-
tical model of the return signal of the rotation of the
propeller. The targets tested are according to Table 1.

Table 1. Information on reference targets.

Number Type Model
1 Container ship Emma Maersk
2 Container ship MV Barzan
3 Container ship MSC Oscar
4 Oil tanker Front Century
5 Oil tanker Seawise Giant
6 Passenger ship Motorboat
7 Passenger ship Oasis of the seas
8 Passenger ship Leading Atlas
9 Cruise Harmony of the Seas

10 Tugboat ASD TUG 2913
11 Tugboat Chinese oceanic tug boat
12 Research vessel Nathaniel B. Palmer

13 Autonomous
underwater vehicle

Tech 475 AUV

14 Military Torpedo No. 1
15 Military Torpedo No. 2
16 Military Logistic Support
17 Military Littoral Combat Ship No. 1
18 Military Littoral Combat Ship No. 2
19 Military Destroyer No. 1
20 Military Destroyer No. 2
21 Military Frigates
22 Military Aircraft Carrier
23 Military light submarine
24 Military semi-heavy submarine
25 Military heavy submarine

Different types of vessels were used in selecting
the samples, including container vessels, tankers, pas-
sengers, cruises, autonomous underwater vehicles, tug-
boats, different classes of navy ships, submarines, and
military torpedoes to evaluate the performance of the
proposed model.

4.2. Extracting feature vectors

To generate a data set of return signals from the
rotating part (propeller) of sonar targets, which is dis-
cussed in Subsec. 4.1, a suitable mathematical model
(Eq. (16)) was used to simulate the return signal from
the propeller:

sr(t) =
N−1

∑
n=0

Ar(L2−L1)e
j(β)

⋅ sinc(
4π

λ

(L2−L1)

2
cos (θ) sin(ωrt+

2πn

N
)),

β = ωct −
4π

λ

⋅ (R + vt +
L1+L2

2
cos (θ) sin(ωrt+

2πn

N
)).

(16)

The parameters used in Eq. (16) are described in
Table 2.

Table 2. Relationship parameters (16).

Parameters Descriptions
sr(t) Return signal in time
N Number of blades
Ar A normalizing factor
L1 The distance from the beginning of the

blades to the center of rotation
L2 The distance from the end of the blades

to the center of rotation
ωc Radian frequency of the transmitted sig-

nal
λ The wavelength of the transmitted signal
R The distance from the center of rotation

to the sonar receiver
v Target speed relative to sonar receiver
θ Target viewing angle
ωr Radian frequency of rotation

Figure 6 shows how to obtain a return signal using
Eq. (16).

Ө

ωr

Sonar transmitter and receiver

N = 3

L 2L1

R

Fig. 6. How to obtain a return signal using Eq. (16).

The feature extracted from these signals is the Com-
ponents 128-point from FFT. The structure of the fea-
ture vector expresses the target in the viewing an-
gle (θ), and the SNR specified as follow:
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feature vector = [f1, f2, f3, ...,

f126, f127, f128](SNR,θ), (17)

where each of its components corresponds to a point of
128-point FFT in the angle of view and the specified
SNR.

The reference classes correspond to the twenty-five
objectives of Table 1. Samples of each class include
feature vectors in nine SNRs (20, 15, 10, 5, 0, −5, −10,
−15, and −20 dB) and eight viewing angles (10, 20, 30,

SN
R
=
–2
0

SN
R
=
–1
5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Time [s]

-4

-3

-2

-1

0

1

2

3

4

5

A
m
pl
itu
de

Time domain

0 1 2 3 4 5 6 7 8 9 10

Frequency [Hz] 10 5

0

5

10

15

20

25

30

M
ag
ni
tu
de

Power spectral density Spectogram rotate

Normalized frequency (·� radians/sample)

Po
w
er
/fr
eq
ue
nc
y
[d
B
/(r
ad
ia
ns
/s
am
pl
e)
]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Time [s]

-4

-3

-2

-1

0

1

2

3

4

A
m
pl
itu
de

Time domain

0 1 2 3 4 5 6 7 8 9 10

Frequency [Hz] 10 5

0

5

10

15

20

25

M
ag
ni
tu
de

Power spectral density

Samples

Spectogram rotate

Normalized frequency (·� radians/sample)
Samples

Po
w
er
/fr
eq
ue
nc
y
[d
B
/(r
ad
ia
ns
/s
am
pl
e)
]

SN
R

=
–1

0
SN

R
=
–5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Time [s]

-4

-3

-2

-1

0

1

2

3

4

A
m
pl
itu

de

Time domain

0 1 2 3 4 5 6 7 8 9 10

Frequency [Hz] 10 5

0

5

10

15

20

25

M
ag

ni
tu
de

Power spectral density

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Time [s]

-4

-3

-2

-1

0

1

2

3

4

A
m
pl
itu

de

Time domain

0 1 2 3 4 5 6 7 8 9 10

Frequency [Hz] 10 5

0

5

10

15

20

25

M
ag

ni
tu
de

Power spectral density

Spectogram rotate

Normalized frequency (·� radians/sample)

Po
w
er
/fr

eq
ue

nc
y
[d
B
/(r

ad
ia
ns

/s
am

pl
e)
]

Samples

Spectogram rotate

Normalized frequency (·� radians/sample)

Po
w
er
/fr

eq
ue

nc
y
[d
B
/(r

ad
ia
ns

/s
am

pl
e)
]

Samples

[Fig. 7.]

40, 50, 60, 70, and 80 degrees). Each class contains
30 samples in SNR and specified viewing angles. Thus,
there are 2160 samples in each class (corresponding to
each target) for all SNRs and viewing angles. In total,
the dataset contains 54,000 samples.

Figure 7 shows samples of simulated acoustic sig-
nals and frequency signatures from sonar micro-Dop-
pler at different SNRs for target No. 8.

Figure 8 shows the effect of the viewing angles on
the return signal at SNR = −20 for target No. 8.
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Fig. 7. Samples of simulated acoustic signals and frequency signatures of sonar micro-Doppler in different SNRs
for target No. 8.
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Fig. 8. Effect of the viewing angles on the return signal at SNR = −20 for target No. 8.

4.3. How to decide on a sonar target

This paper uses the three main kernel functions
RBF, linear, and polynomial SVM classifier.

4.4. How to add noise

Noise mixed with the return signal from the target
is assumed to be white Gaussian noise (Zhong et al.,
2022), and its random samples are simulated using uni-
form random variables. The power of the noise changes
with the change of its variance. Different SNR ratios
are performed by separately changing the noise power
for each target. The signal strength for each target is
its corresponding power at the same viewing angle.

5. Simulation results

In this section, the results obtained from the simu-
lated system are analyzed. The results of the classifica-

tion are the average of 15 program executions for each
of the experiments. Each experiment assumes that the
target angle of view and the SNR ratio is known. Due
to the random nature of noise, in order to get the refer-
ence information in each SNR ratio as comprehensive
as possible, the operation of generating random noise
samples is performed 30 times. 70% of the samples are
used to form a reference class related to a specific tar-
get and the other 30% are used as experimental data
(unknown targets).

In general, according to the simulation results, it
can be seen that in the SVM classifier, the RBF ker-
nel works better for optimal conditions in which the
noise level is lower. As the amount of noise increases,
the linear kernel provides better results. Therefore,
RBF, linear, and polynomial kernels performed better
in terms of classification accuracy. Table 3 shows the
results of the classification with the classifiers SVM-
RBF, SVM-linear, and SVM-polynomial.
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Table 3. The results of the classification with the classifiers SVM-RBF, SVM-linear, and SVM-polynomial.

SNR [dB] Kernel Angle 10○ Angle 20○ Angle 30○ Angle 40○ Angle 50○ Angle 60○ Angle 70○ Angle 80○

linear 93.008 92.016 91.696 90.160 90.192 88.672 86.960 81.520
20 polynomial 94.432 94.800 94.096 92.736 92.480 91.440 84.592 77.872

RBF 98.272 97.920 98.416 97.920 98.352 97.760 97.936 74.288
linear 92.688 92.032 91.088 90.272 91.136 87.776 84.864 79.056

15 polynomial 92.016 92.096 91.840 90.672 90.848 88.864 80.480 70.656
RBF 98.240 97.776 98.528 97.840 98.176 95.552 71.808 52.720
linear 92.144 91.600 89.088 89.088 88.640 86.720 81.968 75.024

10 polynomial 87.824 87.600 86.384 85.536 84.048 82.416 74.432 64.144
RBF 91.504 89.328 83.104 86.992 73.536 62.240 50.112 38.672
linear 90.032 89.760 87.136 88.832 86.992 82.688 75.664 75.488

5 polynomial 81.904 82.176 79.136 81.264 78.448 71.328 63.200 58.096
RBF 56.464 57.280 54.512 57.392 51.232 42.944 34.576 33.168
linear 82.912 83.936 83.984 80.464 81.056 77.072 74.208 64.256

0 polynomial 70.240 71.216 71.248 69.488 70.912 64.640 59.488 53.136
RBF 46.128 31.776 48.480 42.192 40.912 37.184 30.560 31.440
linear 83.200 82.624 78.976 78.336 76.976 74.800 74.448 66.224

−5 polynomial 68.576 67.056 67.488 63.280 63.280 60.304 58.656 53.232
RBF 38.720 34.720 39.312 38.720 35.424 43.904 38.960 44.992
linear 70.864 69.520 67.584 65.680 69.488 70.944 66.816 68.560

−10 polynomial 53.776 52.384 50.080 51.040 50.816 50.784 51.136 48.656
RBF 26.512 30.016 22.576 29.696 34.896 24.464 32.256 27.952
linear 68.784 69.376 69.296 70.016 63.904 63.024 66.464 58.672

−15 polynomial 46.544 49.920 47.360 48.752 44.736 45.840 49.120 46.144
RBF 25.808 24.544 28.496 30.992 22.208 24.832 15.104 12.688
linear 70.112 73.568 69.312 67.840 67.440 66.752 64.576 62.304

−20 polynomial 48.160 45.056 48.656 46.800 45.072 48.128 52.208 49.568
RBF 21.712 23.200 31.632 28.000 18.656 34.736 20.592 33.600

However, in terms of use in real environment with
a lot of noise, linear, polynomial, and RBF kernels per-
form better.

Figure 9 shows the correct recognition rate for dif-
ferent SNR ratios at a 10○ viewing angle for the three
SVM classifier kernels, and Fig. 10 shows the correct
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Fig. 9. Comparison of correct recognition rate for differ-
ent SNR ratios at a 10○ viewing angle for the three SVM

classifier kernels.
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Fig. 10. Comparison of correct recognition rate for different
viewing angles at SNR = 20 dB for the three SVM classifier

kernels.

recognition rate for different viewing angles at SNR
= 20 dB for the three SVM classifier kernels.

For a more comprehensive comparison, Table 4
presents the target recognition results using MLP-BP
and MLP-GWO.
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Table 4. The results of the classification with the classifiers MLP-BP and MLP-GWO.

SNR [dB] Classifier Angle 10○ Angle 20○ Angle 30○ Angle 40○ Angle 50○ Angle 60○ Angle 70○ Angle 80○

20
MLP-BP 13.60 19.60 20.00 15.10 16.80 18.39 14.43 11.22

MLP-GWO 17.13 17.00 16.26 17.00 17.00 17.00 13.03 13.01

15
MLP-BP 14.39 11.66 13.60 8.79 11.61 12.40 7.19 5.6

MLP-GWO 17.18 17.16 17.00 17.00 17.14 17.01 13.57 13.02

10
MLP-BP 11.51 11.62 10.41 9.94 8.42 7.12 8.82 7.83

MLP-GWO 17.17 17.05 17.01 17.04 17.02 17.01 13.00 13.00

5
MLP-BP 8.41 9.34 4.00 8.46 10.81 9.63 6.47 7.19

MLP-GWO 17.16 17.55 17.01 17.27 17.02 17.00 13.03 12.87

0
MLP-BP 7.19 7.87 5.20 7.19 6.80 4.39 4.39 4.80

MLP-GWO 17.16 17.01 17.27 17.26 17.01 17.00 13.00 12.34

−5
MLP-BP 3.21 4.00 5.62 6.40 6.00 4.00 5.20 5.20

MLP-GWO 17.14 17.40 17.40 17.01 17.40 17.02 13.01 13.00

−10
MLP-BP 3.60 2.80 4.00 7.60 6.00 4.00 2.41 4.82

MLP-GWO 17.13 17.14 17.20 17.01 17.06 17.03 16.35 16.07

−15
MLP-BP 3.15 4.39 2.82 4.00 3.20 4.00 6.89 3.20

MLP-GWO 16.07 16.80 15.62 16.71 14.80 14.75 14.68 13.80

−20
MLP-BP 3.20 4.12 5.69 3.20 5.61 5.54 3.11 3.59

MLP-GWO 15.00 15.87 15.28 13.94 13.96 13.67 13.69 12.94

As shown in Table 4, MLP-BP has shown poor per-
formance. The results for MLP-GWO are better than
MLP-BP. However, in both classifiers, the results are
not satisfactory. One of the reasons for the poor per-
formance of neural networks is the number of classes.
Obviously, increasing the number of classes causes an
increase in the probability of errors and, as a result,
a decrease in performance.

6. Conclusion

This paper uses a new method of using sonar micro-
Doppler to automatically detect moving sonar targets.
In other words, when the signal hits the propeller,
each propeller has a unique effect on the signal ac-
cording to its own metrics. Then, by transferring the
signal to the frequency domain, its useful properties
were extracted. Movable sonar targets were classified
using linear kernels, RBF and polynomial SVM classi-
fiers. The simulation results showed that the RBF ker-
nel is significantly suitable for positive signal-to-noise
ratios. For values with more noise, the linear kernel
has different and significant performance compared to
the other two kernels. Using GWO algorithm for neu-
ral network training improved the performance of the
classifier compared to using BP for training, but over-
all, the result of using neural networks was not satis-
factory. Therefore, the approach of using neural net-
work is not suitable for this problem. However, due to
the new idea of using sonar micro-Doppler to classify
moving targets, the need to consider other machine
learning methods and artificial intelligence techniques

to improve the classifier performance in all SNRs and
viewing angles is strongly noticeable.

Some of the topics that will be explored for future
research are as follows:

– improving the performance of SVM classifiers us-
ing metaheuristic algorithms;

– use other machine learning algorithms to improve
accuracy;

– use of hybrid classifiers to achieve more accurate
accuracy for sensitive applications;

– use deep learning to improve classifier perfor-
mance.
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In this paper, we present one approach to improve the soundproofing performance of the double-panel
structure (DPS) in the entire audible frequencies, in which two kinds of local resonances, the breathing-type
resonance and the Helmholtz resonance, are combined. The thin ring resonator row and slit-type resonator
(Helmholtz resonator) row are inserted between two panels of DPS together. Overlapping of the band gaps due
to the individual resonances gives a wide and high band gap of sound transmission in the low frequency range.
At the same time, the Bragg-type band gap is created by the structural periodicity of the scatterers in the
high audible frequency range. In addition, the number of scatterer rows and the filling factor are investigated
with regard to the sound insulation of DPS with sonic crystals (SCs). Consequently, the hybrid SC has the
potential of increasing the soundproofing performance of DPS in the audible frequency range above 1 kHz by
about 15 dB on average compared to DPS filled only with glass wool between two panels, while decreasing the
total thickness and mass compared to the counterparts with the other type of local resonant sonic crystal.
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1. Introduction

Brillouin (1946) described mathematically the
propagation of waves in periodic structures in 1946.
Subsequently, the transmission properties of the elec-
tromagnetic wave in periodic structures was studied in
late 1980s. It was shown that infinite periodic struc-
tures do not support wave propagation in certain fre-
quency ranges relating to the spacing between the scat-
tering elements (Lattice constant).

The first experimental study on the sound atten-
uation by periodic structure was undertaken in 1995
(Martínez-Sala et al., 1995). The sculpture consists
of a periodic square symmetry arrangement of stain-
less steel pipe with a diameter of 29 mm, a distance
between 2 pipes next to each other of 100 mm. Filling
factor of 0.066 was used in their experiment. Sound
attenuation was measured at various angles in out-
door conditions for sound wave incidences perpendic-
ular to the cylinders’ vertical axes, resulting in sev-
eral maxima (sound attenuation) and minima (sound
reinforcement) in the frequency spectrum. The first

(lowest) band gap had a center frequency at 1.7 KHz,
which could be attributed to the periodicity of the
structure. Ever since, researches on the application
of periodic arrays of cylinders for noise control have
increased (Sanchez-Perez et al., 2002; Romero-
García et al., 2011). Investigation of sound attenua-
tion effects of regularly planted trees has also been con-
ducted (Martínes-Sala et al., 2006). There were nu-
merical and theoretical works in respect to periodic ar-
rays of elastic scatterers in gas involving hollow spheres
and cylinders (Sainidou et al., 2006).

Local sound absorption properties have been used
in sonic crystal noise barriers. For example, both nu-
merical and experimental studies have been made of
the reflectance and transmittance spectra of the sonic
crystals (SCs) consisted of rigid perforated cylindri-
cal shells filled with recycled rubber crumb mate-
rial (Sánchez-Dehesa et al., 2011). Such design of-
fers the additional mechanism of absorption, apart
from the multiple scattering phenomenon in perio-
dic structure, to further attenuate noise (Umnova
et al., 2006).
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A conventional way for reducing low frequency
noise transmission is to increase the thickness or mass
per unit area of the sound insulation material. How-
ever, a drawback of this technique is that usually it
results in large size and mass of the insulator. One
possibility for targeting the band gap without increas-
ing the size is to use the resonant scatterers. Besides
Helmholtz resonator, there are several cavity-type res-
onators such as half- and quarter-wave tubes, which
are used comonly on air intake systems to attenuate
noise at specific frequencies (Sohn, Park, 2011).

The concept of split ring resonator (SRR) was ini-
tially introduced in 1999 in the electromagnetism field.
There have been theoretical and experimental studies
on SRR which gave the frequency range related to the
resonant frequency in which waves could not propagate
through the system (Movchan, Guenneau, 2004;
Wu et al., 2008). Another type of SC using concen-
trically placed Helmholtz resonators has been studied
numerically (Elford et al., 2011). It was found that
the natural resonance properties of the six shell Ma-
tryoshka SC give rise to multiple independent reso-
nance band gaps below the first Bragg band gap (i.e.,
due to the periodicity of the SC) between 400 and
1600 Hz. There have also been numerical studies of
acoustical performance of a periodic array of resonant
silicone rubber scatterers embedded in an epoxy resin
matrix (Hirsekorn et al., 2004). Experimental work
in respect to periodic array of scatterers in air has in-
vestigated the use of pressurized gas-filled cylindrical
balloons (Fuster-Garcia et al., 2007). It was found
that resonance attenuation peaks can be obtained at
frequencies which do not depend on the periodicity
of the SC but on the resonance frequency of the res-
onators. Predictions and measurements of sound trans-
mission through a periodic array of elastic shells in air
have been conducted (Kyrnkin et al., 2010). Besides,
several shapes of local resonant SCs have been pro-
posed for enhancing the sound insulation through the
multi-layer structures in the entire audible frequency
range as well as in the low frequencies (Cavalieri
et al., 2019; Gulia, Gupta, 2018; 2019; Kim, 2019;
Kim et al., 2021; Qian, 2018).

Plane wave expansion (PWE) method is one of the
most studied methods for research into the phononic
or sonic crystal band gaps (Chen, Ye, 2001; Vasseur
et al., 2008). It can be applied to the infinite arrays
of any scatterer shape. Multiple scattering approach
was first published for the potential flow through
a periodic rectangular array of identical cylinders in
1892. Subsequently, investigations on multiple scatter-
ing have been made for a variety of 2D or 3D problems
(Linton, Evans, 1990).

Those two methods are not always feasible to solve
for scatterers with non-geometrical shapes or resonant
constructions by means of an exact analytical solution.
In such a case, the finite element method (FEM) based

on numerical solutions of partial differential equations
(PDEs) offers a method for finding approximate nu-
merical solutions of the scattered and total fields in
a wide range of physical and engineering problems. The
numerical results for the acoustical properties of SCs
have been reported using the FEM commercial soft-
ware such as COMSOL or ANSYS.

In this paper a DPS is proposed with a local reso-
nant SC based upon the combination of the breathing
resonance of a thin ring-type shell and Helmholtz res-
onance, and some issues for its application are also
explored.

2. Numerical modelling

Figure 1 shows the schematic of DPS with SC as
well as the Brillouin zone, which depicts the ΓX and
ΓM directions of acoustic wave propagation. The SC
consists of 7×n square arrangement of scatterers. Two
panels of DPS have thickness of 4 mm and 6 mm, re-
spectively, and are assumed to be made of plastic of
which density, Young’s modulus, and Poisson’s ratio
are 1380 kg/m3, 3.2 GPa, and 0.37, respectively. The
space between two panels changes with the number
of scatterer rows. The domain between two panels is
filled with air or porous material, glass wool. Density
and sound speed of air are 1.2 kg/m3 and 344 m/s, re-
spectively.

Panel 1 Panel 2

Cylindrical
scatterers

X

MΓ

Fig. 1. DPS with 7 × n square arrangement of scatterers
and Brillouin Zone.

A plane wave source is applied to the entrance of
DPS, i.e., the inward normal velocity is applied to the
left boundary surface of the DPS in Fig. 1, while the in-
finite radiation conditions to the source and receiver
boundaries. It can be assumed that there exists no
back reflection of acoustic waves on such boundaries,
and thus the following boundary conditions are satis-
fied (Gulia, Gupta, 2018b):

(−
∇p

ρ
) ⋅ n =

iω

ρcc
p −

iω

ρcc
p0, (1)

(−
∇p

ρ
) ⋅ n =

iω

ρcc
p, (2)

where p = p0e
ikr and p is the acoustic pressure, k is the

wave vector, ρ is the density, n is the normal vector,
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ω is the angular frequency, and cc is the sound speed.
The surfaces of scatterers are assumed to be free to
take account of the vibration of thin shells. The other
boundaries of DPS are all considered to be solid wall.
The normal particle velocity is equal to zero on the
solid wall, where the Neumann boundary condition is
satisfied as follows:

(−
∇p

ρ
) ⋅ n = 0. (3)

In this work, glass wool is taken as porous material
and modelled by Delay-Bazley model (Delany, Baz-
ley, 1970). The wave number kg and the characteristic
impedance zg of glass wool are then expressed by the
complex forms:

kg =
ω

c0
[1 + 0.0978χ−0.7

− j0.189χ−0.595], (4)

zg = ρ0c0 [1 + 0.0571χ−0.754
− j0.087χ−0.732], (5)

where χ = ρ0f/Rg, ρ0 and c0 are the density of fluid
and the sound velocity in fluid without porous mate-
rial, respectively, f denotes the frequency, ω indicates
the angular frequency, and Rg marks the flow resis-
tance of glass wool.

The mean fiber diameter (dg) and density (ρg) are
10 µm and 12 kg/m3, respectively. The flow resistance
can be calculated by the expression as following (Bies,
Hansen, 1980):

Rg =
3.18 ⋅ 10−9ρ1.53

g

d2
g

. (6)

SC is a periodic array of the finite scatterers embed-
ded in homogeneous medium and can be characterized
by the geometry of its primitive cell as in semicon-
ductor. The concept of wave reflection in Bragg’s Law
which refers mainly to light diffraction can be analo-
gously used for sound waves. In the periodic structures
comprised of rigid scatterers, the sound waves could
interfere with each other constructively and destruc-
tively, resulting in a total reflection regime (complete
band gap) in certain frequency range. The frequency
range depends on the lattice constant of the array as
given by Bragg’s Law. In a square lattice, the funda-
mental Bragg resonance frequencies in the ΓX and
ΓM directions are, therefore, as follows:

fΓX =
c

2L
, (7)

fΓM =
c

√
2 (2L)

, (8)

where c is the sound speed in host medium. If the
two Bragg resonances are wide enough in frequency
to overlap, then a complete band gap can be realized
based solely on the Bragg resonance condition. The

width and depth of Bragg resonance is dependent on
the acoustic impedance mismatch between the host
medium and scatterer as well as the filling fraction
(function of lattice constant). Forming a sonic band
gap requires the careful selection of materials with
both the mass densities and modulus to yield the de-
sired acoustic impedance, and velocity mismatch be-
tween the matrix and scatterer.

The resonant frequency of SRR is given by Chal-
mers et al. (2009):

f =
c

2π

¿
Á
Á
ÁÀ

σ

S {L +
1

2

√
πσ}

, (9)

where L is the neck length, σ is the slit width, and S is
the inner cross-sectional area. It can be seen that the
Helmholtz resonance frequency decreases with increas-
ing the volume of the air cavity and the length of the
neck while increases with increasing the slit width.

Calculations are conducted in the FE software AN-
SYS Multiphysics (v18.0) acoustic package and the
soundproofing performances of DPSs are evaluated
through the sound transmission loss (STL) and inser-
tion loss (IL), assuming that the flanking sound trans-
mission is negligibly small.

If the power incident on the DPS (left side in Fig. 1)
is Wi and the power transmitted through the DPS
(right side in Fig. 1) is Wt, STL is determined by:

STL = 10 log (
Wi

Wt
). (10)

IL is calculated from the following equation:

IL = 10 log (
W

W ′ ), (11)

where W and W ′ refer to the power transmitted through
the DPS without or with the scatterer array.

Harmonic analysis is performed in the range of
20–8000 Hz with the frequency interval of 20 Hz. The
model is meshed with an element size (about 4 mm) of
one-tenth of the minimum wavelength.

3. Results and discussion

3.1. Number of scatterer rows and filling fraction
in DPS

The filling fraction is defined as the ratio between
the volume occupied by one scatterer and the volu-
me occupied by a unit cell and thus can be determi-
ned once the lattice constant and the size of the
scatterers are known. Properly specifying the num-
ber of scatterer rows and the filling fraction is very
important for decreasing the geometrical size and cost
of DPS. For this purpose, the Bragg band gap was in-
vestigated with varying such two parameters by the
finite element method.
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The shapes of scatterers are cylindrical and they
are arranged on 7 × n square lattice as in Fig. 1. The
cylinders have an outer diameter of 40 mm and the lat-
tice constant of SC is 42.8 mm. The number of rows, n,
is varied from 1 to 3. The domains between two panels
and scatterers are considered to be filled with air.

Figure 2 shows the IL spectra as a function of the
number of scatterer rows. For all three cases, there is
a peak of IL around 4020–4040 Hz, which matches well
with the Bragg frequency calculated by Eq. (7) for the
lattice constant of 42.8 mm. Bragg band gap cannot
be created for one row of scatterers in free space. How-
ever, DPS with one row of scatterers gives a distinct
band gap around the Bragg frequency due to the mul-
tiple reciprocating reflection between two panels. The
ILs at the Bragg frequency are 49.7 dB, 56.9 dB, and
64.8 dB for the number of rows from 1 to 3, respec-
tively. For the number of 2 and 3, several sharp peaks
appear in the insertion loss spectrum, which might be
attributed to the suppression of stand wave resonance
by the inserted array of scatterers.
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Fig. 2. IL as a function of number of scatterer rows in DPS.

The widths of frequency range where the IL is
larger than zero are 2660 Hz, 3980 Hz, and 3820 Hz.
And the widths for number of 2 and 3 are about the
same.

Figure 3 shows the STL through the DPS for the
number of scatterer rows of 2. The sound insulation,
added the effect of two panels, exhibits a high transmis-
sion loss (TL) of larger than 80 dB in a broad frequency
range from 2360 Hz to 6540 Hz, even though the num-
ber of scatterer rows is 2. It is therefore obvious that
two rows of scatterers are enough to give a sufficiently
wide and high band gap around the Bragg frequency
in DPS.

Next, the maximum TL and width of the Bragg-
type band gap are evaluated with varying the filling
fraction from 10% to 70% through the outer radius of
the 2 rows of cylindrical scatterers (Figs. 4 and 5).

For the filling fraction of larger than 10%, the peak
of the IL increases slowly giving a relatively small
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Fig. 3. STL of DPS with 7× 2 cylindrical scatterers ar-
ranged on square lattice.
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Fig. 4. Peak of IL as a function of filling fraction.
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Fig. 5. Width of insertion loss peak as a function of filling
fraction.

steepness. The variation of the peak is about 10–14 dB
in the entire range of filling fraction from 10% to 70%.
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Besides, it can be found from Fig. 5 that the width
of frequency range where the IL is larger than zero
does not change remarkably for the filling fraction from
10% to 60%. However, it increases rapidly for the filling
fraction larger than 60%. As a result of this, it can be
concluded that the effect of the filling fraction on the
Bragg-type band gap is relatively weak.

3.2. Effects of local resonances

Since an array of elastic shells exposed to the en-
vironment would not be practical for an outdoor noise
barrier, protecting the shells using concentric outer
PVC cylinders offers a simple solution. However, for
those inserted between two panels, there is no such
problem.

The ring-type shells are considered to be made
of commercially available non-vulcanized rubber, of
which the material properties are the density of ρ =

1100 kg/m3, the Young’s modulus of E = 1.75 MPa,
and the Poisson’s ratio of ν = 0.4997. The outer
diameter and thickness of the ring shells are 40 mm
and 0.5 mm, respectively. Spacing between neighbor-
ing scatterers is 42.8 mm and they are arranged on
7× 3 square lattice.

Figure 6 shows STL through the DPS with three
rows of the thin ring shells.
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Fig. 6. STL through DPS with a ring-type scatterer array.

The curve has a very high band gap around the
low frequency, 1060 Hz, as well as a Bragg-type band
gap caused by the periodicity of the lattice, which is
attributed to the local resonance of the ring-type scat-
terers. Meanwhile, TLs in the Bragg band gap fluctu-
ate constantly. This might be due to the variation of
the outer diameter caused by the breathing vibration
of the scatterers. Fluctuating the outer diameter of the
scatterers follows by one of the filling fraction, result-
ing in the following variation of the sound performance
of the SCs.

Figure 7 shows the IL spectra for the solid cylinder
array and the ring-type scatterers. As shown in the fig-
ure, unlike the case of cylindrical scatterers, there ex-
ists a band gap of very large ILs (78 dB) at low frequen-
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Fig. 7. IL spectra for solid cylinder arrays and ring-type
scatterers.

cies (center frequency of 1020 Hz, width of 600 Hz) at-
tributed to the local breathing-type resonance for the
ring scatterers.

Figure 8 shows the IL for SC consisted of the cylin-
drical scatterers compared to one for the Helmholtz
resonant scatterers. Helmholtz resonators have the
outer diameter of 35 mm, the thickness of 1.5 mm, and
the slit width of 14 mm. They are assumed to be made
of the same plastic as two panels.
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Fig. 8. ILs for solid cylindrical scatterers versus Helmholtz
resonant scatterers.

Two ILs at the Bragg frequency are approximately
comparable with each other. However, Helmholtz res-
onator array gives the IL higher than that for the cylin-
drical scatterer array at the stand wave resonance fre-
quencies as in 1400 Hz. It is also the same at the local
resonance frequencies.

3.3. Combination effect of breathing resonance
and Helmholtz resonance

Coupling the local resonances in the individual
scatterers enables the sound insulation in a certain fre-
quency range to be enhanced. From Eq. (9), it is nec-
essary to increase the thickness or the diameter of the
scatterers in order to decrease the resonance frequency
of SRRs. This results in the thicker and more weighted
construction for soundproofing.
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On the other hand, as shown in Figs. 6 and 7,
the thin ring scatterer exhibits a very high local res-
onant band gap. And because the ring scatterers are
very thin and made of the materials with a relatively
small density, they are lighter than the Helmholtz res-
onators with the same outer diameter. For example,
the mass per length of a Helmholtz resonator used
above is about 250 g, while one of a ring scatterer is
68 g, lighter by a factor of about 3.6. If the Helmholtz
resonators were made of metallic material rather than
plastic, the mass difference would become larger. Thus,
coupling the two kind of resonators would not only
create the several local resonant band gaps at low fre-
quencies, but also reduce markedly the total weight of
the soundproofing structure.

Figure 9 shows the schematic and STL of a DPS
with one row of Helmholtz resonators, of which the
outer diameter is 35 mm, the thickness 1.5 mm, and
the slit width 14 mm, and two rows of ring scatterers,
of which the outer diameter is 35 mm and the thickness
0.5 mm. The STL for the DPS filled with air between
two panels is also plotted in the figure.
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Fig. 9. Schematic (a) and STL (b) of DPS with 7× 3 hybrid
SC and filled with air.

In the TL curve, there exist very high peaks at the
frequencies of 1080, 1440, 1980, and 2860 Hz below
the Bragg-type band gap. The peaks at 1080 Hz and
1980 Hz are attributed to the breathing-type resonance
of ring scatterers and Helmholtz resonance of SRR,
while the other peaks are caused by the suppressions of
stand wave resonances. These two types of resonances

improve the sound insulation in the frequency range
from 1000 Hz to 2300 Hz by an average of 13 dB com-
pared to that without the hybrid SC, with a maximum
of 50 dB.

Figure 10 shows the STLs for one row versus two
rows of ring scatterers (solid line in Fig. 9b).
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Fig. 10. STLs through DPSs with 7× 2 and 7× 3
hybrid SCs.

It can be seen from the figure that when the total
number of scatterer rows decreases from three to two,
the maximum TL of the Bragg band gap was reduced
by 8 dB, and the maximum TL of the resonant band
gap at the breathing resonance frequency was also re-
duced by a few dB due to a reduction in the number
of ring resonator rows. However, the sound insulation
performances in the other frequency ranges are almost
similar, and the position and width of the Bragg band
gap are also unchanged. In addition, even when the
number of ring scatterer rows is 1, the maximum TLs of
both the Bragg band gap and the resonant band gap
at the breathing resonance frequency are higher than
100 dB. At the same time, the total thickness of DPS
decreased by 40 mm from 130 to 90 mm as the scat-
terer decreased by one.

It can be concluded that combining the two res-
onances can improve the low-frequency sound insula-
tion, reduce the mass and volume of the entire struc-
ture as well as SC.

3.4. Combination effect of porous material
and hybrid local resonant SC

Figures 11 and 12 show the effect of porous mate-
rial (glass wool) on the sound insulation of DPS with
the hybrid SC as in Fig. 9 through the STL and IL. As
shown in Fig. 11, inserting the porous material leads
to the elimination of the deep dips in the STL spec-
trum due to the two kinds of local resonant scatterer
arrays, a significant increase in the soundproofing per-
formance in the overall frequency range, and a rela-
tively smooth TL over 60 dB in the frequency range
above 1 kHz. Figure 11 also shows TL through the
DPS filled only with glass wool (without hybrid SC)
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Fig. 11. STLs of DPSs with hybrid SC embedded in porous
material or without it.
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Fig. 12. ILs in DPSs with hybrid SC embedded in porous
material and without it.

(dashed dotted line). It can be seen that the sound in-
sulation is improved by more than 15 dB on average in
the frequency range above 1 kHz compared with DPS
only with glass wool.

These tendencies can be seen in Fig. 12, and by
filling with the glass wool, the insertion loss at almost
all frequencies is greater than zero. Therefore, in or-
der to enhance sound insulation of DPS only in a par-
ticular low frequency range, a hybrid local resonator
array with appropriate resonant frequencies should be
inserted in two panels of the DPS, while in the case
of high insulation performance in the whole frequency
range, SCs and porous materials must be combined
together.

4. Conclusions

In this paper, a new approach was proposed to re-
duce the size and mass of DPS while improving the
acoustic insulation performance by using the SC cou-
pled with two kinds of local resonance effects. It is
found that the minimum number of scatterer rows to
form a broad and high forbidden band at the Bragg
frequency is two and the filling fraction has relatively
little effect on the Bragg band gap in the DPS. In addi-
tion, combining the resonances of Helmholtz resonators

with the breathing resonances of ring scatterers can not
only reduce the thickness and mass of DPS, but also
create several resonant band gaps at low frequencies.
Also, when the local resonant SCs are applied to DPS,
the use of porous materials together can lead to a rela-
tively smooth and high forbidden band around the res-
onance frequencies. It also provides about 15 dB higher
sound insulation than DPS only with glass wool in the
frequency range above 1 kHz.
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To calculate the transmission coefficient of ultrasonic waves through a multi-layered medium, a new approach
is proposed by expanding it into Debye’s series. Using this formalism, the transmission coefficient can be put in
the form of resonance terms series. From this point of view, the relative amplitude of the transmitted wave can
be considered as an infinite summation of terms taking into account all possible reflections and refractions on
each interface. Our model is then used to investigate interaction between the ultrasonic plane wave and the
N -plane-layer structure.

Obviously, the resulting infinite summation has to be reduced to a finite one, according to some level of
accuracy. The numerical estimation of the transmission coefficient using the exact expression (Eq. (1)) is then
compared to the one of our method in the case of two or three plane-layer structure. The effect of the order
of the finite summation on the calculated value of the transmission coefficient is, as well, studied. Finally, our
proposed method may be used, with the decomposition into Gaussian beams of a pressure field created by
a circular source, to draw a 3D image of the pressure field transmitted through a multilayered structure.
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Nomenclature

ΓN – transmission coefficient of N -layer structure,
dn – thickness of the n-th layer,
kn – propagation wave vector in the n-th layer,
ρn – mass density of the n-th layer,
cn – sound speed in the n-th layer,
αn – absorption coefficient in the n-th layer,
tn−1 – transmission coefficient of the n-th interface,
rn – reflection coefficient of the n-th interface,
ni – summation degree in i-layer structure,
ε – precision needed to define the minimal value of ni,
pn – acoustic pressure in the n-th layer,
Zn – acoustic impedance of the n-th layer.

1. Introduction

The measurement of ultrasound reflection and
transmission coefficients, from and through a layered

structure, is of great interest in many nondestructive
testing and characterization applications. Biological
tissues or rocks are some natural example of the layered
structure. Experimental data with a theoretical model
are exploited to extract acoustical properties as the
attenuation coefficient, density, sound speed and other
mechanical properties. Some of these applications are
reviewed in (Hsu, 2009).

Several techniques can be used to solve the in-
verse problem. The inverse problem solution can be
obtained by minimizing a cost functional formulated
as the least square error between the waveform cal-
culated using an equivalent model, and the measured
waveform obtained from ultrasonic transmission tests
(Messineo et al., 2016). A particle swarm optimiza-
tion (PSO) algorithm based least squares estimation
and using the ultrasonic reflection spectrum has been
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used (Yang et al., 2019). Multilayer structures are in-
volved in the design of piezoelectric transducers. Im-
plementing two-layer matching structure improves the
transmission of the acoustic power into the medium
(Bakhtiari-Nejad et al., 2020). In the case of sev-
eral layers, genetic algorithms can help in an optimal
selection of the materials used as adaptation layers
(Gudra, Banasiak, 2020).

Ultrasound propagation through periodic structu-
res is another area of interest of the layered structure.
Indeed, periodic structures with a wavelength scale pe-
riodicity (Potel, Belleval, 1993; Shenand, Cao,
2000; Khaled et al., 2013; Maréchal et al., 2014)
are known to exhibit acoustical band gaps, which is
of great interest for many applications like wave fil-
tering, guiding, focusing waves, silent blocks, and it
can also help improving the efficiency of transducers
(Maréchal et al., 2008).

One way to study these structures is to calculate
the transmission and reflection coefficients of the struc-
ture immersed in a fluid such as air or water. The prob-
lem can be resolved numerically. However, analytic so-
lutions are still a great way to understand the physical
mechanisms involved. Different approaches and tech-
niques like the plane wave method (PWM) (Potel,
Belleval, 1993; Deschamps, Chengwei, 1991) and
the transfer matrix method (TMM) (Solyanik, 1977;
Rokhlin, Wang, 1992;Haskell, 1953; Folds, Log-
gins, 1977; Lowe, 1995) or the global matrix method
(Storheim et al., 2015) are often adopted. The itera-
tive method (Scott, Gordon, 1977) or the equivalent
impedance (Messineo et al., 2013) can also be used.

Debye’s series decomposition method (Maréchal
et al., 2014; Gérard, 2022) allows developing the re-
flection and transmission coefficients into a sum of mul-
tiple reflection terms. Typically, some resonance terms
are ignored. However, expressing the transmission co-
efficient into a sum of these terms is very useful for
resonance analysis.

Fiorito and Überall (1979) showed that the
acoustic transmission and the reflection coefficient of
a fluid layer embedded in another fluid can be written
in the form of a sum of resonance terms. The resonan-
ce theory of a fluid layer has been extended to include
viscous effects (Fiorito et al., 1981). Three layered
elastic medium have been investigated (Ainslie, 1995)
using ray path analyses. The solution of the reflec-
tion/refraction of a plane wave at a single solid layer
has been expanded into Debye’s series (Deschamps,
Chengwei, 1991). Using a matrix notation and a ge-
neralized Debye theory, Gérard et al. (1979; 1980;
1982; 1987) derived an exact solution in an elastic
multilayered sphere. The case of submerged cylinders
(Derem, 1982) and plates (Conoir, 1991; Derible,
Tinel, 2011) were studied too. Earlier we exploited
this resonance formalism to study the interaction of
a bounded ultrasonic beam with an immersed plate

(Soucrati et al., 2018). A global transfer matrix
has been constructed to study the interaction of har-
monic elastic waves with n-layered anisotropic medium
(Nayfeh, 1991).

In the present work, firstly, we determined the
transmission coefficient (ΓN ) through N -layered struc-
ture using the plane wave theory. The details of the
calculus are given in Appendix A, the solution named
an exact solution is then given in Eq. (1). This exact
solution is broken down into series translating the in-
dividual contribution of each resonance. A novel way
is applied to write this solution as a product of the De-
bye series. Then a new resonance model for the trans-
mission (ΓN ) was developed. The model provides ana-
lytical expressions for the characteristics of each res-
onance. This facilitates the resonance decomposition
of the transmitted wave and help understanding reso-
nance phenomena. Further, the model provides a useful
tool to solve the inverse problem. In the same manner,
our model can be applied to the calculation of the re-
flection coefficient.

In this paper, we describe firstly the problem of the
propagation of ultrasonic waves in multilayered media
as well as the theoretical formalism that governs this
propagation. Applying the pressure continuity and the
particle velocity continuity at the two interfaces of each
layer we derived the exact formulation of the trans-
mission coefficient named ΓN . Details are given in Ap-
pendix A. The result is given in Eq. (1). Then ΓN is
expanded into a sum of resonance terms like Debye’s
series. Details about the method used to expand the
transmission coefficient into Debye’s series are given
in Appendix B. The expanded expressions are given in
the Eqs. (10), (15), (18), and (22), respectively, for one,
two, three, and N -layers. Finally, numerical evaluation
of the transmission coefficient ΓN given by the exact
solution (Eq. (1)) and the expanded formulation are
compared. The comparison shows good agreement sub-
ject to choosing the right number of resonance terms.

2. Theoretical formalism

2.1. Studied configuration

We consider a layered structure hit by an ultrasonic
plane wave in normal incidence (Fig. 1). The struc-
ture to be analyzed is composed of N -layers indexed
from 1 to N . Each layer is of the thickness dn. Note

tN

Plan 
wave

Water Layer 1 Layer 2 
n = 0 n = 1 n = 2

Water
n = N + 1

t0
r0 rN

Z = Z0 Z = Z1 Z = Z2 ... Z = ZN – 1 Z = ZNZ = 0

p0 p1 p2

Layer N 
n = N 
pN pN+1

Fig. 1. Geometrical arrangement.
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that the propagating vector is kn, the mass density
is ρn, the layer’s sound celerity is cn, the acoustic im-
pedance Zn, and the attenuation coefficient αn.

The structure is immersed in water characterized
by its density ρ0, velocity c0, acoustic impedance Z0,
and wave number k0. The surrounding medium is taken
to be nonabsorbent, so α0 = 0. The second half medium
surrounding the layers is also water and corresponds to
the slice indexed N + 1. Then ZN+1 = Z0.

The N -layered structure is hit, in a normal inci-
dence, by a plane harmonic wave. So, only a longitudi-
nal wave is to be considered. The transverse waves are
not considered.

Plexiglas is used as a layer with ρ = 1200 kg/m3, c =
2650 m/s, and α = 1.13 dB/[MHz ⋅ cm]. For aluminum
ρ = 2800 kg/m3, c = 6380 m/s.

2.2. Transmission coefficient

We demonstrate (Appendix A) that the transmis-
sion coefficient ΓN of N -layered structure can be ex-
pressed as:

ΓN = TN
ϕN
DN

(1)

with:

TN =
N

∏
n=0

tn; tn =
2Zn+1

Zn +Zn+1
, (2)

ϕN =
N

∏
n=1

Xn; Xn = e
−iγndn ; γn = kn − iαn, (3)

where TN is the transmission coefficient through the
N -layer structure, while ϕN is the accumulation of
the phase induced by the propagation into the different
N -layers.

Moreover, tn correspond to:
– t0: transmission from water of the first half me-

dium surrounding the structure, to the first layer
(layer 1),

– tN : transmission from the last layer (layerN) to the
water of the second half medium surrounding
the structure.

The transmission coefficient ΓN consists of a frac-
tion of two terms, namely the numerator (TNϕN) that
takes into account transmission attenuation and the
denominator (DN ) that takes into account multiple re-
flections at each interface. This latter can be expressed
as DN = 1 + ΦN , where ΦN is responsible for reflec-
tions/refractions at all the interfaces.

A similar formula has been already given in (Sto-
vas, Arnsten, 2006). Indeed, starting from Eq. (40)
in Appendix B, we can deduce:

DN =D1 +
N−1

∑
m=0

rN−m xN−mD′
N−m. (4)

So, one can see that DN can be written in the form of:

DN = 1 +ΦN (5)

with:

ΦN = r0 r1 x1 +
N−1

∑
m=0

rN−m xN−mD′
N−m. (6)

For N > 1, DN is developed in a new manner to al-
low decomposition into series terms. Details are given
in Appendix B. So DN can be expressed in a simple
way as:

DN =DN−1 + rNxN D̃N−1xn =X
2
n,

rn =
Zn+1 −Zn
Zn +Zn+1

,
(7)

where

D̃N = rNDN−1 + xN D̃N−1, D̃1 = r1 + r0x1, (8)

where rN is the reflection coefficient at the last inter-
face from water to the layer N . It is expressed as:

rN =
ZN+1 −ZN
ZN +ZN+1

=
Z0 −ZN
ZN +Z0

. (9)

Now, the idea is to expand ΓN into a sum of resonance
terms as Debye’s series.

For one layer (N = 1), we have:

Γ1 = T1X1

∞
∑
n1=0

(−r0 r1 x1)
n1 . (10)

For more than one layer (N > 1), we derive an expres-
sion of DN (Appendix B) that allows expanding ΓN
into Debye’s series.

Let us start with two layers N = 2:

1

D2
=

1

C1

∞
∑
n2=0

(−β1 r2 x2)
n2 . (11)

We express β1 as:

β1 =
1

r1
(1 −

t1t
′
1

C1
), (12)

thus:

1

D2
=

1

C1

∞
∑
n2=0

(−
r2

r1
x2)

n2 n2

∑
m=0

n2!

m! (n2 −m)!
(−
t′1t

′
1

C1
)

m

.

(13)

The term (1/C1)
m can be expanded in series as:

1

Cm1
=

∞
∑
n1=0

(−r0 r1 x1)
n1 (m + n1)!

m!n1!
. (14)

Replacing Eq. (10) in (9), we get the final form of the
transmission coefficient through two layers:

Γ2 = T2ϕ2

∞
∑
n2=0

(−r2 x2)
n2

∞
∑
n1=0

Wn2n1 (−r
′
0 x

′
1)
n1 (15)
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with:

Wn2n1 = r
n1−n2

1

n2!

n1!

n2

∑
m=0

(m + n1)!

m!m! (n2 −m)!
(−t′1 t

′
1)
m
. (16)

Let us rewrite the two first terms of Γ2 with respect
to n2, in order to give a physical interpretation of each
of them:

Γ2 = T2ϕ2 {
∞
∑
n1=0

(−r0 r1 x1)
n1

+
∞
∑
n1=0

[1−(n1+1)(−r2 x2)
t1t

′
1

r1
](−r0 r1 x1)

n1+ ...}. (17)

The first summation in Eq. (13) counts for the reso-
nance into the first layer and transmitted through the
second (Fig. 2a). The second summation term is ob-
tained for n2 = 1 and composed of two components:
the first sum is the same as for n2 = 0, the second
sum counts for the reflection from the interface be-
tween layer 2 and the ambient medium followed by
resonances into layer 1 (Fig. 2b). The coefficient (n1+1)
in the second sum is due to the Fabry-Pérot like effect,
which means that the response is composed of many
echoes that arrive at the same time as shown in Fig. 2.

a) b)
n2 = 0

1

r1r0

(r1r0)2

(r1r0)3

(r1r0)4

(r1r0)2
r2t'1r0t1

r2t'1r0t1 (r1r0)

r1r0r2t'1r0t1 (r1r0)

r1r0r2t'1r0t1

r2t'1r0t1 (r1r0)2
(r1r0)3

(r1r0)4

r1r0

n2 = 1

1

2

Fig. 2. Schematic of (a) the first layer resonance and trans-
mission (n2 = 0) and (b) the multiple reflections from the

second layer and ambient medium interface (n2 = 1).

In the same manner we derive the expression for
three adjacent layers:

Γ3 = T3ϕ3

∞
∑
n2=0

(−x2)
n2

∞
∑
n1=0

Wn2n1 (−r
′
0x

′
1)
n1

⋅
∞
∑
n3=0

Wn2n3 (−r
′
3x

′
3)
n3, (18)

where

Wn2n3 = r
n3−n2

2

n2!

n3!

n2

∑
m=0

(m+n3)!

m!m! (n2−m)!
(−t′2t

′
2)
m
. (19)

In the case of four layers, we have:

Γ4 = T4ϕ4

∞
∑
n2=0

(−x2)
n2

∞
∑
n1=0

Wn2n1 (−r
′
0x

′
1)
n1

⋅
∞
∑
n3=0

Wn2n3 (−x
′
3)
n3

∞
∑
n4=0

Wn3n4 (−r4x
′
4)
n4 (20)

with:

Wn3n4 = r
n4−n3

3

n3!

n4!

n3

∑
m=0

(m + n4)!

m!m! (n3 −m)!
(−t′3t

′
3)
m
. (21)

In the general case of N -layers with N > 3:

ΓN = TNϕN
∞
∑
n2=0

(−x2)
n2

∞
∑
n1=0

Wn2n1 (−r
′
0x

′
1)
n1

⋅
N−1

∏
j=3

⎡
⎢
⎢
⎢
⎢
⎣

∞
∑
nj=0

Wnj−1nj (−x
′
j)
nj

⎤
⎥
⎥
⎥
⎥
⎦

⋅
∞
∑
nN=0

WnN−1nN (−rNx
′
N)

nN , (22)

where

Wnjnj+1 = r
nj+1−nj
j

nj !

nj+1!

nj

∑
m=0

(m + nj+1)!

m!m! (nj −m)!
(−t′jt

′
j)
m
.

(23)

ΓN can be interpreted as a sum of waves of the ampli-
tude Wij reflected at each interface.

We derived here a more generalized formula than
those based on the amplitude of echoes derived in the
reflection mode (Chern, Nielsen, 1989) and through
the transmission mode (Chern, Nielsen, 1990).

3. Simulation results

In this section, we show the validity of the pro-
posed model by simulating the transmission coefficient
of different configurations of multilayered structures.
The cases of one, two, and three layers are studied for
different numbers of resonances.

The exact expression of the transmission coefficient
ΓN through an N -layer structure is given by Eq. (1).
The series expansion of the resonance term is given by
Eqs. (10), (17), and (18), respectively for 1, 2, or 3
layers. In all these expressions we have infinite sums
which are truncated during the simulation. The simu-
lation results are then compared to the calculations
of ΓN using Eq. (1) to determine firstly the degree of
truncation and secondly to validate our model.

3.1. One-layer case

Figure 3 gives the transmission coefficient versus
frequency, for one layer made of 4 mm of plexiglass.
The exact solution (red curve) is compared to our
model (blue curve). The results in Fig. 3a are given
for n1 = 1 which means that the series in Eq. (10) is
truncated to the first term. However in Fig. 3b the se-
ries is truncated to the 5 first terms. So the maximum
number of resonance taken into account should be de-
termined according to the acoustical parameters of the
layer. The same results for aluminum plate are given
in Fig. 4.
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Fig. 3. ∣Γ1∣, versus frequency, for 4 mm plexiglas plate:
exact solution (red), our model for n1 = 1 (blue in a),

and n1 = 5 (blue in b).
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Fig. 4. ∣Γ1∣, versus frequency, for 4 mm aluminum
plate: exact solution (red), our model for n1 = 5 (blue),

and n1 = 10 (green).

As expected, Fig. 3 and Fig. 4 show the well-known
resonance frequency due to different modes of propa-
gation in the layer.

Discrepancies are noticed, especially for the min-
ima and maxima of the curves, if the number of res-
onances taken into account is insufficient (blue curve
Figs. 3a and 4). To match the exact solution one need
to define a precision ε. Then the minimal value of ni
(i = 1,2, ...,N) should be determined according to this
accuracy ε.

The minimal value of n1 is determined according
to the expected accuracy using this expression:

∣r0 r1∣
n1 < 10−ε then n1 ≥

−ε

log ∣r0 r1∣
. (24)

If we take ε = 3 for example, one should take the sum-
mation of the 20 terms for aluminum and only 4 terms
for plexiglas.

3.2. Two layers

We studied a structure made of two layers alumi-
num/polyethylene (Al/PE) immersed in water. Each
layer has 4 mm thickness. Transmission coefficient vari-
ation according to the frequency is presented in Fig. 5
for the Al/PE structure. This structure has been stud-
ied theoretically and experimentally using the reflec-
tion response (Lenoir, Maréchal, 2009).
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Fig. 5. Variation of ∣Γ2∣ versus frequency: exact solution
(red), our model with n2 = 3 (blue), n1 = 5 in (a), and

n1 = 11 in (b).

The minimal value of n1 is determined using Eq. (24).
Taking ε=10−2 we deduce n1=11. For n2 we should use
according to Eq. (7):

∣β1 r2∣
n2 < 10−ε then n2 ≥

−ε

log ∣r2 β1∣
. (25)

If we take ε = 2 it gives n1 = 11 and n2 = 5. Using
these minimal values, the approximated solution fits
well with the exact one as it is seen in Fig. 5b.
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3.3. Three layers

Let us now study the structure made of two plexi-
glas plates of 5 mm separated by 1 mm of water (Fig. 6).
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Fig. 6. ∣Γ3∣ versus frequency for plexiglas/water/plexiglas of
5/1/5 mm structure: exact solution (red), our model (blue

n1 = n2 = n3 = 1 and green n1 = n2 = n3 = 5).

We can notice from simulation results, that our
model based on Debye’s series gives very good results
for the calculation of the ultrasound transmission co-
efficient in a multilayered structure. Especially if the
number of resonance terms used in calculation is well
chosen.

4. Conclusion

In this work, we present a new analytical method
for calculating the acoustic frequency response of a mul-
tilayered structure. The transmission coefficient calcu-
lated using this new method is put into a sum of reso-
nance terms. This way, we can consider the relative am-
plitude of each wave as a summation of several terms
taking into account all possible reflections/refractions.

The expanded solution is in good agreement with
the exact solution, subject to take a suitable number of
resonances. We have also proposed a method helping
defining this resonances’ number. Our method gives
a more generalized formula than other methods based
on reflection or transmission modes. Our work can also
help extracting geometrical and acoustical parameters
of each layer. The considered layers can be either liquid
or solid, since the incidence is normal to avoid the shear
waves that are not taken into account by the formula.

Instead of a plane wave, our model can be asso-
ciated with superposition of a bounded beam to find
the 3D diffracted field by a multilayered structure.
In the same manner we derived an analytical expression
of a 3D ultrasonic field transmitted through a single
plane layer (Soucrati et al., 2018).

Appendix A

For, n = 1 to N , we express the ultrasonic pressure
pn inside each layer as (z0 < z < zN ):

pn = Une
−iγn(z−zn−1) + Vneiγn(z−zn−1). (26)

The pressure wave in the first half of embedded me-
dium (water n = 0) is then (0 < z < z0):

p0 = U0e
−iγ0z + V0e

iγ0z. (27)

The transmitted wave in water after the layered struc-
ture (z > zN ) is written as:

pNt = Ute
−iγ0(z−zN ). (28)

We put ηn as the ration of the impedance of the slice
before to that of the next slice:

Xn = e
−iγndn , ηn =

Zn
Zn+1

. (29)

So from the water to the first layer we have:

X0 = e
−iγ0d0 , η0 =

Z0

Z1
, (30)

and from the last layer to the water we write:

XN = e−iγNdN , ηN =
ZN
ZN+1

=
ZN
Z0

. (31)

The origin of the propagation axis is placed at the in-
terface between layers n and n − 1. By applying the
pressure continuity (Ingard, Morse, 1968) and par-
ticle velocity continuity equations at each interface and
solving them, we get the ratio of the sound pressure
level of the transmitted wave (Ut) to the incident
wave (U0). This corresponds to the transmission coef-
ficient (ΓN ). In the same way we can deduce the reflec-
tion coefficient.

For one layer, we have:

[
1 1

1 −1
](

U0

V0

) =
1

η0
[
η0 η0

1 −1
](

U1

V1

), (32)

1

X1
[
x1 1

x1 −1
](

U1

V1

) = U1t (
1

η1

). (33)

Solving this system, we get the expression of Γ1 as:

Γ1 =
U1t

U0
=

t0 t1X1

1 + r0 r1 x1
. (34)

For a structure of two layers N = 2, we have to add
this equations system for n = 1:

1

Xn
[
xn 1

xn −1
](

Un

Vn
) =

1

ηn
[
ηn ηn

1 −1
](

Un+1

Vn+1

), (35)

1

XN
[
xN 1

xN −1
](

UN

VN
) = UNt (

1
ηN

). (36)

Solving this system, we get Γ2:

Γ2 =
U2t

U0
=

t0 t1 t2X1X2

1 + r0 r1 x1 + r1 r2 x2 + r0 r2 x1 x2
. (37)
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For N layers, we can get the expression of the coeffi-
cient of transmission using the same technique:

ΓN =
UNt
U0

=
TNϕN
DN

,

TN = t0t1 ... tN , ϕN =X0X1 ... XN .

(38)

We notice that DN is expressed as a sum of combina-
tion of all the possible product of xn.

For 3 layers for example, we have x1, x2, x3, x1x2,
x1x3, x2x3, and x1x2x3. So D3 is expressed as:

D3 = 1 + c1x1 + c2x2 + c3x3 + c12x1x2 + c13x1x3

+ c23x2x3 + c123x1x2x3, (39)

where the coefficients ci are defined as the product
of the reflection coefficient rn at all the interfaces in
which the considered layers are not adjacent.

If we take only one layer from N , we have cn =

rn−1rn. So, for example c1 = r0r1.
If we take m layers from N , we have N !(N−m)!

m!
pos-

sibilities and we should consider the reflection coeffi-
cients at the interfaces where the layers considered are
not adjacent.

If we consider two layers from three we have three
possibilities x1x2, x1x3, and x2x3 (see Fig. 7).

Fig. 7. Theoretical scene we consider three different layers.

For layer 1/layer 2 case, we have c12 = r0r2. There
are only two free interfaces. For layer 2/layer 3 case,
we have c23 = r1r3. There are, again, only two free
interfaces. However, for the layer 1/layer 3 case, we
got c13 = r0r1r2r3. There are four free interfaces.

The expression of every DN can be deduced using
this technique.

Appendix B

We are interested to determine the transmission co-
efficient ΓN of the layered structure. The idea is to ex-
press the denominator DN as a sum of DN−n where n
goes from 1 to N . We noticed that DN can be put into
the form:

DN =DN−1 + rNxN D̃N−1, (40)

where D̃N−1 can be written as:

D̃N−1 = rN−1DN−2+xN−1D̃N−2, D̃1 = r1+r0x1, (41)

which yields:

DN =DN−1 + rNrN−1xN(DN−2 + xN−1D
′
N−2), (42)

we put:

Cn = 1 + rnrn−1xn,

C1 =D1 = 1 + r1r0x1En = rn−1 + rnxn.
(43)

For two layers:

D2 =D1 + r2x2D̃1 = C1(1 + β1r2x2) = C1C21 (44)

with:

C21 = 1 + β1r2x2, β1 =
D̃1

C1
=

1

r1
(1 −

t1t
′
1

C1
). (45)

For three layers we arrange D3 in the form:

D3 = D2 + r3x3D̃2

= D1 + r2x2D̃1 + r3x3 (r2D1 + x2D̃1)

= C1C3 + x2D̃1E3 = C1C3C31, (46)

where

C23 = 1 + β1β3x2, β3 =
E3

C3
=

1

r2
(1 −

t2t
′
2

C3
). (47)

For four layers:

D4 = D3 + r4x4D̃3

= C4 (D2 + β4x3D̃2)

= C1C4 (C34 + β1x2 (r2 + β4x3)), (48)

D4 = C1C4C24C341 (49)

with:
⎧⎪⎪
⎨
⎪⎪⎩

C34 = 1 + β4r2x3,

C24 = 1 + β1β34x2,

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

β4 =
E4

C4
=

1

r3
(1 −

t3t
′
3

C4
),

β34 =
r2 + β4x3

C34
.

(50)

Generalizing for N layers DN is put in the form:

DN≥4 = CNC1

N−1

∏
m=2

CmN , (51)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cn = 1 + rn−1rnxn,

C1 = 1 + r0r1x1,

C2N = 1 + β1β3Nx2,

CmN = 1 + βm+1Nrm−1xm,

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

βn =
En
Cn

=
1

rn−1
(1 −

tn−1t
′
n−1

Cn
),

βmN =
rm−1 + βm+1Nxm

CmN
.

(52)
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When studying porous materials, most acoustical and geometrical parameters can be affected by the pres-
ence of uncertainties, which can reduce the robustness of models and techniques using these parameters.
Hence, there is a need to evaluate the effect of these uncertainties in the case of modeling acoustic problems.
Among these evaluation methods, the Monte Carlo simulation is considered a benchmark for studying the
propagation of uncertainties in theoretical models. In the present study, this method is applied to a theoretical
model predicting the acoustic behavior of a porous material located in a duct element to evaluate the impact of
each input error on the computation of the acoustic proprieties such as the reflection and transmission coeffi-
cients as well as the acoustic power attenuation and the transmission loss of the studied element. Two analyses
are conducted; the first one leads to the evaluation of the impacts of error propagation of each acoustic param-
eter (resistivity, porosity, tortuosity, and viscous and thermal length) through the model using a Monte Carlo
simulation. The second analysis presents the effect of propagating the uncertainties of all parameters together.
After the simulation of the uncertainties, the 95% confidence intervals and the maximum and minimum errors
of each parameter are computed. The obtained results showed that the resistivity and length of the porous
material have a great influence on the acoustic outputs of the studied model (transmission and reflection coef-
ficients, transmission loss, and acoustic power attenuation). At the same time, the other physical parameters
have a small impact. In addition, the acoustic power attenuation is the acoustic quantity least impacted by the
input uncertainties.

Keywords: porous material; physical parameters; transmission loss; acoustic power attenuation; Monte Carlo
method.
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1. Introduction

Studying acoustic propagation in duct systems con-
taining a porous material is still today important in
acoustic research and industrial communities. In fact,
this kind of duct element is used in many industrial
applications such as transport and building domains.
The objective of these studies is to predict and bet-

ter understand the involved physical phenomena re-
lated to the acoustic propagation of these duct ele-
ments (reflection, transmission, attenuation, absorp-
tion, convection, diffraction, refraction, etc.). The use
of porous materials is justified by the fact that they
possess good absorption properties, and are easy to
manufacture and install. The theoretical description
of acoustic propagation in porous media has been con-
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stantly progressing since the 1940s. It is now relatively
well-known thanks to the contributions of many mod-
els which start with Zwikker and Kosten (1949),
who are the first to model sound propagation in porous
media. Then Delany and Bazley (1970) established
an empirical model according to which the acoustic
characteristics (the characteristic impedance and the
propagation coefficient) depend only on the ratio of
the frequency f to the air flow resistivity. Then, the
porosity ϕ and the tortuosity α∞ were introduced as
presented in the models (Attenborough, 1982; 1983)
to take into account the complexity of the pore ge-
ometry in high frequencies. Johnson et al. (1987) in-
troduced the physical concept of viscous characteristic
length Λ. This model was next completed by Cham-
poux and Allard (1991) by adding the description
of thermal characteristic length Λ′ effects. Later on,
Lafarge et al. (1997) refined the Champoux and Al-
lard model by introducing a new parameter called the
thermal permeability k′0, which describes the damping
of sound waves due to the thermal exchanges between
the fluid and the structure at the pore surface.

To study the acoustic behavior of duct elements
containing porous materials, some matrices can be
used coupled with the previous porous acoustic mod-
els. Among these matrices, two present a great interest:
the first is the transfer matrix as presented in (Peat,
1988;Tanaka et al., 1985;Othmani et al., 2016; 2017;
Kani et al., 2019; 2021) from which the acoustic trans-
mission loss (TL) can be computed. The second is the
scattering matrix (Bi et al., 2006; Sitel et al., 2006;
Taktak et al., 2010; 2013; Jdidia et al., 2014; Oth-
mani et al., 2015; Kessentini et al., 2016; Masmoudi
et al., 2017; Ben Souf et al., 2017; Dhief et al., 2020;
Tounsi et al., 2022) that contains important informa-
tion about the transmission and reflection phenomena
and is used for the acoustic power attenuation compu-
tation. Consequently, these two matrices give complete
information about the acoustic behavior of a duct ele-
ment.

In general, most of the parameters used in the the-
oretical modeling are characterized by the presence of
some uncertainties that affect the robustness of such
modeling. In order to avoid any errors, it is neces-
sary to evaluate the effect of these errors in the fi-
nal results and determine the more influential param-
eters. To achieve this objective, uncertainty analyses
are used. A widely used stochastic technique, called the
Monte Carlo method, can be integrated into the theo-
retical models in order to evaluate the propagation of
errors and their degree of influence (Taktak et al.,
2009; Trabelsi et al., 2017; Bouazizi et al., 2019).

The aim of the work presented in this paper is
to evaluate the impact of uncertainties affecting the
physical and geometrical parameters of a duct ele-
ment containing a porous material on its acoustic
behavior. To reach this goal, the Monte Carlo tech-

nique is coupled with theoretical modeling to com-
pute the transfer and scattering matrices of the stu-
died duct element. The used acoustic porous model is
the Johnson–Champoux–Allard–Lafarge (JCAL) mo-
del (Johnson et al., 1987; Champoux,Allard, 1991;
Lafarge et al., 1997), which incorporates the maxi-
mum of parameters.

In the present study, the effects of uncertainties
of model parameters on the porous material acoustic
properties such as reflection and transmission coeffi-
cients, as well as the transmission loss and the acous-
tic power attenuation, are evaluated and investigated.
This is obtained using the Monte Carlo method allow-
ing the computation of the 95% confidence intervals of
the model outputs as well as the corresponding errors.

The outline of the paper is as follows: in Sec. 2,
the theoretical basis of modeling the acoustic behav-
ior of porous element using the JCAL model and the
computation of transfer and scattering matrices of
the studied duct element are presented in detail. These
matrices are then used to calculate the transmission
loss and the acoustic power attenuation of the porous
material. Section 3 presents the details of the uncerta-
inty analysis based on the Monte Carlo method. Fi-
nally, the numerical results are presented and discussed
in Sec. 4.

2. Theoretical basis

2.1. Transfer matrix and transmission loss
computation

The studied duct element is located between the
two axial coordinates z1 and z2, as shown in Fig. 1. It
contains a porous material with a length equal to L.
According to the duct element dimensions used in the
present study, only the propagation of the acoustic
plane wave through the duct element in the z-direction
is assumed. This propagation is modeled using the
transfer matrix [T ], which provides the relationship be-
tween the acoustic pressure P1 and the particle veloci-
ty U1 in duct I at z1 = 0 and the acoustic pressure P2

and the particle velocity U2 in duct II at z2 = L (Fig. 1).

Fig. 1. Description of the studied duct.

The general formulation of the transfer matrix is
given as follows (Atalla, Allard, 2009):

(
P1

U1
) = [T ] (

P2

U2
) . (1)
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For a single fluid layer, the transfer matrix is cons-
tructed as:

[T ] =

⎡
⎢
⎢
⎢
⎢
⎣

T11 T12

T21 T22

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos (k(w)L) jZ(w) sin (k(w)L)

j

Z(w)
sin (k(w)L) cos (k(w)L)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2)

where j =
√
−1, w is the angular frequency, Z(w) is

the characteristic impedance, and k(w) is the acoustic
wavenumber of the porous material. These latter two
intrinsic quantities are linked to the dynamic mass den-
sity ρ(w) and the bulk modulus K(w) of the porous
material by the following relations:

Z(w) =
√
ρ(w)K(w), (3)

k(w) = w

¿
Á
ÁÀ ρ(w)

K(w)
. (4)

According to the JCAL model (Johnson et al., 1987;
Champoux, Allard, 1991; Lafarge et al., 1997),
the expressions of ρ(w) and K(w) are given as follows:

ρ(w) =
α∞ρ0

φ

⎛

⎝
1 − j

σφ

wρ0α∞

√

1 + j
4α2∞ηρ0w

σ2Λ2φ2

⎞

⎠
, (5)

K(w) =
γP0

φ

⎛
⎜
⎜
⎜
⎝

γ −
γ − 1

1 − j 8η

Λ′2NPr

√
1+j Λ

′2NPr
16η

−1
⎞
⎟
⎟
⎟
⎠

, (6)

where φ is the open porosity, σ is the static air-flow re-
sistivity, α∞ is the high-frequency limit of the dynamic
tortuosity, Λ is the characteristic viscous length, Λ′ is
the characteristic thermal length, ρ0 is the density at
rest of the fluid saturating the pores, η is its dynamic
viscosity, NPr is its Prandtl number, γ is its specific
heat ratio, and P0 is the atmospheric pressure.

The power transmission factor τ of the porous ma-
terial is defined as the ratio of the transmitted power
Wt and the power incident on the porous material Wi:

τ =
Wt

Wi
. (7)

The transmission loss (TL) is defined in dB as:

TL = 10 log (
1

τ
) . (8)

Using the four elements T11, T12, T21, and T22 of the
transfer matrix [T ], the transmission loss can be cal-
culated as follows:

TL = 20 log (
1

2
∣T11 +

T12

Z0
+Z0T21 + T22∣) , (9)

where Z0 = ρ0c0 is the characteristic impedance of the
surrounding medium, and c0 is its speed of sound.

2.2. Scattering matrix and acoustic power
attenuation computation

The scattering matrix [S] of the studied duct ele-
ment located between z1 and z2 (Fig. 1) is a linear rela-
tionship between the incoming pressures vector {P in}

and the outgoing pressures vector {P out} and can be
expressed as:

{P out} = [S]2×2 {P in} , (10)

where

{P in} =

⎧⎪⎪
⎨
⎪⎪⎩

P I+ (z1)

P II− (z2)

⎫⎪⎪
⎬
⎪⎪⎭

and {P out} =

⎧⎪⎪
⎨
⎪⎪⎩

P I− (z1)

P II+ (z2)

⎫⎪⎪
⎬
⎪⎪⎭

.

P I+(z1), P I−(z1), P II+(z2), and P II−(z2) represent
the incident, the reflected, the transmitted, and the
retrograde pressures, respectively (Fig. 1).

This matrix

[S]2×2 = [
S11 S12

S21 S22 ]

depicts only the studied duct element and is indepen-
dent of the upstream and downstream acoustic condi-
tions. The physical meaning of each coefficient is as fol-
lows:

– S11 is the reflection coefficient of the wave coming
into the element from the left side,

– S22 is the reflection coefficient of the wave coming
into the element from the right side,

– S12 is the transmission coefficient of the wave com-
ing into the element from the right side,

– S21 is the transmission coefficient of the wave com-
ing into the element from the left side.

For a symmetric studied duct element and the same
mediums on both sides of the element, the following
can be written:

⎧⎪⎪
⎨
⎪⎪⎩

S11 = S22

S12 = S21

⎫⎪⎪
⎬
⎪⎪⎭

. (11)

The four scattering matrix coefficients can be ex-
pressed in terms of the transfer matrix coefficients as
follows (Hu, 2010):

S11
=
X+ −W +

X+ +W + , (12)

S22
= −

X− +W −

X+ +W + , (13)

S12
=
X+W − −W +X−

X+ +W + , (14)

S21
=

2

X+ +W + , (15)
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where
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

X± = T11 ±
T12

Z0

W ± = Z0T21 ± T22

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

. (16)

The acoustical power attenuation Watt of the studied
duct element is defined in decibel [dB] as follows:

Watt = 10 log(
W in

W out
), (17)

where W in is the total acoustic power of incoming
waves and W out is the total acoustic power of out-
going waves. This acoustic power attenuation can be
computed using the scattering matrix [S] (Taktak
et al., 2010; Kani et al., 2021):

Watt = 10 log(
∣d1∣

2
+ ∣d2∣

2

λ1 ∣d1∣
2
+ λ2 ∣d2∣

2
) (18)

with:
– λ1 and λ2 are the eigenvalues of the matrix [H]

defined as follows:

[H] = [S]
H
⋅ [S] = [V ] [

λ1 0
0 λ2

] [V ]
H
, (19)

where the subscript H denotes the conjugate
transpose, and [V ] is the matrix of the eigenvec-
tors of the matrix [H].

– d1 and d2 are the components of the vector {d}
calculated by the following equation:

{d} =

√
1

2Z0
⋅ [V ]

H
⋅ {

P I+

P II− }. (20)

3. Uncertainty analysis: Monte Carlo simulation

The JCAL model (this model was detailed in Sec. 2)
adopted for the sound propagation in the porous ma-
terial study uses the five material physical parameters:
porosity, static air-flow resistivity, high-frequency limit
of the dynamic tortuosity, characteristic viscous and
thermal lengths.

In order to study the propagation of uncertainties
through the used model, uncertainty analysis is con-
ducted (Taktak et al., 2009; Trabelsi et al., 2017;
Bouazizi et al., 2019). A probability distribution is
first applied to each model’s physical parameters in-
put, and then an investigation of their effect on model
outputs (transmission and reflection coefficients, trans-
mission loss, and acoustic power attenuation) is per-
formed.

The computing steps for the Monte Carlo simula-
tion used for this analysis are regrouped in the algo-
rithm illustrated in Fig. 2. In the first step, a Gaussian
distribution for each input is defined. Then,M -samples
are created for each studied model input. After that,
the algorithm is executed N -times to generate a set of
outputs. Finally, the obtained outputs are regrouped,
and the 95% confidence interval with the correspond-
ing maximum and minimum errors are estimated.

Step 1: define a probability distribution
to each studied input Xi

Step 2: creation of M-samples for each studied input

Step 3: run the model N-times and generate output

Step 4: estimation of the 95% confidence interval
and the corresponding maximum and minimum errors

Fig. 2. Monte Carlo algorithm for uncertainty analysis.

4. Results and discussion

The presented uncertainty analysis is applied to
a porous material located in a duct element in the fre-
quency band (0–4000 Hz). The properties of this stud-
ied porous material are presented in Table 1. Only the
plane wave is propagating in the duct element. This
table also presents the mean value and the standard
derivation used for each parameter to obtain the 10 000
values of studied acoustic parameters, which are then
used in the proposed Monte Carlo method.

Table 1. Properties of the studied porous material.

Parameter Mean value Standard deviation
Flow resistivity σ

[N ⋅ s ⋅m−4] 25000 306

Porosity φ 0.95 0.012
Tortuosity α∞ 1 0.013

Viscous length Λ [µm] 170 5.10−6

Thermal length Λ′ [µm] 510 5.10−6

Length of the porous
material L [m] 0.05 7.10−4

Density [kg ⋅m−3] 60 0.9

This section presents the results of the developed un-
certainty analysis when considering the variation of one
of the used parameters separately. The uncertainty
analysis through the Monte Carlo method is performed
as described in Fig. 2 through MATLAB software.

Initially, a ±5% variation is applied to each mean
input value (shown in Table 1) according to the Gaus-
sian distribution and by performing N = 10 000 calcu-
lations. After randomly selecting a set of each input
(resistivity, porosity, tortuosity, viscous and thermal
lengths), the corresponding model outputs (transmis-
sion and reflection coefficients, transmission loss, and
acoustic power attenuation) are computed. Finally,
these steps are repeated N -times to obtain, for each in-
put parameter, the 95% confidence intervals limited by
the minimum and the maximum values of each model
output of the studied porous material and the corre-
sponding mean value.
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Uncertainty analysis results considering the flow
resistivity uncertainty are presented in Fig. 3. This
figure illustrates that the flow resistivity has an impor-
tant effect on the studied acoustic outputs, with errors
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Fig. 3. Flow resistivity uncertainties’ effect on the acoustic outputs:
95% confidence interval (a) and the corresponding error (b).

varying from 0.5% to 6%. This observation is confirmed
by the 95% interval of each output parameter: these
intervals present a thickness, which means that the in-
fluence of this parameter is significant. It is important
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to indicate also that the uncertainty of the flow resis-
tivity has a minimum influence on the acoustic power
attenuation, as indicated in Fig. 3 (with an error not
exceeding 2.5%). It is also observed that errors on all
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Fig. 4. Porosity uncertainties’ effect on the acoustic behaviors:
95% confidence interval (a) and the corresponding error (b).

the output parameters dues to uncertainties increase
when the frequency increases.

Figure 4 shows that the porosity has the same effect
as the flow resistivity with a significant influence on the
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transmission and reflection coefficients as well as
the transmission loss (TL) with errors reaching 6% and
a small effect on the acoustic attenuation of the porous
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Fig. 5. Tortuosity uncertainties’ effect on the acoustic behaviors:
95% confidence interval (a) and the corresponding error (b).

material with a maximum error equal to 3%. It is
observed that the thickness of the confidence interval
in Fig. 4a is small, which indicates that the effect of this
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parameter is minor. This result is confirmed by the
results presented in Fig. 4b showing the variation of
the maximum and minimum errors due to the normal
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Fig. 6. Viscous characteristic length uncertainties’ effect on the acoustic behaviors:
95% confidence interval (a) and the corresponding error (b).

distribution of the porosity variation. Thus, a variation
of ±5% of the nominal value of the porosity generates
a minimum error equal to 2% (at high frequency) in
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the frequency band between 2000–4000 Hz and a maxi-
mum error equal to 2.5% in this band.
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Fig. 7. Porous material length uncertainties’ effect on the acoustic behaviors:
95% confidence interval (a) and the corresponding error (b).

Figure 5 shows that the tortuosity has a small effect
on the acoustic output parameters with small errors
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and 95% confidence. This result is confirmed by the re-
sults presented in Fig. 5b, which shows the variation of
the maximum and minimum errors due to the normal
distribution of the variation of tortuosity; the maxi-
mum of these errors reaches the value of 2.5%.

Thus, a variation of ±5% of the nominal value of
the tortuosity generates a minimum error equal to
0.3% (at low frequency) in the frequency band between
(0–2500 Hz) and then an increase in value to 1.4% in
the frequency band (2500–4000 Hz) and a maximum
error equal to 1.5% in the frequency band between
(2500–4000 Hz).

Figure 6 demonstrates that the viscous character-
istic length Λ (as well as the thermal length Λ’) has
a negligible effect on the acoustic outputs the stud-
ied porous material. It is noticed that the thickness
of the confidence interval is very small, which shows
that the effect of this parameter is small, as shown in
Fig. 6a, and with minimum errors. Thus, a variation of
±5% of the nominal value generates a minimum error
equal to 0.23% and a maximum error equal to 0.33%
at high frequency.

The effect of a variation of ±5% in the nominal
value of the viscous and thermal characteristic lengths
are, respectively, presented in Figs. 6 and 7. It is ob-
served that the effect of these two lengths is similar.

When 5% errors are added to the nominal value of
the length of porous materials, we observe that the
thickness of the confidence interval is high in all
the acoustic outputs. The curves show that this para-
meter has an important influence. A variation of ±5%
of the nominal value of the length of porous materi-
als on the attenuation generates a minimal error equal
to 7.5% and a maximal variation error equal to 7% at
a frequency equal to 2000 Hz.

5. Conclusion

This paper presented the results of the simulation
of errors obtained by the Monte Carlo method, which
allowed to determine the confidence interval of the
coefficients of the scattering matrix transmission loss
and acoustic attenuation for each input parameter and
then for all parameters together. The Monte Carlo
method is interesting for studying the degree of de-
pendence of the model output on the inputs.

The results concluded that the resistivity and
length of the porous material have a great influence
on the acoustic outputs of the studied model (trans-
mission and reflection coefficients, transmission loss,
and acoustic power attenuation). At the same time,
the effect of the uncertainty on the other parameters
is negligible. It is important to indicate that acous-
tic power attenuation is the parameter less affected by
input errors. The present study justifies the choice of
this parameter in a previous work (Kani et al., 2021)
in the cost function of an inverse technique to deter-

mine porous parameters of a porous material in a duct
element. By using this parameter, it is guaranteed to
have results less sensitive to parameter uncertainties.
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In the current study, investigations are made to control the MB truck cabin interior noise by reducing noise
in the transmission path. The main sources of cabin noise include the engine, exhaust system, air inlet system,
driveline system, and tyres (especially at higher speeds). Furthermore, vibrations of the body and interior parts
of the truck may significantly impact the overall in-cabin sound level. Noise is transmitted into the cabin via
air (airborne noise) and cabin structure (structure-borne noise). In the noise treatment phase, noise transmis-
sion paths are considered. A viscoelastic layer damping material is used to reduce the vibration amplitude of
the cabin back wall. The overall loss factor and vibration amplitude reduction ratio for the structure treated
is calculated. Computational results are then compared with the values obtained by the experimental modal
analysis results. Choosing the suitable material and thickness can significantly reduce the vibration amplitude.
A sound barrier, silicon adhesive, and foam are also utilised for noise control in the transmission path. The
effectiveness of the mentioned acoustic materials on cabin noise reduction is evaluated experimentally. The ex-
perimental SPL values are reported in the frequency range of 20 Hz–20 kHz based on a 1/3 octave filter. The
experimental results show that using acoustics materials reduces the overall in-cabin sound level for a wide
range of frequencies.
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1. Introduction

Unwanted sound or noise has some undesired im-
pacts on human conversations. They can be as strong
as to cause a person hearing loss or hearing impair-
ments. Today, noise pollution is among those problems
on which widespread efforts are focused to attenuate
its effects. A low noise level is an essential feature of
a product indicating its quality. Many companies, in-
cluding car manufacturers, implement widespread at-
tempts to improve their products’ quality by reducing
the levels of noise. Among other noise sources, vehicle
noise (especially those generated by heavy trucks) sig-
nificantly contributes to noise pollution. As car man-
ufacturing industries developed and advanced, creat-
ing a competitive environment among them, the im-
portance of vehicle quality and comfort has become
more notable. A vehicle’s interior and exterior noise
and vibration level are essential factors determining its

quality. In a vehicle, unwanted sounds and vibrations
hurt vehicle parts and can cause additional dynamic
loads, fatigue, and loss of power, thus reducing the
vehicles efficiency. Also, vehicle sounds and vibrations
may significantly affect the passengers’ comfort. Sound
is a part of a structure vibrational energy transmit-
ted to its surrounding environment. Therefore, there
is a direct relationship between sound and vibration.

Mohanty et al. (2000) used a CAE method for
noise reduction in a truck cabin interior. The fi-
nite element (FE) and the boundary element method
(BEM) were used to characterize the acoustic field
of a truck cabin interior in terms of the natural fre-
quencies and the mode shapes. Structural vibration
responses of the cabin were computed for excitations
at the cabin mounts in the frequency range from 50
to 250 Hz. Interior noise levels at the driver’s right ear
were determined using the boundary element method
for excitations at the cabin mounts. A panel acous-
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tic contribution analysis (PACA) was done to deter-
mine the structural areas of the cabin contributing
most to the noise levels at the driver’s right ear. Struc-
ture-borne noise was reduced in the cabin’s interior by
selecting and placing sound absorbing material at
the appropriate locations in the cabin, as determined
by PACA.

Li et al. (2008) employed active noise control meth-
ods to control the noise of the heavy truck’s cabin in-
terior. An interior noise field test for the heavy truck
was performed, and frequencies of interior noise of
this vehicle were analysed. Then the least squares lat-
tice (LSL) algorithm was used as the signal process-
ing algorithm of the controller, and a closed-loop con-
trol DSP system was developed. The residual signal
at the driver’s ear was used as a feedback signal. Lastly,
the developed active noise control (ANC) system was
loaded into the heavy truck cabin, and controlling the
noise at the driver’s ear for that truck at different driv-
ing speeds was attempted.

Antila et al. (2008) simulated an ANC system us-
ing noise data measured in a truck cabin. The data
were treated in the simulation process with a control
system model. The result was evaluated both numeri-
cally and by listening tests. The possible benefits of the
proposed ANC system included less fatigue for driver
and co-driver, no need for excessive noise insulation
in the truck, and more comfortable driving conditions.
The challenges in designing the system were its com-
plexity, reliability, and potentially high price. These
pros and cons were discussed in the paper, and a con-
cept of the system realisation was given.

Bealko (2009) examined noise exposure inside
haul truck cabins experienced during a typical work-
day with normal operator practices, the effect of noise-
reduction features inside the cabin, and the conse-
quence of disabling noise controls (unnecessary open
doors/windows), and the significance of haul truck and
cabin maintenance factors.

Lu et al. (2013) studied an adaptive active noise
control (AANC) system of the interior truck cabin
to reduce low-frequency noise. A normalisation Frac-
tional Least Mean Square (FLMS) algorithm Simulink
model was established in MATLAB/Simulink. Then
taking it as the core, a feedforward adaptive active
control system and a feedback adaptive active con-
trol system of the interior tuck cabin were established
in MATLAB/Simulink. Considering the actual chan-
nel error effects on systems, the noise reduction effects
of two adaptive active control systems were verified
from the simulation results. Comparing the two adap-
tive active control systems showed that the feedfor-
ward adaptive active control system was more stable
than the other one.

Ang et al. (2016) provided an overview of the ex-
isting industrial practices used for cabin noise con-
trol in various industries such as automotive, marine,

aerospace, and defense. The current industrial prac-
tices pertaining to cabin noise control were discussed.
Also, the potential of acoustic metamaterials was high-
lighted.

Saxena and Jadhav (2021) measured the interior
noise and vibration on one of the light trucks, and a few
dominant low-frequency noise booms were observed in
the operation range. Modal analysis was done for the
cabin at virtual and experimental levels, and a few mo-
des were found close to these noise booms. Vibrations
were measured across the cabin mounts, and it was
found that the isolation of front mounts is not effective
at lower frequencies. The mount design was modified
to shift the natural frequency and improve the isolation
behaviour at the lowest dominant frequency. Also, the
interior noise and vibration measurement was carried
out on the truck fitted with selected mounts, and sub-
stantial vibration, overall noise reduction, and drastic
boom noise reduction were achieved.

Herein, the main cabin noise sources are investi-
gated for an MB truck, including both vibrations and
acoustic noises. Viscoelastic damping layers are em-
ployed to control vibration, while sound barriers, sili-
con adhesive, and foam are used to control noise. The
effect of viscoelastic damping layers on the vibration
amplitude of the cabin back wall is studied both theo-
retically and experimentally. Also, the impact of acous-
tic materials on cabin noise attenuation is experimen-
tally investigated.

2. Main sources of cabin noise in an MB truck

Preliminary investigations indicate that the main
sources of noise in an MB truck (including acoustic
noise as well as vibration) can be categorised as follows:

– power system including engine, air inlet system,
and exhaust system,

– driveline system including gearbox, driveshaft,
and differential,

– tyre/road interaction.
The main sources of interior noise (the cabin

noise) are the power system, driveline system, and
tyre/road interactions. However, the noise generated
by tyre/road interaction dominates the driveline sys-
tem noise at speeds exceeding 80 km/h (Johnson,
1996).

2.1. Engine

The engine is the main source of interior noise
in trucks. The engine vibration and engine noise are
studied in the following sections (Taylor, 1982; SAE,
1992).

2.1.1. Engine vibration

The inertia of the engine’s moving parts and the
cylinder pressure changes create forces that cause en-
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gine components’ movement. As a result, vibration
with variable frequency and amplitude covers the mo-
tor’s whole structure, and it is called internal vibra-
tion. Internal engine vibration includes the flexural and
torsional vibration of the crankshaft, the piston’s tor-
sional vibration, and the auxiliary systems such as the
oil pump, water pump, and turbocharger. Continu-
ous systems such as crankcase and crankshaft hous-
ing, pipes and tubes such as oil pipelines and exhaust
have an important role in the internal vibration of
the engine. The high-frequency vibration (noise) from
combustion and gears involvement is also important
(Taylor, 1982; SAE, 1992).

2.1.2. Engine noise

Engine noise includes mechanical, combustion, fuel
injection, air inlet, and exhaust system noise (Taylor,
1982; Harris, 1991; Beranek, 1992).

Diesel engines have higher pressure rise rates than
spark ignition engines, indicating higher importance
of combustion noise in diesel engines than that in
spark ignitions engines. The acoustic and vibrational
properties of the parts related to the combustion phe-
nomenon play an important role in the amount of com-
bustion noise. Today, research shows that the most
important noise in diesel engines is combustion noise.
Experimental research shows that 106 BTU/hr of heat
released by combustion can generate about 29 W of
acoustic power (equivalent to a sound power level
of 135 dB) (Taylor, 1982; Harris, 1991).

Exhaust in internal combustion engines is one of
the main sources of noise. Noise is caused by the
periodic release of gases from the exhaust manifold
(Harris, 1991).

2.2. Driveline system

The driveline system in trucks has a more intense
effect on the overall noise level than in passenger cars
and should be considered. Driveline system noise in-
cludes gearbox, driveshaft, and differential noise. The
differential noise has minor effects on the overall noise
level (SAE, 1992).

2.3. Tyre/road noise

Since the speed of the truck is generally less than
80 km/h, the effect of the tyre/road on the cabin noise
is less important (Johnson, 1996).

3. Noise and vibration control

The noise (including acoustic noise and vibration)
control methods have been categorised into three cate-
gories: noise control at the source, noise control in the
transmission path, and noise control at the receiver.
This study considers the transmission path for both

noise and vibration. In other words, the cabin noise is
controlled in its transmission paths. The sound from
different sources is transmitted into the cabin via air
(airborne sound transmission) and structure (structure-
borne sound transmission). Figure 1 shows principal noise
sources and their transmission paths to the cabin. Also,
Fig. 2 shows structure-borne and airborne paths of
noise transmission to the cabin.

Airborne sound
transmission

Structure-borne sound
transmission

Principal noise sources

Engine and accessories

Cabin body

Cavity panels
limiters

Cavity (driver's ear position) Acoustic leaks

Air turbulence

Principal air inlet system

Exhaust system

Road/tyre/vehicle interactions

Fig. 1. Principal noise sources and their transmission paths
to the cabin.

Noise inside truck cabin

Vibration source

Waves propagate
through truck
structure

Attenuation by
suspension elements
at mounting points

Sound source

Sound impinges on
truck structure

causing it to vibrate

Structures (panels) radiate sound

Sound is transmitted
through leakages

Structure-borne path Airborne path

Fig. 2. Structure-borne and airborne paths
of noise transmission to the cabin.

3.1. Vibration

In many machines, excited vibrations cover a wide
range of frequencies. In this case, the conventional
method of vibration control, i.e., separation of the
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natural frequencies of the system from the excitation
frequencies, is not possible. While dynamic vibration
absorbers are not used in such a situation because it is
possible to excite several natural modes, viscoelastic
layer damping treatment is applied to control the vi-
bration of a structure. Such layers reduce the structural
vibration amplitude by energy dissipation, causing the
overall noise level to be lower (Pujara, 1992; Bar-
ber, 1992). A layer damping can be used to control
the vibration of the truck cabin, engine housing, cylin-
der head cover, and crankcase.

Researchers have studied two types of viscoelas-
tic damping treatments: unconstrained layer damping
(UCLD) treatment and constrained layer damping (CLD)
treatment. Unconstrained layer (free layer) treatments
are widely used in the automotive industry as addi-
tional layers on large sheet metal panels. The elon-
gation between the supporting metallic and the vis-
coelastic due to the bending of supporting plates in the
low-frequency range introduces the material damping.
In the constrained layer treatments, a viscoelastic layer
is placed between the vibrating structure and a solid
plate (usually metal). In this method, most of the vi-
brational energy is lost due to the shear deformation
of the viscoelastic layer (Jones, 1985; Nashif et al.,
1985; Malik, 1990). In this study, the unconstrained
layer damping treatment is used.

The overall loss factor ηs of the structure treated
can be obtained by Eq. (1) (Jones, 1985):

ηs =
ηD

1 +A/(Be)
, (1)

where

A =
(1 − n2e)3 + [1 + (2n + n2)e]3

(1 + ne)3
,

B =
(1 + 2n + n2e)3 − (1 − n2e)3

(1 + ne)3
,

n = hD/h, e = ED/E,

and where h is the thickness of the structure, hD is the
thickness of the layer damping, E is the Young modu-
lus of the structure, ED is the real part of the complex
modulus of the layer damping, ηD is the loss factor of
the layer damping, and ηs is the overall loss factor
of the structure treated.

3.2. Noise

Sound barriers are used to block the transmission
of airborne sound by providing mass to existing struc-
tures or hung as limp mass partitions. The performance
of a sound barrier is measured in terms of its transmis-
sion loss (TL). In practical applications, the value of
TL for a sound barrier is often expressed as the mass
law: the more the surface density of a sound barrier,

the higher its TL. Herein, a sound barrier, silicon ad-
hesives, and foam are used to control noise.

4. Treatment and results

The engine, the exhaust system, and the air inlet
system are the main sources of cabin noise in the MB
truck. Figure 3 shows the MB truck cabin, the main
sources of interior noise, and their transmission paths
into the cabin. Engine noise is transmitted into the
cabin by the air (airborne noise: A) through acous-
tic leaks and the cabin body (floor and firewall),
and by the cabin structure (structure-borne noise: S)
through the floor and the firewall. The exhaust system
noise is transmitted into the cabin by the air through
acoustic leaks and the floor, and by the cabin struc-
ture through the floor and back wall. The air inlet
system noise is transmitted into the cabin by the air
through acoustic leaks and firewall, and by the cabin
structure through the firewall.

Fig. 3. MB truck cabin, its main sources of interior noise,
and their transmission paths into the cabin.

Here, a viscoelastic layer damping is used on the
back wall to control vibration, and acoustic materials
are used on the floor and the firewall to control noise.

4.1. Viscoelastic damping layer

4.1.1. Theoretical model

A viscoelastic layer damping is used here to control
vibration. The back wall vibration is considered and
treated. A suitable viscoelastic material is selected,
and the overall loss factor and the ratio of vibration
amplitude reduction are calculated for the structure
treated (back wall with viscoelastic layer installed).

The behaviour of viscoelastic materials is a function
of temperature and frequency. First, the structure’s
operating temperature range and vibration frequency
range (back wall) must be determined. Then, the mate-
rial with the maximum value EDηD is selected in that
temperature and frequency range. The temperature of
the back wall varies in the range of 35–45○C, and the
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structure’s natural frequencies are calculated to deter-
mine the frequency range of the back wall vibration.

The truck’s cabin is designed such that its back wall
is nearly a flat surface. So, the back wall can be appro-
priately modelled as a rectangular sheet. The natural
frequencies of a rectangular sheet are calculated as fol-
lows (Pujara, 1992):

ωpq = π
2

¿
Á
ÁÀgD

ρh
[(
p

a
)

2

+ (
q

b
)

2

], (2)

where D = Eh3/ [12(1 − ν2)], a, b, and h are length,
width, and thickness of the sheet, respectively, ρ, E,
and ν are density, Young modulus, and Poisson’s ratio
of the plate, respectively, g is the gravitational accel-
eration, and ωpq are the natural frequencies of a rect-
angular sheet.

The back wall plate in the MB truck is made of
USt 37-2, and its dimensions and properties are listed
in Table 1. From Eq. (2), natural frequencies corre-
sponding to the back wall are presented in Table 2.

Table 1. Dimensions and physical and mechanical
properties of the back wall plate in the MB truck.

a

[m]
b

[m]
h

[m]
ρ

[kg/m3]
E

[GPa]
ν D

1.96 1.45 1.5× 10−3 7850 210 0.3 64.9

Table 2. Natural frequencies of the back wall.

f11
[Hz]

f12
[Hz]

f21
[Hz]

f22
[Hz]

f23
[Hz]

f32
[Hz]

10 17 14 19.8 26.7 23.8

From Table 2, the frequency range of the back
wall vibration 10–25 Hz is considered. According to the
temperature and frequency range, LD-400 viscoelastic
material is selected as the most suitable material, as it
has the highest EDηD value over the mentioned tem-
perature and frequency ranges. In Table 3, the ED,

Table 3. Properties of the LD-400 viscoelastic layer
damping (AFML data).

Frequency
[Hz]

T

[○C]
ηD

ED

[GPa]
EDηD

35 0.512 1.2986 0.6649
10 40 0.443 1.0517 0.4660

45 0.413 0.8648 0.3572
35 0.521 1.4213 0.7405

15 40 0.463 1.1691 0.5413
45 0.412 0.9607 0.3958
35 0.529 1.4828 0.7844

20 40 0.471 1.2041 0.5671
45 0.418 0.9903 0.4139

ηD, and EDηD values are tabulated for frequencies
of 10, 15, 20, and 25 Hz and temperatures of 35, 40,
and 45○C. The density of the viscoelastic layers is
ρD = 1500 kg/m2.

The overall loss factor can be calculated by Eq. (1).
The ED and ηD values are extracted from Table 3.
Here, the temperature and frequency are equal to
40○C and 10 Hz (the first natural frequency). Table 4
presents the overall loss factor of the structure treated
for n = 2, 4, 6, and 10.

Table 4. Overall loss factor of the structure treated.

n 2 4 6 8 10
ηs 0.1034 0.2812 0.3653 0.3921 0.4062

Assuming that the first mode of vibration is impor-
tant, the structure treated is modelled as a simple one
degree of freedom system. Values of the vibration am-
plitude reduction ratio of the structure are computed
as follows (Malik, 1990):

X

Y
= [

1 + (2ξ r)2

(1 − r2)2 + (2ξ r)2
]

1/2
, (3)

where X/Y represents the ratio of vibration amplitude
reduction, r is the frequency ratio, and ξ is the damp-
ing ratio equal to ηs/2 (Malik, 1990). Figure 4 shows
the values of X/Y for n = 2, 4, 6, and 10.

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5

X/
Y

r

No treatment
n = 4
n = 6
n = 8
n = 10

Fig. 4. Ratio of the vibration amplitude reduction for the
structure treated.

4.1.2. Experimental work

In order to calculate the vibration amplitude, the
structure is excited, and the acceleration response is
obtained. A stringer that has been installed on the
head of a shaker (B&K Type 4808) does the excita-
tion; a force transducer (Endevco Model 2311-100) on
the head of the shaker, and an accelerometer (Endevco
Model 65-100) are used to sense the input and output
of the system, respectively. A signal analyser (B&K
Type 3560-B), a power amplifier (B&K Type 2719),
and a PC equipped with PULSE 8 software were
utilised for data acquisition and signal processing.
Figure 5 shows a schematic sketch of the experimental
setup used for the measurements.
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PCFFT analyzer

Power amplifierShakerForce
transducer

Accelerometer

Stringer Signal
generator

Signal
conditioning

Fig. 5. Schematic sketch of the experimental setup used
for the measurements.

First, natural frequencies of the structure are mea-
sured. In Table 5, the experimental and theoretical val-
ues of the natural frequency are shown. Then, the vi-
bration amplitude of the structure is determined before
and after the treatment. The excitation frequency is
normalised with respect to the first natural frequency.
Figure 6 shows experimental and theoretical values of
the ratio of the vibration amplitude reduction for the
structure treated for n = 4.

Table 5. Natural frequencies of the back wall.

Mode
number

f11
[Hz]

f12
[Hz]

f21
[Hz]

f22
[Hz]

f23
[Hz]

f32
[Hz]

Theoretical 10 17 14 19.8 26.7 23.8
Experimental 9.5 16.1 13.2 18.7 25.1 22.8

0

0.5
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1.5
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2.5
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Experiment
Theory

Fig. 6. Experimental and theoretical values of the ratio of
the vibration amplitude reduction for the structure treated,

n = 4.

4.2. Acoustic materials

Herein, acoustic materials, including sound barrier,
Silicon adhesives, and polyurethane foam are used.
Rubber sheets, namely “Genaral seal & Panchari”,
made in Iran, are used as a sound barrier on the floor
and firewall. This material has a density of 5 kg/m2,
with its TLE values presented in Table 6. These val-
ues are obtained by testing a squared specimen with

Table 6. TL values corresponding to mass law (TLM)
and testing (TLE) of the sound barrier.

Frequency
[Hz]

TL [dB]
Experimental Mass law

125 14 9
250 16 15
500 22 21

1000 26 27
2000 27 33
4000 30 39
8000 36 45

an area of 900 cm2. Also, the TLM values calculated
by mass law are shown in Table 6.

Silicone adhesives are here used in tape and liquid
forms. The silicone tape is used on the floor and fire-
wall, and the liquid silicone is used to treat leakages
of the structure. Also, polyurethane foam is injected
into the side member and other noise transmission
paths.

4.2.1. Experimental work and results

The experiments are performed according to stan-
dards ISO 5128 (1980) and SAE-J336 (2011). Figure 7
shows a schematic sketch of the experimental setup
used for the measurements. In addition to the shown
equipment, a loudspeaker is used as an external noise
source.

Real-time signal
analyzer

Computer
sound quality software

Mic

Mic

Preamplifier
Parallel
port

IN. (1)

IN. (2)

Fig. 7. Schematic sketch of the experimental setup used for
the measurements.

Herein, a B&K 4155 1/2 free-field microphone is
used. The noise level measured inside the cabin changes
drastically with the microphone’s position, and the mi-
crophone must be able to accurately describe the noise
sensed by the driver and his/her assistant. The mi-
crophone’s position is determined via ISO 5128 (see
Fig. 8). A Norsonic microphone calibrator type 1251
is used for calibration. Also, a Norsonic preamplifier
type 1201 is used here. A four-channel signal analyser
(B&K Type 3560-C) and a PC equipped with PULSE 8
software are utilised for data acquisition and signal
processing.

The test placement must be a place with mini-
mum background noise and distance from direct noise
sources and reflective surfaces exceeding 15 m. The
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Fig. 8. Position of the microphone inside the cabin.

background noise level will be measured separately and
subtracted from the overall noise level in places where
the background noise level is high.

Three tests, including the loudspeaker, engine, and
road, are performed in 6 steps. In the loudspeaker test,
the engine is turned off, and a loudspeaker is used
as the noise source. The loudspeaker is a Norsonic
reference sound source with a weighted sound power
output: 94 dB re 1 pW (50 Hz line frequency). The
loudspeaker is located 1.1 m from the front axle on
the centreline of the two axles. In the engine test, the
engine is operating at a speed of 1500 rpm for 5–10 se-
conds (the truck is stationary). In the road test, the
truck runs 200 m at a constant speed of 30 km/h in
3rd gear. The 6 test steps are:

Step 1: Performing loudspeaker, engine, and road
tests before any treatment.

Step 2: Performing loudspeaker and engine tests
after removing the carpet from the cabin floor.

Step 3: Performing engine and loudspeaker tests
once the sound barrier and silicon adhesives cover the
firewall leaks.

Step 4: Performing loudspeaker and engine tests
once the sound barrier covers the floor.

Step 5: Performing the road test after all leaks and
the floor are covered by the sound barrier and silicon
adhesives.

Step 6: Performing the road test after complete
treatment, including the coverage of all leaks in the
floor and firewall by the sound barrier and silicon ad-
hesive, and foam injection into the side member.

The test results are shown in Figs. 9 to 15. The
experimental SPL values are reported in the frequency
range of 20 Hz–20 kHz based on a 1/3 octave filter.
Figure 9 shows the measured sound pressure level
(SPL) inside the cabin for the loudspeaker test (steps 2
and 3). Knowing that the structure rather than the
air transmits low-frequency sound waves (compared to
high-frequency sound waves), one may see that cover-
age of leaks does not affect the noise level reduction for
frequencies lower than 1000 Hz. The maximum noise
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Fig. 9. Measured SPL inside the cabin; the loudspeaker test
(steps 2 and 3).

reduction of 4 dB is seen at 5000 Hz. In addition, the
carpet has little impact on cabin noise reduction.

Figure 10 shows the measured SPL inside the cabin
for the loudspeaker test (steps 2 and 4). Coverage of
the cabin floor with the sound barrier reduces the cabin
noise level for frequencies higher than 1000 Hz (a maxi-
mum of 6 dB at 5000 Hz).
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Fig. 10. Measured SPL inside the cabin; the loudspeaker
test (steps 2 and 4).

According to Fig. 11, the cabin carpet has very
small contribution to the sound pressure level inside
the cabin (a maximum of 2 dB at 2500 Hz).
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Fig. 11. Impact of the carpet on the SPL inside the cabin.

Figure 12 shows the measured SPL inside the cabin
for the engine test (steps 1 and 3). The results indicate
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Fig. 12. Measured SPL inside the cabin; the engine test
(steps 1 and 3).
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that even when all the leaks are entirely covered, the
engine noise is transmitted into the cabin by the struc-
ture itself (structure-borne noise).

Figure 13 shows the measured SPL inside the cabin
for the engine test (steps 1 and 2). The impact of the
cabin carpet on the cabin noise attenuation is signifi-
cant for the frequencies higher than 1000 Hz. An aver-
age reduction of 13 dB is observed in the SPL inside
the cabin. However, the carpet does not affect the cabin
noise reduction for the frequencies lower than 1000 Hz.
In this frequency range, the engine noise is transmitted
into the cabin by the structure itself.
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Fig. 13. Measured SPL inside the cabin; the engine test
(steps 1 and 2).

Figure 14 shows the SPL inside the cabin for the
engine test (steps 2 and 4). For the frequencies above
1000 Hz, coverage of the floor with the sound barrier
effectively reduces the SPL inside the cabin. An aver-
age reduction of 17 dB is observed in the SPL inside
the cabin. However, coverage of the floor with acoustic
materials does not affect the cabin noise reduction for
the frequencies lower than 1000 Hz. The engine noise
is transmitted into the cabin by the structure itself in
this frequency range.
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Fig. 14. Measured SPL inside the cabin; the engine test
(steps 2 and 4).

Figure 15 shows the measured SPL inside the cabin
for the road test (steps 1, 5, and 6) in dBA. The overall
noise level at the microphone position decreases from
80 to 70 dBA. The final value is mainly influenced by
the peak of acoustic energy in the frequency band of
250 Hz, a frequency component related to the engine
rotation. In order to obtain a further reduction of the
overall dBA level, it will be necessary to investigate
this peak first, probably due to some structure-born
vibration. Foam injection has a relatively good effect
at low frequencies.
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Fig. 15. Measured SPL inside the cabin; the road test
(steps 1, 5, and 6) in dBA.

5. Conclusions

Investigations were made to control the MB truck
cabin interior noise by reducing noise in the transmis-
sion path. A viscoelastic layer damping material was
used to reduce the vibration amplitude of the cabin
back wall. Computational results were then compared
with the values obtained by the experimental modal
analysis results. Good agreement was found between
the theoretical and experimental results. A sound bar-
rier, silicon adhesive, and foam were utilised for noise
control in the transmission path. The effectiveness of
the mentioned acoustic materials on cabin noise reduc-
tion was experimentally evaluated. The measurements
focused on carpet impact, coverage of leaks in the fire-
wall (by sound barriers and silicon adhesive), and floor
coverage (by sound barriers). By looking at the graphs,
it is possible to understand the influence of the differ-
ent trim parts and the modifications made, but it is
also interesting to see the peaks in the spectra. Those
peaks are probably related to the presence of excited
acoustic modes, and this phenomenon should be inves-
tigated to verify this. The excitation of acoustic modes
in acoustic cavities of the vehicle by the engine running
is a common problem in noise reduction. However, it
requires specific investigations and acoustic modelling
to understand what can be done.

The loudspeaker test results show that the car-
pet impact, coverage of leaks in the firewall by the
sound barrier and silicone adhesive, and coverage of
the floor by the sound barrier have a significant ef-
fect on the cabin noise reduction for the frequencies
above 1000 Hz. For the frequencies lower than 1000 Hz,
a significant portion of the noise is transmitted into
the cabin by the structure itself; therefore, those treat-
ments do not reduce cabin noise.

The engine test results show that the coverage of
the firewall leaks does not affect the cabin noise reduc-
tion. It seems that the engine noise is still transmitted
into the cabin by the structure itself (structure-borne
noise). However, for the frequencies above 1000 Hz, the
carpet and coverage of the floor have a significant ef-
fect on the cabin noise reduction. For the frequencies
lower than 1000 Hz, those treatments do not affect the
cabin noise reduction.
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The road test results show that a complete treat-
ment, including the coverage of the floor and firewall
leaks by acoustic materials and silicone adhesive and
foam injection into the side member, has a signifi-
cant effect on the cabin noise reduction. The overall
noise level at the microphone position decreases from
80 to 70 dBA. The final value is mainly influenced by
the peak of acoustic energy in the frequency band of
250 Hz, a frequency component related to the engine
rotation. In order to obtain a further reduction of the
overall dBA level, it will be necessary to investigate
this peak first, probably due to some structure-born
vibration. Foam injection has a relatively good effect
at low frequencies.
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1. Introduction

Environmental noise exposure and associated
health effects have become a serious concern globally.
The Guideline Development Group (World Health Or-
ganization [WHO], 2018) has enunciated to use the
term “environmental noise” and defined it as “noise
emitted from all sources except sources of occupational
noise exposure in workplaces” (WHO, 2018). The rec-
ommended limits for noise exposure from road traffic
noise are 53 dB Lden and 45 dB Lnight, and for noise ex-
posure from aircraft noise the recommended limits are
45 dB Lden and 40 dB Lnight (WHO, 2018). Every na-
tion is concerned about the health effects of noise emit-
ted from the increasing number of vehicles on the roads
and aircraft noise in residential areas near the air-
ports (Babisch et al., 2005; WHO, 2011; van Kempen

et al., 2018; Hansell et al., 2013; Schmidt et al.,
2015). It is thus imperative to adopt long-term noise
monitoring strategies to assess and control the accen-
tuated environmental noise levels and plan for suitable
noise abatement measures. The European Environ-
mental Noise Directive 2002/49/EC requires that the
values of acoustic parameters Lden and Lnight are rep-
resentative of a year period (The European Parliament
and the Council of the European Union, 2002). The Di-
rective articulates the assessment methods for the pur-
pose of strategic noise mapping and the corresponding
action plans, which imply the use of harmonized indi-
cators and evaluation methods as well as criteria for
noise mapping. The noise maps should present noise
levels expressed in the harmonized indicators Lden

and Lnight. The WHO estimates that, in Western Eu-
rope alone, 1 million healthy life years are lost annually
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to environmental noise (WHO, 2011). Other estimates
put the external cost of noise-related health issues in
the European Union between 0.3–0.4% of GDP (Eu-
ropean Conference of Ministers of Transport [EMCT],
1998) and 0.2% in Japan (Mizutani et al., 2011). Some
studies have correlated the relationship between envi-
ronmental noise and real estate markets, with housing
prices falling with the increase in noise levels (Nelson,
1982; Theebe, 2004). Thus, it is imperative from an
Indian perspective to monitor the environmental noise
levels in citiesand devise Noise Action Plans (NAPs)
for abatement and control of noise pollution. The Cen-
tral Pollution Control Board (CPCB) in India initi-
ated the process of developing the National Ambient
Noise Monitoring Network (NANMN), through which
it was decided to include ambient noise as a regu-
lar parameter for monitoring in specified urban areas
(CPCB, 2011; 2012). The real-time noise monitoring
network, the NANMN program, was established with
the objective of getting real-time continuous noise mo-
nitoring data. The present work discusses the noise
monitoring data from 70 sites located in 7 major cities
for the past ten years (2011–2020) with the following
objectives:

– ascertain the noise scenario and the annual av-
erage ambient noise levels of 70 sites for the ten
years under study and compare them with ambi-
ent noise standards of India (Table 1 – Appendix);

– inculcate the awareness of the general public to-
wards the status of noise pollution and dissemina-
tion of information publicly through the website
(CPCB, n.d.);

– ascertain the Most Exposed Urban Sites (MEUS)
among the 70 sites and suggest the need for Noise
Action Plans required, if any;

– ascertain to what extent the residential and si-
lence zone sites meet the current ambient noise
standards;

– analyze the difference of Lday and Lnight levels to
ascertain the severity of night noise levels as com-
pared to the day levels;

– annual increment or decrement in the ambient
noise levels for each of these sites in the decade
under study for forecasting the future noise sce-
nario;

– recommendations on policy framework for reduc-
ing the noise pollution levels in Indian cities based
on the long-term evaluation and analysis of noise
monitoring data for the 70 sites of 7 metropolitan
cities.

It may be noted that although the installation of
10 noise monitoring stations for each city is insufficient
to represent the noise environment of the concerned
cities, yet the present study is focused on the evalua-
tion and analysis of continuous long-term noise levels

obtained from these 70 stations to ascertain and ana-
lyze the status of ambient noise levels and planning for
suitable measures to control them. The present study
shall be very helpful for understanding the noise sce-
nario, analyzing the status of compliance of sites in
each zone with the ambient noise standards, and plan-
ning for suitable measures and action plans for noise
abatement and control in metropolitan cities of India.
The study shall be helpful for pollution control bodies
and planning and development authorities in manag-
ing and controlling environmental noise levels in the
metropolitan cities of India.

2. Materials and methods

The diversified NANMN project was established in
2011 covering 70 stations in 7 major cities of the coun-
try, namely, Bengaluru, Chennai, Delhi, Hyderabad,
Kolkata, Lucknow, and Mumbai. The details of 70 lo-
cations under study established in 7 cities of India,
with each city having 10 noise monitoring stations, are
shown in Fig. 1. The 70 locations cover 25 commercial
sites, 16 residential sites, 17 sites in silence zones, and
12 sites in industrial zones. The Noise Monitoring Ter-
minals (NMTs) manufactured and installed by Geónica
Earth Sciences, Spain, have been discussed in detail
earlier (Garg et al., 2016; 2017b; 2017c; 2017d). In
addition, a website application (CPCB, n.d.) has been
developed to disseminate the data in real time to the
public to generate awareness. The Noise Monitoring
Network so established is unique and one of the largest
noise monitoring networks of its kind across the globe.

In the present study, day equivalent levels Lday, and
night equivalent levels Lnight were acquired through
the CPCB website and analyzed for each year from
2011 to 2020. In order to compare the ambient noise
scenario of the noise monitoring locations with inter-
national guidelines and several studies reported so far
(WHO, 2009; Babisch, 2002), the study also reports
day-night average sound levels Ldn, and 24-hour equiv-
alent sound levels LAeq,24h. The day equivalent levels
are the average equivalent sound levels of 16 hours du-
ration of the day from 06:00 AM to 10:00 PM and the
night equivalent levels are the average equivalent sound
levels of 8 hours duration from 10:00 PM to 06:00 AM
(Ministry of Environment & Forests, 2000).

The average day and night equivalent sound levels
for each year are calculated as (Garg et al. 2016):

Lday,n = 10 log10 [
1

n

n

∑
i=1

100.1(Lday,i)], (1)

Lnight,n = 10 log10 [
1

n

n

∑
i=1

100.1(Lnight,i)], (2)

where n is the number of days in the year, and Lday,i
and Lnight,i are the day and night equivalent sound
pressure levels of the i-th day of the year, respectively.
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Fig. 1. Noise monitoring stations at 70 sites in 7 major cities of India installed by the CPCB, India for continuous noise
monitoring throughout the year.

The 24-hour equivalent sound pressure levels are
the average equivalent sound levels of 24 hours of a
single day. Also, the annually-averaged day-night av-
erage sound pressure levels of the 70 noise monitoring
sites are calculated (Garg et al., 2016):

Ldn = 10 log10 [
16 ⋅ 10Lday/10 + 8 ⋅ 10(Lnight+10)/10

24
], (3)

where Lday and Lnight are the day and night equivalent
noise levels per year, respectively.

The standard deviation associated with the day
equivalent sound levels of the noise monitoring sites
is calculated as:

σ =

¿
Á
Á
ÁÀ

n

∑
i=1

(Lday,i −Lday)

n − 1
, (4)

where Lday is the average of the day equivalent sound
levels per year. The standard deviation for the average
night equivalent sound levels for each noise monitoring
site is also calculated in the same way.

The study also analyzes the noise exceedance fac-
tor (EF) calculated in each zone, as shown in Eq. (5)
(Chowdhury et al., 2016), in order to assess the en-
vironmental noise pollution scenario of different zones.
The noise EF of a site is defined as the ratio of the am-
bient noise level of the site and the permissible noise

level limit of the zone in which the site is located.
The average noise limit exceedance factor (NEF) for
all the sites lying in one zone is called the average ex-
ceedance factor (AEF):

EF =
L0

Lp
, (5)

where L0 is the observed ambient noise level, and Lp
is the legally permissible limit recommended by the
CPCB, India (Table 1 – Appendix).

The study undertakes a zone-wise and site-wise
analysis in order to analyze the noise scenario at var-
ious sites and a specific trend of noise scenario in the
past ten years.

3. Results and discussion

Tables 2 and 3 (Appendix) show the details of the
annual average ambient day and night equivalent lev-
els monitored for the 35 stations installed in 7 cities
from 2011 to 2020 (CPCB, 2015a; 2015b; 2016; 2018;
Garg, 2022). Table 4 (Appendix) shows the details
of the annual average day and night equivalent sound
levels for the past five years (2015–2020) for the ad-
ditional 35 noise monitoring stations in 7 cities, which
were installed in November 2014 (CPCB, 2015a; 2015b;
2016; 2018; Garg, 2022). Figures 2 and 3 show the
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Fig. 2. Annual night equivalent average sound levels Lnight [dB(A)] observed for the three years (2018–2020)
for 7 major cities (Garg, 2022).

annual average day and night equivalent noise lev-
els for the past three years (2018-2020) for the 70,
sites in the 7 major cities of India (Garg, 2022). The
60 dB(A) Lday limit can be seen as NOAEL (no ob-
served adverse effect level) for the correlation between
road traffic noise and myocardial infarction (MI); the
risk of MI increases incessantly for noise levels higher

than 60 dB(A) (WHO, 2009; Babisch, 2002). It can
be observed that the 60 dB Lday limit was met by only
4 sites in 2020, while 7 sites met the limit in 2019,
and 9 sites in 2018. The Interim Target (IT) of 55 dB
Lnight, as recommended in the EU Night Noise Guide-
lines report (WHO, 2009), was met by only 4 sites in
2020, 7 sites in 2019, and 8 sites in 2018. The major-
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Fig. 3. Annual night equivalent average sound levels Lnight [dB(A)] observed for the three years (2018–2020)
for 7 major cities (Garg, 2022).

ity of sites (7 out of 10) in Chennai city showed day
sound levels above 70 dB(A) and 6 sites showed night
equivalent sound levels above 70 dB(A). However, in
Delhi, only 2 sites showed day and night equivalent
levels ≥70 dB(A). Also, in Mumbai and Hyderabad,
6 sites showed day equivalent levels ≥70 dB(A) and
5 sites showed night equivalent levels ≥70 dB(A). Over-
all, 32 sites (45.7%) comprising of 12 commercial, 5 in-
dustrial, 7 in silence zone, and 8 residential were ob-
served to be the MEUS with day equivalent sound
levels ≥70 dB(A). Thirty sites (42.9%) comprising of

9 commercial, 4 industrial, 11 in silence zone, and
6 residential were observed to be the MEUS with night
equivalent sound levels ≥70 dB(A). Table 5 (Appendix)
shows the frequency distribution of the noise descrip-
tors: annual average day equivalent levels Lday, an-
nual average night equivalent levels Lnight, annual ave-
rage 24-hour equivalent sound level LAeq,24h, and an-
nual day-night average sound level Ldn for the 70 sites
for the past four years (2017–2020). It was observed
that the majority of the sites (75.7%) registered day
equivalent noise levels between 60 to 75 dB(A), while
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64.3% of the sites registered night equivalent noise lev-
els between 60 to 75 dB(A). Also, the majority of sites
(69.5%) showed Ldn values between 65 to 80 dB(A),
and 77.6% of the sites showed LAeq,24h values between
60 to 75 dB(A). Figures 4 and 5 show the 24-hour
equivalent average annual sound levels LAeq,24h and
annual day-night average sound levels Ldn observed for
the past three years (2018–2020) in the 7 major cities
of India (Garg, 2022). It can be observed that the ma-
jority of LAeq,24h values range from 60 to 75 dB(A) for
commercial (83%) and industrial zone sites (65.9%),
while for the residential (75%) and silence zone sites
(76.9%), the majority of LAeq,24h values range from 55
to 70 dB(A). The majority of Ldn values range from
65 to 80 dB(A) for commercial (66%), residential (69%),
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Fig. 4. Annual day-night average sound levels Ldn in dB(A) observed for the past three years (2018–2020)
for 7 major cities (Garg, 2022).

and industrial zone sites (67%), while for the silence
zone sites, the majority (80.5%) of Ldn values range
from 60 to 75 dB(A).

The zone-wise analysis was also conducted as
shown in Table 6 (Appendix) in order to ascertain the
range of day and night equivalent noise levels in all
4 zones (Garg, 2022). The analysis of the 2020 noise
monitoring data shows that 88% of the commercial
sites, 62.6% of the residential sites, 70.5% of the si-
lence zone sites, and 74.9% of the industrial zone sites
registered day equivalent sound levels between 60 to
75 dB(A). Furthermore, 76% of the sites registered
night equivalent sound levels between 60 to 75 dB(A),
while 56.4% of the residential sites, 70.6% of the silence
zone sites, and 66.7% of the industrial sites registered
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Fig. 5. Annual 24-hour equivalent average sound levels LAeq,24h in dB(A) observed for the past three years (2018–2020)
for 7 major cities (Garg, 2022).

night equivalent noise levels between 55 to 70 dB(A).
Thus, it is evident that the majority of the sites in all
4 zones registered day equivalent sound levels in the
range of 60 to 75 dB(A), while the majority of sites
in all zones except the commercial zone showed night
equivalent sound levels between 55 to 70 dB(A). The
analysis of (Lday–Lnight) for the 70 sites was conducted
to analyze the severity of day equivalent noise levels
compared to night equivalent noise levels. Table 7 (Ap-
pendix) shows the frequency distribution (in %) of the
difference of annual average (Lday–Lnight) values ob-
served in dB for the 70 sites spread across the 7 major
cities of India (Garg, 2022). It is revealed that the
majority of observations (75.7% for 2020 to 88.6% for
2014) showed a difference between 0 to 10 dB(A) and

less than or equal to 5 dB(A) in the past ten years from
2011 to 2020 (31.4% in 2012 to 58.6% in 2020). These
observations thus suggest that the night equivalent
noise levels are comparable to the day equivalent levels
for the majority of sites. The 10 dB night-time adjust-
ment in day-night average sound level is not appro-
priate in such a scenario. On a similar analogy, these
observations also suggest that the 5 dB evening time
correction in the day-evening-night average sound level
descriptor is not justified as the evening noise levels are
similar to the day equivalent noise levels. Thus, the 24-
hour equivalent continuous sound level LAeq,24h would
be more suitable as it is a common way of expressing
day-night average sound level without the 10 dB night-
time adjustment (Garg, 2019). It may be noted that
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these results are observed for the case of metropolitan
cities only, and the environmental noise scenario for
other cities, especially tier 2 cities, shall be helpful to
conclude a generic trend about the suitability of day-
night average sound levels with the 10 dB night-time
adjustment in India.

The comparison of the environmental noise levels
in the 70 sites in comparison to the previous years was
ascertained to understand the change in noise scenario
in the past decade. Figure 6a shows the difference in
day and night equivalent sound levels in 2020 sound
levels for the 35 sites in which the NMTs were installed
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Fig. 6. Difference in equivalent sound levels: a) difference in day and night equivalent noise levels w.r.t. 2020 sound levels
for 35 sites in which the NMTs were installed in 2011; b) difference in day and night equivalent sound levels w.r.t. 2020

sound levels for 35 sites in which the NMTs were installed in 2015.

in 2011. It can be observed that 19 sites (54.3%)
showed an increment in day and night equivalent
sound levels of more than 5 dB(A) in these ten years,
9 sites (25.7%) showed an increment in day equivalent
sound levels up to 10 dB(A), and 19 sites (54.3%)
showed an increment in night equivalent sound levels
up to 10 dB(A). Only 3 sites showed a decrement in
day equivalent sound levels up to 5 dB(A) and 1 site
showed a decrement in night equivalent sound levels
by more than 5 dB(A). Figure 6b shows the difference
in day and night equivalent sound levels in 2020
sound levels for the 35 sites in which the NMTs were
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installed in 2015. It can be observed that 8 sites
(22.9%) showed an increment in day and night equiva-
lent sound levels of more than 5 dB(A) in these five
years, 5 sites (14.3%) showed an increment in day
equivalent sound levels ≥10 dB(A) and 9 sites (25.7%)
showed an increment in night equivalent sound levels
≥10 dB(A). Also, 4 sites (11.4%) showed a decrement
in day equivalent sound levels ≥5 dB(A), while 6 sites
(17.1%) showed a decrement in night equivalent sound
levels ≥5 dB(A).

The comparison of LAeq,24h and Ldn levels for the
35 sites for the ten years under study, as shown in
Fig. 7a, also revealed that 8 sites (22.9%) showed an
increment in LAeq,24h levels ≥ 10 dB(A) and 14 sites
(40%) showed an increment in Ldn levels ≥ 10 dB(A).
Only 1 site showed a decrement in LAeq,24h and Ldn

levels of more than 5 dB(A). Overall, it was observed
that the commercial and silence zone sites exhibited
higher increment in the day and night equivalent sound
levels in the considered years.
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Fig. 7. Difference in equivalent sound levels: a) difference in 24-hour equivalent sound levels and day-night average sound
levels w.r.t. 2020 sound levels for 35 sites in which the NMTs were installed in 2011; b) difference in 24-hour equivalent
sound levels and day-night average sound levels w.r.t. 2020 sound levels for 35 sites in which the NMTs were installed

in 2015.

The comparison of LAeq,24h and Ldn levels for the
35 sites for the past five years, as shown in Fig. 7b,
also revealed that 5 sites (14.3%) showed an incre-
ment in LAeq,24h levels ≥10 dB(A) and 8 sites (22.9%)
showed an increment in Ldn levels ≥10 dB(A). Ad-
ditionally, 5 sites (14.3%) showed a decrement in
LAeq,24h ≥5 dB(A), while 5 sites (14.3%) showed
a decrement in Ldn levels ≥5 dB(A). These observa-
tions also revealed that commercial and silence zone
sites exhibited higher increment in the 24-hour equiv-
alent sound levels and day-night average sound levels
in the considered years.

A piecewise linear regression analysis was also per-
formed to assess the approximate rate of variation of
day and night equivalent levels in the past ten and six
years, for the new addition in 2014, on an annual basis.
The slope of variation (in dB(A)/year) of day and
night equivalent levels and the corresponding Pearson’s
correlation coefficients for all the 70 sites in the 7 cities
of India were evaluated, as shown in Tables 8 and 9
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(Appendix). Table 8 shows the slope of variation of
ambient noise levels in the past ten years, 2011–2020,
and the corresponding correlation coefficient for the
35 sites where the noise monitoring stations were es-
tablished in 2011.

Table 9 presents the slope of variation of ambient
noise levels in the past six years, 2015–2020, and the
corresponding correlation coefficient for the 35 sites
where the noise monitoring stations were established
in 2014. It is revealed in Table 8 that except for 1 com-
mercial, 2 residential, and 1 silence zone site, all other
sites showed positive slopes for day equivalent levels
and except for 1 commercial zone site, all other sites
reported positive slopes for night equivalent levels for
the past ten years (2011–2020), which indicates the in-
crement in the ambient noise levels in these ten years.
Also, for the variation of day equivalent levels, more
than 70% of the 35 sites exhibited a slope within the
range of 0 to 1.5 dB(A)/year, and almost 60% of the si-
tes exhibited a slope within 0 to 1 dB(A)/year, while
for the variation of night equivalent levels, nearly 77%
of the 35 sites reported the slope of variation within 0
to 2 dB(A)/year. It is observed in Table 9 that for the
past six years (2015–2020), 5 commercial, 3 industrial,
6 residential, and 4 silence zone sites exhibited a neg-
ative slope of variation of day equivalent levels and
4 commercial, 3 industrial, 4 residential, and 1 silence
zone site reported negative slope of variation of night
equivalent levels in the past six years (2015–2020), in-
dicating a decrement in the day and night equivalent
levels in these six years. Overall, 18 and 12 sites out
of 35 sites reported a negative slope of variation for
the day and night equivalent levels, respectively. Thus,
it can be deduced that more commercial, industrial,
and residential zone sites exhibited decrement in the
day and night equivalent sound levels than the silence
zone sites in the six years under study. Also, 21 out of
35 sites reported the slope of variation of day equiva-
lent levels within the range −1 to 1 dB(A)/year, and
17 out of 35 sites exhibited a slope of variation of night
equivalent levels within the range 0 to 2.5 dB(A)/year
for the past six years from 2015 to 2020.

Population growth, rising transportation needs, an
increase in vehicular density particularly heavy vehi-
cles and cars, etc., and road congestion are all factors
that are primarily attributed to the increased noise lev-
els in the ten years under study (Jamir et al., 2014).
Also, the increased industrial activities account for the
elevated ambient noise levels of the noise monitoring
sites in ten years span of time. The increased encroach-
ment of vehicles alongside the main roads in silence,
residential, and commercial zones, congestion due to
heavy vehicles, and unnecessary honking events are
also associated with the elevated noise levels in these
zones. Furthermore, loud music from the various night
events (including marriage ceremonies and other con-
certs), noise from dog-barking at night at some sites,

and movement of heavy trucks at night-time are pri-
marily attributed to the higher noise levels at some
sites.

The present study is the first study to comprehen-
sively analyze the extensive noise monitoring data for
7 major cities of India for the past ten years from 2011
to 2020. Although the non-compliance of the silence
and residential zone sites with the ambient noise stan-
dards is supported by several studies for other cities in
India as well (Datta et al., 2006; Aggarwal, Swami,
2011; Bhosale et al., 2010; Garg et al., 2016; 2017b;
2017c), a comprehensive study focussed in tier 2 and
tier 3 cities shall give a broader picture of noise sce-
nario in the country for the various zones.

4. Overall noise scenario and compliance
with ambient standards

Long-term noise monitoring for the past decade re-
vealed that the environmental noise levels were high
compared to the recommended limits for some of the
sites and thus noise control measures (or noise ac-
tion plans) are essentially required for controlling the
noise levels. It was observed that only 4 sites (5.7%)
met the target of 55 dB Lnight. Table 10 (Appendix)
shows the status of compliance of the day and night
equivalent levels explicitly for the various sites with the
ambient noise limits. It can be observed that day-ti-
me compliance is observed in more sites than night-
time compliance. A minimum of 9 to a maximum of
14 sites out of 70 sites have shown day-time compli-
ance in the studied ten years, while a minimum of 5
to a maximum of 12 sites showed night-time compli-
ance. No silence zone site ever met the ambient noise
limits in the span of ten years under study, while only
2 residential sites showed compliance with the day am-
bient noise limits for 2011–2013, and 1 residential zone
site showed day-time compliance in 2014, 2018, and
2019. Table 11 (Appendix) enlists the status of overall
compliance of all the sites in 7 cities in the consid-
ered decade (Garg, 2022). It is evident that primar-
ily the industrial sites met the ambient noise limits
in these ten years. Also, in accordance with the U.S
Department of Housing and Urban Development cri-
teria (1984) that recommends the LAeq ≤ 49 dB(A) as
clearly acceptable and 49 < LAeq ≤ 62 dB(A) as nor-
mally acceptable. In 2020, 15 sites (21.4%), including
3 industrial, 5 commercial, 4 residential, and 3 silence
zones, met these criteria. The level of significance for
assessing noise impacts has been identified as an Ldn

of 65 dB(A), whereby an Ldn value of 65 dB(A) is de-
scribed as the onset of a normally unacceptable zone.
In accordance with these criteria, 9 sites (12.9%) in
2020, including 1 industrial, 3 commercial, 3 residen-
tial, and 2 silence zones, met these criteria. These ob-
servations thus suggest a retrospective and prospective
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view of ambient noise standards, particularly for the
residential areas and sites lying in the silence zones
and mixed zone prevalent at some sites. It is rightly
pointed out in the European Night Noise Guidelines
(WHO, 2009) report that limits could be reasonably
high but firmly imposed or very minimal with no legal
obligation whatsoever.

Also, in order to ascertain the most severely af-
fected zone, the NEF for each zone in the past four
years was analyzed, as shown in Table 12 (Appendix).
The NEF was calculated as the ratio of the ambi-
ent noise level (day/night) observed at the site to the
noise limit recommended by the ambient noise stan-
dards (Chowdhury et al., 2016). The analysis of NEF
and AEF revealed that the silence zone has the maxi-
mum AEF of 1.4 for day equivalent sound levels and 1.7
for night equivalent sound levels, followed by residen-
tial zones (AEF 1.3–1.5) and commercial zone (AEF
1.1–1.2) in the 2020 noise monitoring data. The ana-
lysis of the four years AEF values suggested that the
silence zone sites were the most affected sites, followed
by residential zone sites. A planned land-use pattern of
commercial, residential, silence, and industrial zones in
a city shall be thus pivotal in reducing environmental
noise levels. The numerical meta-analyses ascertain-
ing the exposure-response relationship between com-
munity noise and cardiovascular risk recommends an
empirical formulation as (WHO, 2011):

OR = 1.63−6.13⋅10−4
⋅L2

day,16h+7.36⋅10−6
⋅L3

day,16h, (6)

where Lday,16h is 16 hours ambient day level and OR
is the odds ratio that is used to compare the rela-
tive odds of the occurrence of the outcome of disease,
given exposure to the variable of interest (noise expo-
sure level). Thus, for the Gunidy site in Chennai that
experienced the highest day equivalent sound levels of
82.8 dB(A) in 2020 and the Bag Bazar site in Kolata
that experienced the highest day equivalent sound lev-
els of 87.2 dB(A) in 2019, the ORs of 1.6 and 1.8 were
evaluated, respectively. The variation of OR was eval-
uated to be in the range of 1 to 1.6 for 2019 and 1 to
1.8 in 2020. Thus, epidemiological meta-analysis and
noise annoyance studies are essentially required from
an Indian perspectives to correlate noise exposure with
the health effects. The empirically described conver-
sion rules between the environmental noise exposure
metrics as that presented by Brink et al. (2018) in
Switzerland shall facilitate the estimation of the value
of one (unknown) noise metric from the value of an-
other (known) metric, e.g., in the scope of epidemiolog-
ical meta-analyses or systematic reviews, when results
from different studies are pooled and need to be related
to one common exposure metric. Table 13 (Appendix)
shows the inter-conversion of the various noise descrip-
tors for the four zones based on the analysis of noise
monitoring data of the past three years. The intercon-
version rule shall facilitate the prediction of noise de-

scriptors eventually when short-term noise monitoring
studies are carried out (Garg et al., 2015a; Tiwari
et al., 2022).

5. Noise action plans and noise control policy

The undue violation of ambient noise limits for the
residential and silence zone sites is primarily due to
the mixed category zone prevalent for some of the
locations. Thus, these observations suggest a need for
the national policy framework for the management
and control of noise pollution in India (Garg, Maji,
2016; Garg et al., 2022). Figure 8 shows the proposed
plan for management and control of noise pollution
and the noise action plans for controlling noise pollu-
tion in the urban cities of India. The major elements
of such a policy framework shall be: noise mapping,
monitoring and certification, enforcement of ambient
noise standards, selection and execution of appropria-
te noise action plans, traffic management policy, legal
measures and noise screening policy, and noise aware-
ness campaigns for inculcating awareness amongst the
community towards reducing the noise pollution. The
proposal in the master plan with major impetus on
traffic decongestion includes the following: Unified
Metro Transport Authority, synergy between land-use
and transport integrated multi-modal public transport
system for reducing the dependence on personalized
vehicles, road and rail-based mass transport system
recommended to be a major mode of public transport,
and optimal use of existing road network. National
Transport Oriented Development (TOD) policy can
serve as guidelines and play a catalytic role in formulat-
ing state/city-level policies to promote transit-oriented
development (CPCB, 2017). Decongestion plans for
busy road junctions, special drives for “no honking”,
promotion of carpooling policy, and “work from home”
culture for some of the offices (Kumar et al., 2022)
for reducing road traffic, launching of odd-even traffic
measures for some time (Garg et al., 2017a), launch-
ing car-free day initiatives, installing synchronized
traffic signaling, constructing flyovers in metropolitan
cities for deflecting the traffic, easing the traffic den-
sity, and restricting entry of heavy vehicles are some
of the major administrative issues that should be im-
plemented for reducing the environmental noise lev-
els. Installation of noise barriers at hotspots in an
adequate manner is also a feasible option for noise
abatement in various zones of metropolitan cities of
India (Lokhande et al., 2021a). Demarcation of all
the silence zone and residential zone sites in cities, de-
marcation of no-honking zones, proper land-use plan-
ning, and inculcating awareness amongst the commu-
nity on associated health hazards due to noise ex-
posure shall be very effective steps to control noise
pollution. Periodic noise monitoring of sites in conjunc-
tion with noise mapping of cities and periodic review
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Enforcement of ambient
noise standards:

• Acoustical zoning: specifying zone/area for
compliance of ambient standards.

• Revision in ambient noise standards for
residential and silence zones.

• Ambient noise standards for mixed land-use and
airport zones.

• Strict enforcement of ambient noise standards.
• Noise limits for metro train pass-by and aircrafts.
• Retrospective view of Land Use Policy and

Management in Urban Development Plans.
• Strengthening National Building Code for noise

control in buildings.

Noise mapping, monitoring
and certification:

• Noise monitoring of noisy hot spots.
• Noise mapping of urban

agglomerations, elevated transit train
corridors and airports.

• Simulative studies for devising NAPs.
• Type approval noise testing of

vehicles every year.
• Short-term noise monitoring strategies

for covering larger areas.
• Noise mapping mandatory for new train

transit projects and runways.
• Use of smartphone for noise mapping.
• Noise mapping of tier 1, 2, and 3 cities.

Legal measures:
• Restriction on pressure horns.
• Strict enforcement of noise ordinances

for loudspeakers, public processions, use
of sound limiters.

• Restriction of bursting fire-crackers and
construction equipments at night- time in
residential and silence zones.

• Removal of encroachment in terms of
illegal construction and parking.

• Noise grievances cell to be
a proactive part of state police cell.

• Polluter must install noise-monitoring
devices and provide the data to
authorities.

• Special budgetary provisions for noise
management and control every year.

Noise acreening policy and noise
awareness campaigns:

• Noise barriers should be created around
hospitals, schools, sensitive receptors, and
along the national highways.

• Sound regulation requirements for buildings
near road, transit trains, industrial units,
airports, and national highways.

• Vegetative barriers/earth berms/trees,
bushes, etc., for noisy areas.

• Noise awareness campaigns/mass
awareness among community through
printed media, schools, colleges, etc.

• Educating/training officials involved in
measuring and controlling noise pollution.

Traffic management policy:
• Restricted entry of heavy vehicles to

residential areas.
• Synchronized traffic signalling.
• Speed limits for roads of different hierarchy:

arterial, sub-arterial, local, collector.
• Traffic decongestion plans: flyovers,

roundabouts, etc.
• Systematic parking plans in markets,

road, etc., to avoid decongestion
and honking.

• No honking zone for hospitals, schools
and sensitive receptors.

• Streamlining road and parking systems,
separate lane for heavy vehicles.

Management and control
of noise pollution

and noise action plans

Noise action plans (NAPs):
• Building insulation.
• Quiet road surfaces.
• Low noise tires.
• Land-use planning and management.
• Traffic management.
• Erection of noise barriers.
• Vegetation and trees.
• Horn noise control by imposing

restrictions.
• Prohibition of use of music systems in

open without any mitigation measures
(in closed building) such as sound
proofing/acoustic planning, etc.

• Selection and execution of the Best
Practicable and Economical Option
(BPEO).

Fig. 8. Proposed plan for management and control of noise pollution and noise action plans in Indian scenario to effectively
control noise pollution in urban cities.

of noise scenarios after fixed intervals shall be indis-
pensable to analyze, understand, and devise suitable
noise action plans (Garg et al., 2015a; 2020; 2021;
Kumar et al., 2023; Lokhande et al., 2019). In addi-
tion, noise measurements with the help of smartphone
applications are also an effective, novel and econom-
ical way of disseminating awareness among the com-
munity, especially the young generations (Lokhande
et al., 2021b). It is recommended that a mixed zone
category should be specifically considered for the noise
abatement guidelines/ambient standards in the future
from an Indian perspective. Reduction at the source
(travel demand reduction, setting restrictive speed lim-
its in residential areas and sensitive sites, prohibition
of heavy vehicle traffic in residential areas and sensi-
tive sites, minimization of slopes in urban roads, con-

trol of acoustic emissions generated by vehicles with
sirens, strict enforcement of regulations governing the
emission limits and conditions of use of vehicles, etc.)
is the effective action plan for reducing the environ-
mental noise levels (Torija et al., 2021). The Eu-
ropean Union has recently reported the noise action
plans for major roads as the measures on the propaga-
tion path (40%) followed by the source-orientated mea-
sures (38%). Noise barriers and traffic management
measures were the most commonly reported, followed
by improving the road surface. However, the actions
related to urban planning only account for a small per-
centage (13%) and the ones related to education and
communication account for 6% (Blanes et al., 2019;
Conference of European Directors of Roads [CEDR],
2013; European Environment Agency, 2020). The cost-



N. Garg et al. – Evaluation and Analysis of Long-term Environmental Noise Levels. . . 115

effectiveness of the noise action plans is very crucial for
selecting an optimal strategy (Münzel et al., 2018;
European Union, 2017; Lokhande et al., 2022; Garg
et al., 2012; 2022; Tiwari et al., 2021). Thus, an ef-
fective noise policy for a sustainable environment, in-
cluding noise action plans in urban planning, is es-
sential from an Indian perspective for accomplishing
the desired goals towards noise pollution control in
metropolitan cities. Thus, these measures have to be
implemented for metropolitan cities of India while con-
sidering the recent WHO (2018) guidelines such as
reducing noise exposure while conserving silence ar-
eas, promoting the interventions to reduce noise ex-
posure and improve health, coordinating the various
approaches to control noise source and other environ-
mental health risks and information and involvement
of the communities (WHO, 2018).

6. Conclusions and recommendations

This paper analyzed and reported the long-term
noise-monitoring data for 2011–2020 obtained from the
diversified NANMN set up across the 7 major cities
of India and covering 70 stations for continuous noise
monitoring throughout the year. The annual average
ambient noise levels observed in these years for these
70 locations under study, in which 25 locations were
in commercial zones, 12 in industrial, 16 in residen-
tial, and 17 in silence zones, were described. These ob-
servations were instrumental in ascertaining the noise
scenario, the status of compliance with the ambient
noise limits and planning a national policy framework
for reducing noise pollution in metropolitan cities of
India. Such a study shall be helpful for predicting and
forecasting future noise scenarios in the decade. The
following conclusions can be drawn from this study:

– the comparison of the ambient noise levels in the
studied decade revealed that the majority of sites
(19 out of 35) registered an increment in day
and night equivalent sound levels of more than
5 dB(A) in this decade. Only 3 sites showed
a decrement in day equivalent sound levels by
5 dB(A) and 1 site showed a decrement in night
equivalent sound levels by 5 dB(A). Overall, it was
observed that the commercial and silence zone
sites exhibited a higher increment in the day and
night equivalent sound levels in the past few years;

– in the past three years, from 2018 to 2020, 7 out
of 10 sites in Chennai and Mumbai exhibited day
and night equivalent levels greater than 70 dB(A).
For Kolkata, 6 sites reported day and night equiv-
alent sound levels greater than 70 dB(A). Also,
4 out of 10 sites in Lucknow, Hyderabad, and Ben-
galuru exhibited day and night equivalent levels
greater than 70 dB(A). For Delhi, only 2 out of
10 sites showed day and night equivalent sound le-
vels greater than 70 dB(A). Forty-two sites (60%)

comprising of 18 commercial, 5 industrial, 9 in si-
lence zone, and 10 residential were observed to be
the most exposed urban sites with day equivalent
sound levels ≥70 dB(A);

– the NOAEL limit of 60 dB(A) Lday was met by
4 sites only for 2020, while 7 sites met this limit
in 2019 and 9 sites in 2018. The interim target
(IT) of 55 dB Lnight, as recommended in the EU
Night Noise Guidelines report, was met by 4 sites
in 2020, 7 sites in 2019, and 8 sites in 2018. Over-
all, 94.3% of the observations exceeded the interim
target recommended by the Night Noise Guide-
lines (NNG) report, which indicates that 55 dB
Lnight is an ambitious target for all these sites un-
der consideration;

– the zone-wise analysis of ambient noise levels
showed that the majority of sites registered day
equivalent sound levels in the range of 60 to
75 dB(A) in all 4 zones. Also, the majority of si-
tes registered night equivalent sound levels in the
range of 55 to 70 dB(A) for residential, silence,
and industrial zones, while the majority of the
sites (76%) in the commercial zones registered
night equivalent sound levels in the range of 60
to 75 dB(A);

– the analysis of the noise monitoring data for the
70 sites for the year 2020 showed that the majori-
ty of LAeq,24h values range from 60 to 75 dB(A)
for commercial (83%) and industrial zone sites
(65.9%), while for the residential (75%) and silen-
ce zone sites (76.9%), the LAeq,24h values range
from 55 to 70 dB(A). Also, the analysis of Ldn val-
ues revealed that the majority of these values
range from 65 to 80 dB(A) for commercial (66%),
residential (69%), and industrial zone sites (67%),
while for the silence zone sites, the majority
(80.5%) of Ldn values range from 60 to 75 dB(A);

– the analysis of compliance with the ambient stan-
dards showed that day-time compliance is shown
by more sites than the night-time. A minimum of
9 sites and a maximum of 14 sites out of 70 sites
showed day-time compliance from 2011 to 2020,
while only a minimum of 5 sites and a maximum
of 12 sites showed night-time compliance during
the past ten years. Primarily, only the commer-
cial and industrial zone sites complied with the
ambient noise standards from 2011 to 2020. No
silence zone site ever met the ambient noise lim-
its, while only 2 residential sites showed compli-
ance with the day ambient noise limits. No site
met the limits of 53 dB Lden and 45 dB Lnight rec-
ommended by the Guidelines Development Group
of the WHO for road traffic noise. These observa-
tions suggest the need to reconsider ambient noise
standards, especially for residential and silence
zones. Also, the mixed category zone was avail-
able for some of these sites, however it was very
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difficult to exclusively classify them as either res-
idential or silence zones or commercial or indus-
trial zones. It is recommended that a mixed zone
category should be specifically considered for the
noise abatement guidelines/ambient standards in
the future from an Indian perspective;

– the analysis of (Lday–Lnight) for 70 sites revealed
that the majority of observations show a differ-
ence between 0 to 10 dB(A) and less than or equal
to 5 dB(A) in the decade under study. Therefore,
these observations suggest that the night equiva-
lent noise levels are comparable to the day equi-
valent levels for the majority of sites. Thus, the
10 dB night time adjustment in the day-night av-
erage sound level is not appropriate in such a sce-
nario. These observations also suggest that a 5 dB
evening time correction in the day-evening-night
average sound level descriptor is not justified in
the Indian context as the evening noise levels
are the same as the day equivalent noise levels.
Thus, the 24-hour equivalent continuous sound
level LAeq,24h would be a more suitable descriptor
as it is a common way of expressing the day-night
average sound level without a 10 dB night-time
adjustment. It is thus recommended that for de-
veloping exposure-effect relationships and corre-
lating noise annoyance, and correlating noise ex-
posure with the health aspects, the single noise
descriptor, 24-hour equivalent continuous sound
level LAeq,24h, would be more suitable compared
to Ldn or Lden descriptors;

– it was observed that the approximate annual rate
of variation of ambient noise levels was positive for
31 out of 35 sites for the ten years, indicating an
increment in the ambient noise levels in the these
ten years. For the rest of the 35 sites where the
noise monitoring stations were installed in 2014,
the approximate annual rate of variation of day
equivalent levels of 18 out of 35 sites was negative
and for the night equivalent levels, the approxi-
mate annual rate of variation of 12 out of 35 sites
was negative, which indicates the decrement in
day and night equivalent levels of 18 and 12 sites,
respectively, in the past six years. Also, it was re-
vealed that relatively more commercial, industrial,
and residential zone sites exhibited a decrement in
the day and night equivalent sound levels in com-
parison to silence zones in the same six years;

– the analysis of the NEF and AEF showed that the
silence zone has the maximum AEF of 1.4 for day
equivalent noise levels and 1.7 for night equiv-
alent noise levels, followed by residential zones
(AEF 1.3–1.5) and commercial zones (AEF 1.1–
1.2) in 2020 noise monitoring data. Thus, it sug-
gests that silence zone sites are the most affected
sites, followed by residential zone sites.

The present study considered the analysis of noise
monitoring data from 70 sites in 7 metropolitan cities.
Future studies focusing on long-term evaluation and
analysis of noise monitoring data of tier 2 and tier
3 cities shall be helpful in understanding the generic
noise scenario of the country and developing a national,
coherent noise policy from an Indian perspective. The
undue violation of ambient noise limits for the resi-
dential and silence zone sites is primarily due to the
mixed category zone prevalent for some of the loca-
tions. Figure 8 recommends the road map of national
policy on noise management and control for control-
ling the noise pollution in metropolitan cities of India.
Thus, the execution and implementation of the NAPs
and the administrative measures such as traffic mana-
gement policy, noise screening policy, legal measures,
and strict enforcement of ambient noise standards can
be very instrumental in reducing ambient noise lev-
els. Thus, the future developments and establishment
of “Smart Cities” should consider these aspects at the
designing stages for controlling noise pollution and de-
veloping sustainable cities promoting good health and
quality of life.
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Appendix

Table 1. Ambient noise standards of India
(Ministry of Environment & Forests, 2000).

Area code
Category

of area/zone
Limits in dB(A) Leq

∗

Day-time Night-time
A Industrial area 75 70
B Commercial area 65 55
C Residential area 55 45
D Silence zone 50 40

∗ Leq denotes the time-weighted average of the sound
level in decibels in A-weighting.
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Table 7. Frequency distribution [%] of difference of annual average (Lday–Lnight) values observed [dB]
for the 70 sites spread across the 7 major cities of India from 2011 to 2020 (Garg, 2022).

Variation of difference
(Lday–Lnight) values

[dB]
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

−15 < (Lday–Lnight) ≤ −10 0 0 0 0 0 0 1.4 1.4 0 1.4
−10 < (Lday–Lnight) ≤ −5 0 0 0 0 0 0 1.4 2.9 1.4 2.9
−5 < (Lday–Lnight) ≤ 0 0 0 0 0 0 20.0 10.0 14.3 13.0 18.6
0 < (Lday–Lnight) ≤ 5 34.3 28.6 40.0 31.4 50.7 47.1 47.1 45.7 52.2 58.6
5 < (Lday–Lnight) ≤ 10 54.3 57.1 48.6 57.1 35.0 30.0 37.1 35.7 31.9 17.1
10 < (Lday–Lnight) ≤ 15 11.4 14.3 11.4 11.4 14.3 2.9 1.4 0 1.4 1.4
15 < (Lday–Lnight) ≤ 20 0 0 0 0 0 0 1.4 0 0 0

Table 8. Slope and correlation coefficient of Lday and Lnight levels with respect to the transition period
from 2011 to 2020 for the 35 sites in 7 major cities of India.

Area characteristics Name of location City
Lday Lnight

Slope R Slope R

Commercial

CPCB HQ Delhi 0.31 0.4654 1.14 0.7904
ITO Delhi 0.44 0.6006 0.24 0.2953

Hazrat Ganj Lucknow 0.15 0.1867 1.54 0.9561
New Market Kolkata 0.68 0.3108 1.82 0.5730
WBPCB HQ Kolkata 0.44 0.7374 0.90 0.7158

Bandra Mumbai 0.08 0.0938 0.37 0.3874
MPCB HQ Mumbai 0.43 0.5622 0.39 0.2948
Thane MCQ Mumbai 0.59 0.4416 1.66 0.6626

Abids Hyderabad 0.01 0.0038 0.39 0.2269
Punjagutta Hyderabad −1.02 0.6629 −1.25 0.6604
Marathahalli Bengaluru 2.06 0.9016 2.37 0.9380

Parisar Bhawan Bengaluru 0.11 0.2956 0.48 0.6852
Perambur Chennai 0.31 0.2378 1.62 0.6087
T. Nagar Chennai 0.63 0.8749 1.40 0.9415

Industrial

Talkatora Industrial Area Lucknow 0.40 0.5929 1.28 0.9274
Kasba Gole Park Kolkata 0.33 0.1598 0.66 0.2436

Jeedimetla Hyderabad 1.55 0.6787 2.68 0.7408
Peeniya Bengaluru 1.02 0.8483 1.03 0.8391
Guindy Chennai 0.64 0.7353 1.11 0.8264

Residential

Indira Nagar Lucknow 1.27 0.3871 1.69 0.4280
Patauli Kolkata 2.21 0.7883 3.27 0.8415

Jubilee Hills Hyderabad 1.28 0.7198 1.57 0.7931
BTM Bengaluru −0.23 0.5846 1.21 0.8633

Nisarga Bhawan Bengaluru 2.79 0.8405 3.71 0.8680
Triplicane Chennai −0.20 0.1795 1.16 0.5621

Silence

DTU, Bawana Delhi 0.92 0.6568 0.89 0.5614
NSIT Dwarka Delhi 0.21 0.4844 0.11 0.3219
Gomti Nagar Lucknow −0.19 0.2132 0.89 0.6300
PGI Hospital Lucknow 1.86 0.7797 2.44 0.8167
SSKM Hospital Kolkata 0.96 0.7594 1.66 0.7824

AS HP Mumbai 0.97 0.6247 1.78 0.7320
Vashi Hospital Mumbai 0.63 0.5659 2.16 0.7474

Zoo Park Hyderabad 1.10 0.4516 1.83 0.6328
Eye Hospital Chennai 0.97 0.8430 1.73 0.9048

Dilshad Garden Delhi 2.12 0.8601 2.26 0.8430
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Table 9. Slope and correlation coefficient of Lday and Lnight levels with respect to the transition period
within the years 2015–2020 for the 35 sites in 7 major cities of India.

Area characteristics Name of location City
Lday Lnight

Slope R Slope R

Commercial

Civil Lines Delhi −2.53 0.9471 −3.42 0.9610
Anand Vihar Delhi −0.89 0.9634 −1.47 0.9440
CSS Airport Lucknow −2.15 0.5321 −1.03 0.4865
RSC Aliganj Lucknow 1.74 0.6003 1.01 0.3723
Tollygunge Kolkata −0.20 0.6002 −0.16 0.3840

Ambassador Hotel Mumbai 0.30 0.5808 0.39 0.6069
Paradise Hyderabad 0.55 0.3085 1.81 0.4131
Kukatpalli Hyderabad 0.62 0.2536 1.07 0.3644

Yeshwantpur Bengaluru −0.26 0.6533 0.13 0.3419
Pallikarnai Chennai 0.22 0.0900 1.29 0.5863

Washermanpet Chennai 0.95 0.8718 1.77 0.8519

Industrial

Chinhat Lucknow −0.23 0.3410 −1.05 0.6739
Tartala Kolkata 1.49 0.6815 1.57 0.6446

M&M Kandivali Mumbai −0.69 0.6343 −1.75 0.5474
L&T Powai Mumbai 0.20 0.2866 0.17 0.1388
Andheri Mumbai 1.87 0.8398 2.65 0.8503

Gaddapothram Hyderabad 3.24 0.8157 3.14 0.8305
Whitefield Bengaluru −0.76 0.5313 −0.26 0.0985

Residential

R.K. Puram Delhi −0.21 0.2047 0.12 0.1007
Punjabi Bagh Delhi −4.02 0.7007 −4.48 0.7315
Vibhuti Khand Lucknow −0.04 0.0599 0.26 0.2523

Birati N. Kolkata 2.03 0.4982 2.07 0.3984
Bag Bazar Kolkata 0.67 0.2788 2.54 0.5710

Pepsico Chembur Mumbai 1.79 0.7258 2.07 0.6183
Tarnaka Hyderabad 3.59 0.8948 3.56 0.7087
Dolmur Bengaluru −0.52 0.5386 −0.30 0.5666
Velachery Chennai −0.49 0.1793 −0.59 0.2077
Sowcarpet Chennai −0.91 0.6472 −0.71 0.3791

Silence

Mandir Marg Delhi −3.58 0.8996 −2.49 0.5682
IT College Lucknow −0.15 0.2148 2.29 0.7097
R.G. Kar Kolkata −0.14 0.0967 1.20 0.5099
Gachibowli Hyderabad −0.74 0.4691 1.52 0.4300
R.V.C.E. Bengaluru 3.59 0.7913 4.73 0.8150
Nihmans Bengaluru 1.77 0.9084 2.87 0.9140

Anna Nagar Chennai 1.55 0.7624 2.45 0.6541

Table 10. Status of compliance of day and night equivalent levels explicitly for the various sites
with ambient noise standards of India.

Category
Number of compliant stations: day and night time exclusively

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
a∗ b∗ a∗ b∗ a∗ b∗ a∗ b∗ a∗ b∗ a∗ b∗ a∗ b∗ a∗ b∗ a∗ b∗ a∗ b∗

Silence 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Residential 2 0 2 0 2 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0
Commercial 4 3 5 4 5 4 5 1 4 0 4 2 3 0 4 0 3 0 5 0
Industrial 4 4 5 4 5 4 4 4 10 10 10 10 10 8 10 9 9 9 9 9
Total 10 7 12 8 12 8 10 5 14 10 14 12 13 8 13 9 13 8 14 9

a∗ – Day-time, b∗ – Night-time.
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Table 11. Status of compliance of various sites in the NANMN project with ambient noise standards of India (Garg, 2022).

Year Number of sites meeting
the ambient noise criteria Name of the sites

2011 7 sites (3 commercial
and 4 industrial)

CPCB Headquarters, Thane, Marathali, Peeniya, Jeedimetla, Talkatora, and Kasba Gole Park

2012 8 sites (4 commercial
and 4 industrial)

CPCB Headquarters, West Bengal Headquarters, Thane, Marathali, Peeniya, Jeedimetla,
Talkatora, and Kasba Gole Park

2013 8 sites (4 commercial
and 4 industrial)

CPCB Headquarters, West Bengal Headquarters, Thane, Marathali, Peeniya, Jeedimetla,
Talkatora, and Kasba Gole Park

2014 5 sites (1 commercial
and 4 industrial)

CPCB Headquarters, Peeniya, Jeedimetla, Talkatora, and Kasba Gole Park

2015 10 industrial sites Talkatora, Jeedimetla, Peeniya, Chinhat, Tartala, M&M Kandivali, L&T Powai, Andheri,
Whitefield, and Gaddapothram

2016 12 sites (10 industrial
and 2 commercial)

Talkatora, Jeedimetla, Peeniya, Chinhat, Tartala, M&M Kandivali, L&T Powai, Andheri,
Whitefield, Gaddapothram, Kukatpalli, and Abids

2017 8 industrial sites Talkatora, Peeniya, Chinhat, Tartala, M&M Kandivali, L&T Powai, Andheri, and Whitefield
2018 9 industrial sites Peeniya, Gole Park, Tartala, Talkatora, Chinhat, M&M Kandivali, L&T Powai, Andheri, and

Gaddapothram
2019 8 sites (7 industrial

and 1 residential)
Whitefield, Gole Park, Talkatora, Peeniya, Indira Nagar, Chinhat, Kandivali, and L&T Powai

2020 9 industrial sites Peeniya, Whitefield, Jeedimetla, Gole Park, Tartala, Talkatora, Chinhat, Kandivali, and L&T Powai

Table 12. AEF for different zones in 2017–2020.

Category of area/zone
Lday Lnight

Maximum value Minimum value AEF Maximum value Minimum value AEF
2017 annual average values

Industrial area (n = 12) 1.0 0.8 0.9 1.2 0.8 0.9
Commercial area (n = 25) 1.2 0.9 1.1 1.4 1.0 1.2
Residential area (n = 16) 1.4 1.0 1.2 1.5 1.1 1.3
Silence zone (n = 17) 1.6 1.1 1.3 2.1 1.2 1.5

2018 annual average values
Industrial area (n = 12) 1.1 0.8 0.9 1.1 0.8 0.9
Commercial area (n = 25) 1.3 0.9 1.1 1.6 1.0 1.2
Residential area (n = 16) 1.5 1.0 1.2 1.8 1.1 1.4
Silence zone (n = 17) 1.4 1.1 1.3 1.8 1.3 1.5

2019 annual average values
Industrial area (n = 12) 1.1 0.8 0.9 1.1 0.8 0.9
Commercial area (n = 25) 1.3 0.9 1.1 1.5 1.0 1.2
Residential area (n = 16) 1.6 0.9 1.2 2.0 1.0 1.4
Silence zone (n = 17) 1.5 1.1 1.3 1.9 1.4 1.6

2020 annual average values
Industrial area (n = 12) 1.1 0.8 0.9 1.2 0.8 0.9
Commercial area (n = 25) 1.2 0.9 1.1 1.4 1.0 1.2
Residential area (n = 16) 1.5 1.0 1.3 1.7 1.1 1.5
Silence zone (n = 17) 1.6 1.1 1.4 2.0 1.4 1.7

Table 13. Inter-conversion of the various noise descriptors for the 4 zones.
Type of zone Lday Lnight Ldn Leq,24h

Commercial

Lday – +4.0 −3.3 +0.7
Lnight −4.0 – −7.4 −3.4
Ldn +3.3 +7.4 – +4.0

Leq,24h −0.7 +3.4 −4.0 –

Industrial

Lday – +3.2 −3.9 +0.5
Lnight −3.2 – −7.2 −2.7
Ldn +3.9 +7.2 – +4.4

Leq,24h −0.5 +2.7 −4.4 –

Residential

Lday – +3.9 −3.5 +0.5
Lnight −3.9 – −7.8 −3.9
Ldn +3.5 +7.8 – +3.8

Leq,24h −0.5 +3.9 −3.8 –

Silence

Lday – +2.3 −3.5 +0.5
Lnight −3.9 – −7.8 −3.9
Ldn +3.5 +7.8 – +3.8

Leq,24h −0.5 +3.9 −3.8 –
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1. Introduction

Continuous development of virtual and augmented
reality applications rises the need for efficient binau-
ral audio processing algorithms. Especially an impor-
tant role in authentic recreation of an auditory scene is
played by the directivity of human ears, which is com-
monly called head-related transfer functions (HRTFs).
HRTFs are different for each individual as they depend
on the shape of torso, head, and pinna. Even though
there are some similarities among sets of HRTFs ob-
tained for different people, application of individually
measured or matched HRTFs has been proven to im-
prove the localization abilities (Wenzel et al., 1993;
Begault et al., 2001). The importance of HRTFs
is especially prominent in recognizing the position of
a sound source placed in sagittal planes, where simple
binaural cues such as interaural level difference (ILD)
and interaural time difference (ITD) are mostly inva-
riant (Macpherson, Middlebrooks, 2002; Agter-
berg et al., 2012).

HRTFs can be physically measured in two ways.
Most measurements are performed by putting a pair of
microphones inside the subject’s ears and recording the
response to the sound coming from different directions
(e.g., (Andreopoulou, 2015a; Zhang, 2012)). Alter-
natively, one can make use of the Helmholtz reciprocity
principle and place microspeakers inside the ears while
the microphones are set around the subject (Zotkin,
2006). Either way, the results of the measurements are
sets of HRTFs for a finite number of directions. They
are usually stored in the form of discrete head-related
impulse responses (HRIRs), for example using the Spa-
tially Oriented Format for Acoustics (SOFA) (AES,
2015; Majdak et al., 2013).

Since HRTFs are relatively large data sets, some
attempts were made to develop an efficient model
that would reduce the amount of data without a sig-
nificant loss of accuracy. Initially, the research con-
cerned approximating HRIRs, e.g., by expressing them
as filters of either finite or infinite impulse response
(e.g., (Kulkarni, Colburn, 1995; 2004)), but soon
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the focus was moved to the spatial properties. Evans
et al. (1998) proposed expressing HRTFs by means of
spherical harmonics (SHs). Beside reducing the data
size, this representation introduced an even more sig-
nificant feature – continuity over space. Over the
years, the SH-based method has been widely investi-
gated, regarding, i.e., efficiency of different sampling
schemes (Zhang et al., 2012), preprocessing techni-
ques (Brinkmann, Weinzierl, 2018) or mixed-order
approximations (Ben-Hur et al., 2019). Some alter-
native continuous representations were suggested, e.g.,
based on spherical wavelets (Hu et al., 2019; Liu et al.,
2019) or Slepian functions (Bates et al., 2015); how-
ever, SHs still prevail as the most popular basis func-
tions to approximate not only HRTFs but also other
directivity functions such as the sound source directiv-
ity (Szwajcowski et al., 2021; Shabtai et al., 2017)
or the microphone directivity (Ziegler et al., 2017).

Beside focusing on either only spatial or only
time/frequency variations, several attempts were made
to develop a model including both these dependen-
cies. Kistler and Wightman (1992) employed the
principal component analysis to an HRTF database.
While resulting model indeed provided a good accu-
racy, it was discrete and required a priori knowledge of
the database to determine optimal basis vectors. Chen
et al. (1995) developed a representation based on thin-
plate splines that was continuous in space but still dis-
crete in frequency. In 2009, Zhang et al. described
a model based on Fourier series and Bessel functions
which was continuous over both frequency and horizon-
tal angles (Zhang et al., 2009) and which was later
extended to cover the entire sphere and include dis-
tance dependence as well (Zhang et al., 2010). An-
other proposition comes from authors who based their
model on the fusion of infinite impulse response filters
and Legendre polynomials (Shekarchi et al., 2013).
However, the authors focused purely on the compres-
sion of measured data and thus their model cannot be
used to interpolate missing values. Zhang et al. (2015)
created a functional model utilizing SHs for spatial de-
pendency and complex exponentials for the frequency
representation. Both mentioned fully continuous mod-
els (Zhang et al., 2010; 2015) determined coefficients
for basis functions partially by numerical integrating,
which is computationally efficient, but provides worse
accuracy than that obtained by fitting in the least-
squares sense. Furthermore, these researches focused
on retrieving high accuracy complex representations,
even though it is known that humans are insensitive to
fine spectral or spatial details of HRTFs (Kulkarni,
Colburn, 1998; Romigh et al., 2015; Breebaart,
Kohlrausch, 2001; Xie, Zhang, 2010).

In this paper, a new approach to the HRTF dimen-
sionality is presented: frequency is imagined as another
spatial dimension. This way, the character of these
functions becomes purely spatial with two truly spa-

tial variables (horizontal and vertical angles) and one
extra variable that represents frequency, but is also
treated as a spatial dependence1. This approach em-
phasizes coupling between frequency and space in di-
rectivity functions and is inspired by the mathematical
structure known as Minkowski space, where time and
three-dimensional (3D) space are combined together to
conveniently express some of the physical phenomena,
most notably regarding the theory of special relativ-
ity. Assuming that SHs are a good choice for express-
ing directivity functions in the 3D space, including the
fourth dimension would require an extention of the ba-
sis to a four-dimensional (4D) space. A similar prob-
lem was tackled in computer graphics, where standard
3D shape descriptors were insufficient for certain cases.
Bonvallet et al. (2007) extended the popular ap-
proach to another dimension by replacing SHs with hy-
perspherical harmonics (HSHs). This method was later
applied in medical imaging by Pasha Hosseinbor
et al. (20015), providing further a proof that HSHs,
previously reserved for theoretical chemistry and nu-
clear physics, can be successfully employed in engineer-
ing. However, to the best of our knowledge, HSHs have
not yet been utilized in acoustics or any related field.
Thus, the application of this basis to represent acous-
tical data is the main novel element of this paper.

The primary advantage of the proposed HSH repre-
sentation over the state-of-the-art SH one is continuity
over both space and frequency. Such a representation
allows to extract the HRTF magnitude not only at
a given direction but also at a given frequency with-
out any additional operations (e.g., interpolation or re-
sampling), thus being computationally attractive. Fur-
thermore, varying the approximation parameters enab-
les easy control of the balance between accuracy and
amount of data; acknowledging psychoacoustical as-
pects in the process of deriving the functional model
can lead to a significant reduction of data size by
ignoring high-order HSHs responsible for impercepti-
ble spectral details. Last but not least, a more holis-
tic HRTF representation can be of great value in re-
search requiring a thorough directivity parametriza-
tion method, e.g., for machine learning applications.

Section 2 provides the necessary theoretical back-
ground on 4D coordinate systems and HSHs. Section 3
describes conversion from raw measurement data to
hyperspherical data and then to the HSH domain. Sec-
tion 4 presents exemplary results of the conversion per-
formed on a typical set of HRTFs and suggests further
improvements of the process. Section 5 consists of gen-
eral comments on the HSH representation, its accuracy
and potential applications. Finally, Sec. 6 summarizes
all the content of this paper.

1This paper concerns far-field HRTFs, where the radius de-
pendence is neglected. This is why three- and four-dimensional
spaces are described by only two and three variables, respec-
tively.
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2. Theoretical background

HRTFs are functions of direction, distance, and fre-
quency. Under the assumption that the distance is grea-
ter than 1 m, the radial dependence can be dropped.
Such simplified functions are called far-field HRTFs,
but since they are measured and applied more com-
monly than full, distance-dependent HRTFs, they are
often called just HRTFs. This is also the case in this
paper; wherever HRTFs are mentioned, they mean far-
field HRTFs, independent of distance.

2.1. Hyperspherical coordinate system

Assuming that the spatial dependence of HRTFs
is to be described in the spherical coordinate system,
an extension of this system is needed to capture vari-
ability over another dimension. This can be achieved
by adding another linear or angular dimension, result-
ing in either spherindrical or 4D hyperspherical coordi-
nate system (HCS), respectively. The HCS has already
proven to be successful in similar research problems
in other fields (Bonvallet et al., 2007; Pasha Hos-
seinbor et al., 2015) and its geometrical properties
enhance natural physical properties of acoustic direc-
tivity characteristics (see Subsec. 2.2.1 and 3.1.1 for
explanation). For these reasons, HCS was chosen over
the spherindrical coordinate system for this research.

HCS consists of hyperspherical radius ρ and three
angles: ϕ ∈ [0,2π), θ ∈ [0, π), and ψ ∈ [0, π). The angles
ϕ and θ correspond to azimuth and inclination defined
in the spherical coordinate system, while ψ is an extra
angle representing another dimension. Since there are
no unified names for angles in 4D space, within this
paper they are referred to just by their symbols or
colloquially as the spatial angles (meaning angles ϕ
and θ) and the frequency angle (meaning angle ψ) (the
details of utilizing an angle to describe the frequency
are provided in Subsec. 3.1.1). The relation between
HCS and 4D Cartesian system (x, y, z, w) is following:

x = ρ sinψ sin θ sinϕ,

y = ρ sinψ sin θ cosϕ,

z = ρ sinψ cos θ,

w = ρ cosψ.

(1)

2.2. Hyperspherical harmonics definition

HSHs can be defined for any multidimensional
space, but within this paper only 4D HSHs are con-
sidered and simply referred to the HSHs. They can be
defined as following (Domokos, 1967):

Zmnl(ϕ, θ,ψ) ≡ N(n, l) sinl ψ Cl+1
n−l(cosψ)Y ml (ϕ, θ), (2)

where N(n, l) is the normalization factor, Cαν (x) are
the Gegenbauer polynomials, and Y ml (ϕ, θ) are the

SHs, while n, l, and m are the integer parameters lim-
ited as following:

n ≥ 0,

0 ≤ l ≤ n,

−l ≤m ≤ l.

(3)

N(n, l) is the normalization factor, making the
HSH basis not only orthogonal but orthonormal. It is
given by the formula:

N(n, l) ≡ 2l+
1
2 (l + 1)!

¿
Á
ÁÀ2(n + 1)(n − l + 1)!

π(n + l + 2)!
. (4)

It is worth noting, that the SHs in Eq. (2) are also
normalized, which is why N(n, l) does not depend on
the parameterm – this dependency is entirely included
in the SH normalization factor.

Cαν (x) are the Gegenbauer polynomials, also known
as ultraspherical polynomials. They can be defined in
multiple equivalent ways; however, for the computa-
tions, the most useful one is that given by the following
recurrence relation (Ultraspherical polynomials, n.d.):

Cα0 (x) = 1,

Cα1 (x) = 2αx,

Cαν (x) =
1

ν
(2x(ν + α − 1)Cαν−1(x)

− (ν + 2α − 2)Cαν−2(x)).

(5)

In the HSH definition (Eq. (2)), the Gegenbauer poly-
nomials, together with the factor of sinl ψ, are responsi-
ble for variation among ψ angle (the frequency angle).

Y ml (ϕ, θ) are SHs. SHs can be defined either as
complex- or real-valued functions. This paper focuses
on their application to express magnitude spectra of
HRTFs (see Subsec. 3.1 for explanation) and thus the
real form is used, making the entire HSH basis real
as well. Real SHs are defined as following2 (Varsha-
lovich et al., 1998):

Y ml (φ, θ) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

NY (l,m)Pml (cos θ) cos (mϕ),

if m ≥ 0,

NY (l,m)P
∣m∣
l (cos θ) sin (∣m∣ϕ),

if m < 0,

(6)

where Pml are the associated Legendre functions and
NY (l,m) is the normalization factor for SHs defined
as:

NY (l,m) ≡

¿
Á
ÁÀ(2 − δm0)

2l + 1

4π

(l − ∣m∣)!

(l + ∣m∣)!
, (7)

where δ is the Kronecker delta.
2Sometimes in real SH definitions there is also (−1)m factor

included, but it is irrelevant for approximation purposes as it
merely changes the sign of some coefficients.
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2.2.1. Hyperspherical poles

Hyperspheres, by being extensions of 2-spheres
(regular 3D spheres), display some analogous features.
On a 2-sphere, there are two poles lying at inclina-
tions θ ∈ {0, π}, at which all meridians converge to the
same point. In other words, at these poles, the actual
direction is the same for every azimuthal angle ϕ. In
HSC, such poles exist for every ψ, but there are also
two major poles (hyperpoles) at ψ ∈ {0, π}, where the
direction is dependent on neither ϕ nor θ. Now, apply-
ing the interpretation that ψ is the frequency angle,
this means that values for the limit frequencies have to
be constant for every physical direction. This is inline
with how the directivity (including HRTFs) behaves
at low frequency – the lower the frequency, the less
variance along the directions can be observed, as the
size and shape of objects become less and less relevant
when compared to the length of acoustic waves corre-
sponding to the analyzed frequency. This coincidence
is used in frequency-to-angle mapping, so that the hy-
perpole convergence can be perceived as an advantage
rather than a limitation of the proposed model (see
Subsec. 3.1.1).

The presence of hyperpoles can also be seen as
a part of general property of HSHs, which are meant
to represent the hypersphere boundary evenly. Since
the angular distance between two points on the hyper-
sphere gets lower as the hyperpoles are approached (in
the same vein as meridians get closer near the poles on
a sphere), the ability to capture fine HRTF details de-
creases. For SHs, the same effect is often achieved by
decreasing the maximum order for lower frequencies
(e.g., (Zhang et al., 2015; Li et al., 2021)). This is
not feasible when continuous representations are used;
however, HSHs provide the same effect in a different
way, which further shows that they fit well for handling
directivity data.

3. Hyperspherical harmonic approximation

In order to express HRTFs in the HSH domain, two
steps have to be taken: first, the measurement data
have to be converted to HCS and then the HSH coeffi-
cients need to be determined so that the weighted sum
of HSHs approximates the data in HCS as accurately
as possible. Both these steps are described in details
in the following subsections.

3.1. HRIRs to data in HCS

As stated in Introduction, HRTFs are commonly
stored in the form of HRIRs. It might seem natural
to try to find a way to efficiently represent the data
in the time domain rather than in the frequency do-
main. However, there are several arguments in favour
of the latter. Firstly, in previous research, both ap-

proaches were studied and models based on the fre-
quency representation resulted in lower approximation
errors using objective measures (Evans et al., 1998;
Hartung et al., 1999). Secondly, the human auditory
system, analyzes sounds mostly in the frequency do-
main and thus accurate reproduction of the impulse
response shape is irrelevant to our ears, as opposed
to the shape of the frequency spectrum. Furthermore,
HRIRs usually have much sharper shapes than the cor-
responding HRTFs, which makes representing them as
a sum of basis functions much harder, especially when
the basis is truncated. Last but not least, HRIRs in-
clude information on phase, which is of little impor-
tance; it is widely acknowledged that phase spectra
can be ignored as long as the interaural time difference
is preserved (Kistler, Wightman, 1992; Romigh
et al., 2015; Kulkarni et al., 1999)3, although some
contrary results have also been presented (Rasumow
et al., 2014). Basing a model on the frequency-domain
representation thus allows the information on phase
to be dropped, reducing the efficient amount of data
twice without a significant loss as far as the applica-
tory aspect is concerned. However, HSHs can be de-
fined as complex functions as well, so it is possible to
include the phase information as well, if desired.

The magnitude spectra typically are represented ei-
ther in linear or in logarithmic scale (in dBs). Referring
again to the psychoacoustic aspects of sound percep-
tion, the logarithmic scale is relative and thus it is
more reflective of how the sound pressure is perceived
by the human auditory system. Since the approxima-
tion method of the model proposed within this paper
is based on the least-squares fitting (see Subsec. 3.2.2
for more details), it seems reasonable to use a log-
arithmic scale, so that the solver minimizes relative
errors (Kulkarni, Colburn, 2004; Romigh et al.,
2015; Hartung et al., 1999; Blommer, Wakefield,
1997).

The reference value for the logarithmic scale does
not matter as long as it is uniform within a given HRTF
set; this value is linked only with the coefficient for Z0

00

(the first HSH invariant along all the angles), but oth-
erwise has no impact whatsoever. Therefore, to make
it simple, the reference value was chosen to be 1.

3.1.1. Frequency mapping

As signaled earlier, in order to express HRTFs in
HCS, frequency has to be mapped to the ψ angle. The
simplest way of doing it would be to set the frequency
f = 0 at ψ = 0 and the frequency f = fs/2 to ψ = π,
where fs denotes the sampling frequency of HRIRs
in the HRTF set. The remaining frequencies would be
then mapped to ψ linearly, following the formula:

3Phase spectra are still important for low frequencies, but
they can be replaced by a linear phase derived from interau-
ral time differences, without any noticeable damage to the locali-
zation abilities.
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ψk =
2πfk
fs

, (8)

where fk is the center frequency of the k-th frequency
bin and ψk is the corresponding value of the frequen-
cy angle. However, such mapping implies convergence
to uniform values at hyperpoles, i.e., at f ∈ {0, fs/2}.
When approaching 0 Hz, HRTFs tend to be omnidi-
rectional anyway, but this is not the case for the high-
est frequencies, especially in the logarithmic scale (see
Fig. 1). While this might seem to be of little impor-
tance, as the convergence to the hyperspherical pole at
the Nyquist frequency would likely affect mostly the
highest frequencies which are inaudible anyway, it is
possible to avoid such distortions; f = fs/2 can be set
to ψ = π/2 instead of ψ = π, so that all the HRTFs can
be mapped to effectively only half a hypersphere. This
requires twice as large resolution of HSH along ψ since
the spectra are squeezed to fit on only half of the full
range of the frequency angle; however, such mapping
allows to ignore all HSHs that are not symmetric about
the hyperplane at ψ = π/2. The application of only ψ-
symmetric HSHs (the HSHs that exhibit the aforemen-
tioned symmetry about ψ = π/2) removes the conver-
gence at f = fs/2 and makes the spectra for the entire
range of ψ ∈ [0, π) symmetric about the Nyquist fre-
quency in the same manner as typical magnitude spec-
tra obtained by performing the discrete Fourier trans-
form on a real signal. With f = fs/2 set to ψ = π/2,
Eq. (8) takes the form of:

ψk =
πfk
fs

, (9)
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Fig. 1. Statistical distribution of an exemplary set of HRTFs
(described in details in Sec. 4) for all directions. Solid black
line is the mean spectrum, while the dark and light grey
areas cover regions of 1 and 2 standard deviations, respec-
tively. First frequency bin was shifted from 0 to 50 Hz, to
be able to fit on the logarithmic axis. At the last frequency
bin, standard deviation is especially large due to the occur-
rence of zero points that were converted to floating-point
accuracy in MATLAB to avoid −∞ values. The plot was

shifted to fluctuate around 0 dB.

Alternatively, different frequency mappings could
be used. Both limit values and the character of scale
can be changed, e.g., to a logarithmic frequency scale,
which is quite popular in audio engineering, or the mel

scale, which is based on a psychoacoustic model of fre-
quency perception. This paper concerns only the linear
frequency mapping and leaves the employment of other
scales for potential future research.

3.2. Data in HCS to HSH coefficients

Once the 4D data are prepared in the form of
a set of triplets of angles (ϕ, θ,ψ) and the corre-
sponding magnitudes, these data need to be approx-
imated by a finite number of HSHs. The approxima-
tion comes down to determining the coefficients αmn,l
for the weighted sum so that approximated function
Ĥ(ϕ, θ,ψ) of the form4:

Ĥ(ϕ, θ,ψ) =
nmax

∑
n=0

n

∑
l=0

l

∑
m=−l

αmnlZ
m
nl(ϕ, θ,ψ) (10)

is as close to the original function H(ϕ, θ,ψ) as possi-
ble. In the analytical approach, when an infinite num-
ber of basis functions can be used (nmax =∞), consec-
utive coefficients can be determined by calculating the
dot product of the approximated function and complex
conjugate of the given HSH:

αmn,l = ∫
S3

H(ϕ, θ,ψ)Zmnl(ϕ, θ,ψ)dχ, (11)

where ∫
S3

dχ means integrating over the surface of the

unit 3-sphere:

∫

S3
dχ =

2π

∫
0

π

∫
0

π

∫
0

sin2 ψ dψ sin θ dθ dϕ. (12)

However, when the number of basis functions is trun-
cated, the accuracy of the approximation decreases.
For this reason, least-squares fitting of the coefficient
values is preferred over the numerical integration of
Eq. (11) to find the optimal set of coefficients.

3.2.1. Determination of the number of HSHs used

The choice of the number of basis functions is one
of the most important decisions affecting the quality of
the approximation. In general, increasing this number
improves the overall accuracy of the approximation.
However, using too many basis functions requires more
computational resources and can lead to overfitting.
It is thus important to determine what is the optimal
number of basis functions for a given problem.

HSHs are described by three parameters: n, l,
and m. Analyzing the definition given in Eq. (2), one
can notice that these parameters are responsible for
variations along the angles ψ, θ, and ϕ, respectively.
Limiting just n results in the same spatial frequency

4Equation (10) assumes approximation using all the HSHs
up to n = nmax. However, all of the parameters n, l and m can
have independent limits (see Subsec. 3.2.1).
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along all the angles. However, some extra limitations
for l and m can be imposed to obtain different reso-
lution along angles θ and ϕ. Equation (10) then takes
the form of:

Ĥ(ϕ, θ,ψ) =
nmax

∑
n=0

min (n,lmax)
∑
l=0

min (l,mmax)
∑

m=−min (l,mmax)

⋅αmnlZ
m
nl(ϕ, θ,ψ), (13)

where the limits have to satisfy the following relation5:

nmax ≥ lmax ≥mmax. (14)

These maximum values of nmax, lmax, and mmax

should be determined with respect to the sampling
theorem and depend on both spatial and frequency
sampling. However, HRTFs do not need to be recon-
structed with the highest available accuracy, since fine
details are psychoacoustically irrelevant. Thus, it is im-
portant to find the minimum values of the limits for
which the approximation error is negligible.

The spatial dependence is described by SHs and
thus the limits for spatial frequency (lmax and mmax)
can be determined basing on SH-related research.
Romigh et al. (2015) noticed that some of the local-
ization abilities occur for HRTFs approximated by SHs
of the maximum order as low as 2. Approximations
using SHs of the maximum order 6 are already statis-
tically indistinguishable from the unprocessed HRTFs
and the localization does not improve with further in-
creasing the maximum order. It is important to notice
that Romigh et al. (2015) used the same preprocessing
as proposed within this paper, i.e., the least-squares fit-
ting based on magnitudes in a logarithmic scale. These
results suggest that setting lmax and mmax to 6 should
be sufficient to prevail the localization properties of
a set of HRTFs.

Similar research was conducted regarding sensi-
tivity to spectral details of HRTFs. Kulkarni and
Colburn (1998) checked how much smoothing in fre-
quency can be applied to HRTFs without a significant
impact on the localization abilities. For this reason,
they prepared stimuli by truncating the Fourier se-
ries representing the logarithmic spectra of empirical
HRTFs. The listeners that took part in the experi-
ment were unable to discriminate between the real and
smoothed virtual sound sources in most of the setups
for HRTFs reconstructed from only 16 coefficients. For
32 coefficients and above, all of the listeners performed
at chance for all the tested directions. Even though
the frequency angle in HSHs is not represented by the
Fourier series, the same spatial frequency along that
angle can be chosen by setting appropriate nmax. Since

5It is possible to obtain a higher spatial frequency, e.g., along
θ than along ψ by using only a selection of HSHs for higher
values of the corresponding parameters. However, this case is not
applicable within this paper and thus it is not further discussed.

for chosen frequency mapping the spectra are supposed
to fit on only half the hypersphere, nmax must be dou-
bled to exhibit a desired resolution over the effectively
used range of ψ. Thus, to match the spatial frequency
of 32 spectrum coefficients from the described expe-
riment, nmax should be set to 64.

Furthermore, as stated in Subsec. 3.1.1, effectively
utilizing only half of the hypersphere allows to ig-
nore non-ψ-symmetric HSHs. Following the HSH and
Gegenbauer polynomials definitions given in Eqs. (2)
and (5), it can be noted that for Zmnl to be ψ-symmetric,
the difference between n and l has to be even. All the
parameter configurations where this difference is odd
should be thus disregarded when summing over l in
Eq. (13).

3.2.2. Computations

Assuming sampling at K 4D directions Ωk ≡ (ϕk,
θk, ψk), the HSH coefficients can be determined by
solving the following matrix equation:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Z0
00(Ω1) ... Zmmax

nmaxlmax
(Ω1)

⋮ ⋱ ⋮

Z0
00(ΩK) ... Zmmax

nmaxlmax
(ΩK)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α0
00

⋮

αmmax

nmaxlmax

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

H(Ω1)

⋮

H(ΩK)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(15)
where H(Ω) are given in dBs to minimize errors in
logarithmic scale.

Since the system is overdetermined, it is usually
impossible to find coefficients which would perfectly
satisfy this equation. However, it can be solved in the
least-squares sense, minimizing the error of approxima-
tion. This approach is commonly embraced in research
concerning the SH approximation (Zhang et al., 2012;
Romigh et al., 2015; Pasqual e al., 2014; Alon et al.,
2018). A few existing 4D directivity models featured
separate computation of spatial and frequency depen-
dencies, using least-squares fitting for space and then
direct integration for frequency (Zhang et al., 2010;
2015). Including both frequency and spatial depen-
dent functions in a single least-squares minimization
to the best of my knowledge has not been yet applied
for these kind of data, making it another novel element
of the paper. While such an approach demands more
computational resources, it provides better fitting and
acknowledges coupling of space and frequency in di-
rectivity functions. It is also worth noting that the
increased computational complexity mainly concerns
determining the HSH coefficients and is caused by re-
placing multiple smaller matrix equations by one large.
In real-time, with proper optimization, rendering bin-
aural sound should be comparably fast for both SH
and HSH HRTF representations.

HRTF sets usually lack data for low elevation an-
gles (θ → π) because of the measurement setup restric-
tions. This can lead to some irrational values in the
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unsampled region, since the least-squares solver mini-
mizes an error only at the points where data is avail-
able. One way of dealing with this effect is to apply
a proper regularization (Zhang et al., 2015; Zotkin
et al., 2009). Ahrens et al. (2012) proposed another,
even more efficient solution based on filling the missing
region by means of the low-order SH approximation.
However, since in the HSH definition the direction de-
pendence is described by SHs, it is logical to assume
that these issues can be handled for the HSH approx-
imation in the same manner. For the comparison be-
tween HSHs and SHs, applying any of these methods
should not impact the analysis results (both approxi-
mations are expected to be impacted in the same way).
Thus, simple, non-regularized least-squares fitting was
used for both bases.

The computations and analysis were performed in
MATLAB using Objective-Oriented Directivity (Szwaj-
cowski, 2021). Both the classes used in this research
as well as precomputed objects containing raw and ap-
proximated data can be found in its database.

4. Exemplary approximations

To showcase efficiency of the HSH approximation,
the method was tested on exemplary data. The cho-
sen set of HRTFs comes from the original measure-
ments of Knowles Electronics Manikin for Acoustic Re-
search (KEMAR) with large pinnae performed at Mas-
sachusetts Institute of Technology (Gardner, Mar-
tin, 1995) and is a typical HRTF set for evaluat-
ing different models (Zhang et al., 2009; 2010; 2015;
Shekarchi et al., 2013). The set contains 710 HRIRs
for each ear, measured at different directions and
each consisting of 512 samples recorded with the sam-
pling frequency of 44.1 kHz. The HRIRs were con-
verted to HCS as described in Subsec. 3.1. Only data
for the left ear was used.

Although, according to Subsec. 3.2.1, the param-
eter limits of {lmax,mmax} = 6 and nmax = 64 should
be sufficient, it is important to remember that the SH-
focused research used exact frequency spectra, and the
spectral-focused one used exact spatial representation.
Smoothing in both space and frequency can thus have
more impact on the localization abilities. For this rea-
son, the limits used in the exemplary approximation
were set to slightly higher values of {lmax,mmax} = 8
and nmax = 80.

For the comparison, the SH approximation was also
performed on the same exemplary data. The proce-
dure was exactly the same as for the HSH approxima-
tion, but the computations were carried out separately
for each frequency bin. Then, approximated values for
given directions were put together to retrieve discrete
spectra. The maximum order and degree of SHs used
for approximation was set to 8, to match the limiting
parameters of SHs embedded in the HSHs. Exemplary

raw spectra and their SH and HSH approximations are
shown in Fig. 2.
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Fig. 2. Raw and approximated spectra of KEMAR HRTFs
for two exemplary directions: a) azimuth: 0○, elevation: 0○,
far-field; b) azimuth: 30○, elevation: 30○, far-field. The spec-
tra are offset by 20 dB for clarity. See text for more details.

The HSH approximation retrieves the general
shape very well, but the resulting spectra are smoother
than both the ones computed from the raw data and
the ones obtained by means of the SH approxima-
tion. The most problematic details to represent in the
HSH domain are deep notches, e.g., around 10 kHz in
Fig. 2b. However, this is not exclusive to HSH ap-
proximation but comes from the spatial dependence
represented by SHs, as the SH approximation fea-
tures the same issues. The notches are caused by rapid
changes in phase. Zagala and Zotter (2019) devel-
oped a method to deal with such a problem for the
low-order SHs. Their algorithm could be extended and
applied to HSHs if necessary.

By the properties of ψ-symmetric HSHs, their first
derivative with respect to ψ has to be 0 at π/2, which
causes minor discrepancies at the highest frequencies.
However, since they lie beyond the human hearing
range, these discrepancies are irrelevant from the per-
ceptual point of view. Another problematic frequency
band is the very lowest one. In this case, the SH ap-
proximation is much more precise than the HSH one;
for low frequencies, the directivity takes very simple
shapes (mostly omnidirectional), which are easy to ex-
press in the SH domain. One of the reasons for the
inaccuracy of the HSH approximation in this band are
rapid changes of magnitude levels within first few fre-
quency bins, which come from the audio chain used in
the HRTF measurement rather than the physical prop-
erties of HRTF themselves. This issue is investigated
in depth in the following subsection.
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4.1. Frequency weighting

Since some frequency bands lie beyond human
hearing range, their impact on the approximation re-
sults should not be as high as the impact of the audi-
ble part of the spectra. This variation in relevance can
be achieved by applying weighting to the least-squares
minimization. Equation (15) then takes the form of:

(ZTWZ)α = ZTWH, (16)

where Z, α, andH denote the respective matrices from
Eq. (15), T denotes matrix transposition, and W is
a diagonal matrix with weights for consecutive angle
triplets:

W =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w(Ω1) 0 ... 0

0 w(Ω2) ⋮

⋮ ⋱ 0

0 ... 0 w(ΩK)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (17)

One of the regions where fitting could be improved
by applying proper weights is the frequency band rep-
resented by the first few frequency bins. For all the di-
rections, a drop-off can be noticed as the frequency ap-
proaches 0, which could be caused by a low-frequency
limit of sound sources used in the HRTF measure-
ment or a high-pass filter embedded in the audio chain.
For the lowest frequencies, where the corresponding
sound waves are much longer than the size of a human
head, the HRTFs can be considered omnidirectional
(see Fig. 1). This omnidirectionality mirrors the con-
vergence of HCS for the frequency angle ψ → 0. Since
the problematic first bins do not hold any important
information, they can be completely removed at the
stage of computing the HSH approximation (i.e., have
weight equal to 0). However, one needs to be wary that,
under some circumstances, removing data from certain
regions can lead to overfitting.

The other perceptually irrelevant part of the
spectra are the highest frequencies. In this case, there
are more than one frequency bins lying beyond the
human hearing range. Their weights were arbitrarily
chosen to start decreasing above 20 kHz and reach 0
at the Nyquist frequency following the shape of cosine
function.

The HSH approximation was performed once again,
applying the weights as described above. For most
parts of the frequency spectrum, no noticeable changes
occurred in regard to the previously performed the
HSH computation on the complete data. Since there
is on average more weight on the audible frequency
band, the resulting approximation should be closer to
the original data, but the improvements were minus-
cule in most of the frequency range. However, the fit-
ting for the lowest frequencies has been notably im-
proved, except for the region corresponding to the first

bins, which were effectively removed from the least-
squares minimization (Fig. 3). Even though the re-
sulting approximation is less accurate with regard to
the measured data (large errors at first two bins),
it is likely more accurate with regard to the factual
physical HRTFs and improves fitting at several follow-
ing bins.
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Fig. 3. Raw and approximated spectra of KEMAR HRTF
for the direction straight ahead zoomed on the lowest fre-
quencies. HSHw and HSHw2 denote the HSH approxima-
tion with weights applied ignoring first or first two fre-

quency bins, respectively (see text for more details).

From the perceptual point of view, the fitting in re-
gions outside of the hearing range is irrelevant, and so
the reduced impact of extreme frequency bins should
improve the overall accuracy, even if only slightly.
Thus, the following sections consider only this new ap-
proximation.

4.2. Approximation error analysis

Since 4D data is difficult to display efficiently as
a 2D image, it is required to introduce numerical mea-
sures to compare accuracy of the SH and HSH ap-
proximations over the whole sphere. The key difference
between these two approaches is the way of handling
the frequency dependence and thus, for the compar-
ison, the approximation error should be presented in
the frequency domain. In similar research, various mea-
sures of approximation error were used. Currently, one
of the most popular approaches is to evaluate it as
the root-mean-square (RMS) error of the differences
between logarithmic spectra (e.g., (Liu et al., 2019;
Romigh et al., 2015; Nishino et al., 1999; Li et al.,
2021)). A common alternative is to evaluate the er-
ror based on the linear magnitude (e.g., (Hu et al.,
2019; Zhang et al., 2015)). Since this article has been
written, there is no clear indication which of these ap-
proaches surpasses others, including the authors’ spec-
ulations. However, the measure based on dB is more
intuitive to interpret and the computations were per-
formed on the logarithmic data, so it seems appropria-
te to use the logarithmic error as well. RMS errors for
the HSH approximation6 were computed by averaging

6From this section on, the HSH approximation is the one
with first two frequency bins removed and weights applied for
the high frequencies (earlier denoted as HSHw2).
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over all 710 directions available in the measurement
data using the following formula:

RMSĤ(f) =

¿
Á
Á
Á
Á
ÁÀ

a∗
K

∑
k=1

δψkψf

, (18)

where

a∗ =
K

∑
k=1

(Ĥ(ϕk, θk, ψk) −H(ϕk, θk, ψk))
2
δψkψf

and ψf is the frequency angle corresponding to the fre-
quency f , derived from Eq. (9). The RMS error for the
SH approximation was computed in an analogous way.
In addition, for both methods and for each frequency
bin, the 95th percentile (P95) was determined for ab-
solute values of Ĥ(Ω) −H(Ω). Errors in the form of
RMS an P95 values for both the SH and HSH approxi-
mations are plotted in Fig. 4, while Fig. 5 shows dif-
ference between the RMS plots from Fig. 4 as well as
5th and 95th percentile determined on the sets of dif-
ferences between absolute errors in dB for these two
methods:

PxHSH-SH(f) = Px({∣Ĥf
HSH −Hf

∣ − ∣Ĥf
SH −Hf

∣}), (19)

where Hf , Ĥf
SH, and Ĥf

HSH are sub-vectors of the orig-
inal data, SH and HSH approximations, respectively,
which contain only values for a given frequency f .
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Fig. 4. RMS and P95 of the HSH and SH approximation
errors in reference to the discrete data.
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Fig. 5. Difference in RMS errors and 5th, and 95th per-
centile of differences between the HSH and SH approxima-

tion errors.

For the vast majority of the hearing range, the dif-
ference in accuracy between the HSH and SH approx-
imations is small, reaching about 1 dB around 500 Hz

and becoming less and less significant as the frequency
rises. The largest discrepancies occur for the lower fre-
quency regions (below 1 kHz), where the SH approxi-
mation provides near perfect reconstruction of the orig-
inal data, but even there the absolute error is still
overall low (around 0.5–1 dB). The values of P5 indi-
cate that in some cases the HSH approximation yields
lower errors than the SH one (especially for higher fre-
quencies). The RMS error, however, is lower for the SH
approximation for each frequency bin, even if only to
a small extent.

4.2.1. Single-term error

To improve the comparability of the HSH approx-
imation accuracy, the error needs to be provided as
a single value averaged over all directions and frequen-
cies. For logarithmic scale, an error measure called
spectral distortion (SD) is usually employed. Its def-
inition resembles the RMS definition in Eq. (18) but
without the Kronecker deltas, so that the averaging is
performed over both space and frequency:

SDĤ =

¿
Á
ÁÀ 1

K

K

∑
k=1

(Ĥ(Ωk) −H(Ωk))
2
. (20)

SD values were computed for both SH and HSH
approximations in the range 100 Hz to 20 kHz (the
lower limit was imposed to exclude the first two fre-
quency bins). The results were SDSH = 2.32 dB and
SDHSH = 2.44 dB. Since SD requires a ground truth
data, it cannot accurately capture the magnitude of
differences between two approximations and so the dif-
ference between SD values is more representative than
the SD of the differences between approximated data
(just like the RMS difference is more accurate than the
RMS differences in Fig. 5).

5. Discussion

In general, the HSH and SH approximations pro-
vide very similar accuracy within the hearing range.
However, it is important to note that the minuscule
difference in the approximations’ errors for middle and
audible high frequencies does not mean that there are
no errors within these bands. In fact, the errors in both
cases are lower for the lowest frequencies, but the SH
approximation is very accurate in this region and thus
the difference is bigger than for the middle and high
frequencies. Such characteristics suggest that the lower
accuracy of HSH approximation for higher frequencies
comes from inability of low-order SHs to properly ex-
press the spatial variability of HRTFs in these bands.
However, the maximum order of SHs was chosen based
on perceptual studies and so it indicates that these
magnitudes of errors are imperceptible. It is notable,
that the approximations are not identical even when
the RMS error is close to 0; the differences are small
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(mostly below 1 dB) and are distributed relatively
evenly between being in favor of either SH or HSH
approximation. Such small differences in middle and
high frequencies have been proven to be perceptually
insignificant by many researchers (e.g., (Breebaart,
Kohlrausch, 2001; Xie, Zhang, 2010; Huopaniemi
et al., 1999)).

At low frequencies, the accuracy of the HSH ap-
proximation improved significantly after removing the
first two frequency bins from the least-squares mini-
mization. However, the SH approximation still outper-
forms the HSH one, providing near perfect reconstruc-
tion of the original spectrum at low frequencies. The
largest differences occur around 500 Hz, which might
be specific for the dataset used for evaluation. The way
accuracy depends on frequency can be impacted by fre-
quency mapping. Linear mapping treats all frequencies
as equally important in the least-squares fitting, while
it may be beneficial to employ a frequency scale more
aligned with how the human hearing system works,
e.g., the logarithmic or mel scale. On the other hand,
it is known that spectral localization cues are depen-
dent mostly on the shape of pinna, which impacts only
higher frequencies (Algazi et al., 2001; Langendijk,
Bronkhorst, 2002). Alternatively, the importance of
accuracy in certain frequency bands can be manipu-
lated by the frequency weighing if needed.

To further put the magnitude of errors in per-
spective, the approximation errors can be put against
the measurement errors. Some research has been
presented on the impact of different variables on
the spectral variations between HRTF measurements
(Andreopoulou et al., 2013; 2015); the HSH approx-
imation error is on par with (or lower than) the human-
related variations in repeated individual HRTF mea-
surements or the differences between HRTF sets of the
same artificial head but obtained in different labora-
tories. What is more, the difference between SH and
HSH approximations is lower than the differences be-
tween the measurements performed in the same lab-
oratory within a week (0.12 dB versus 0.17 dB). The
frequency smoothing introduced by the HSH approx-
imation, although changing the original values, might
also be perceived as a positive effect, since some of the
distortion in the raw data might be caused by noise
and imperfections of the measurement setup.

Generally, the application of HSHs instead of SHs
to approximate a magnitude of HRTFs yields almost
the same accuracy while exhibiting some additional
advantages. First of all, the resulting representation
is fully continuous, not only in space but also in
frequency. This continuity enables retrieving discrete
HRTFs of any frequency resolution without any ad-
ditional processing. The most prominent advantage of
application of SHs to directivity functions was thus ex-
tended to another dimension. An exemplary benefit of
using the HRTF model of infinite frequency resolution

is the control of balance between precision and latency
of binaural rendering by reading discrete HRTFs of any
desired resolution.

What is more, even less amount of data is required
to store a HRTF set in the HSH domain; in the ana-
lyzed example, the HSH approximation was described
by 3081 coefficients, while the SH one required 81 for
each of 257 frequency bins (255 excluding the first
two bins that were ignored in the HSH approxima-
tion either way). The total number of SH coefficients
was thus 20817 (20655), which is almost seven times
more than in the HSH approximation, while retaining
similar amount of perceptually relevant information.
Even if SH approximation was determined at only 40
frequency bands to match the reduced frequency res-
olution of HSHs for nmax = 80, the total number of
SH coefficients would be 3240 which is slightly more
than the number of HSH coefficients (3081). It is also
worth noting that 40-bin HRTFs would be computa-
tionally inefficient and would need to be resampled
while no such operation is needed in the HSH rep-
resentation, where spectra of any resolution can be
read without any extra processing. Furthermore, com-
paring the number of HSH coefficients (3081) to the
number of raw data samples (182470), the reduction
of data size is almost 60-fold with SD below 2.5 dB,
while the best configuration of the HRTF compression
method proposed by Shekarchi et al. (2013) reached
the compression ratio of only 40 for the same accuracy
(to get the compression ratio of 60, SD increases to
about 2.8 dB). Furthermore, their method is discrete
in both space and frequency while the HSH represen-
tation is fully continuous. HSHs can be thus useful in
designing a compression format that would include all
the variability of HRTFs within a single set of coeffi-
cients, allowing them to be expressed holistically and
compactly.

The downside of the HSH representation is that
it requires more computational resources to determine
the HSH coefficients via least-squares fitting. However,
with the continuous development of processing units,
this issue becomes less and less relevant.

The mathematical structure of the HSH represen-
tation allows it to be utilized not only for HRTFs but
for any type of directivity function, e.g., directivity of
electroacoustic devices, whether they are sound sources
or receivers. These types of directivity functions are
easier to measure and so applying HSHs as approx-
imation tools might be of lesser value, but they can
still be useful for such objects in any machine learning
problems requiring proper directivity parametrization.
HSHs, capturing holistic nature of the far-field direc-
tivity, seem to be better fitted for such tasks than SHs.

One of the interesting questions regarding the pre-
sented method is the impact of the choice of limiting
parameters nmax, lmax, and mmax on the approxima-
tion accuracy. Increasing these limits will improve the



A. Szwajcowski – Continuous Head-related Transfer Function Representation Based. . . 137

accuracy, but the quality and quantity of the improve-
ment remains to be determined. This is intrinsically
linked with the question of what is the minimum re-
quired accuracy from the perceptual standpoint and
what is the best way to achieve it. However, the pre-
sented subject is very broad and requires a thorough
analysis to provide reliable answers. For this reason, it
is decided to be out of scope of the present paper, but
will be considered in future studies.

6. Conclusions

Within this paper, the theory of HCS, real HSHs,
and their application to express frequency-dependent
directivity data such as HRTFs was presented. The
entire computational process was described, starting
from discrete HRIRs to determining HSH coefficients.
The special focus was put on efficient mapping of fre-
quency scale to an angle, which was required to ex-
press the directivity data in HCS. The location of the
hyperspherical poles was leveraged to match the om-
nidirectionality of directivity functions such as HRTFs
for low frequencies, making the HSH basis surprisingly
well-suited to express such functions, without physical
motivation.

The exemplary HSH representation was de-
termined for KEMAR HRTFs using perceptually-
motivated number of HSHs. The HSH approximation
yields similar levels of accuracy to the corresponding
SH one, while providing continuity in frequency and
a significant reduction of required amount of data.
Thanks to the continuity over both space and fre-
quency, the HSH representation captures the holis-
tic nature of far-field HRTF characteristics. Thus, the
HSH representation can be considered an upgrade over
the currently popular SH-based approach in practical
applications such as binaural rendering, parametriza-
tion or data storage. However, there are still many as-
pects to investigate, such as, e.g., impact of the lim-
iting parameters on the accuracy, exploring different
frequency mapping or weighing, perceptual tests, etc.

The method described within this paper not only is
a value by itself, but also presents wider possibilities of
perceiving directivity functions by modeling frequency
as an extra dimension, introducing coupling between
their spectral and spatial properties. The HSH model
can serve as a base for development of similar repre-
sentations applying different 4D functions, e.g., created
by merging basis functions of lower dimensions. Fur-
thermore, this paper focuses only on the magnitude of
far-field HRTFs, which can be in future complemented
by the distance and phase dependencies if needed.
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1. Introduction

Calm-on flowmeters are becoming increasingly pop-
ular. Their main advantage is fast and non-invasive in-
stallation. They can be used as portable devices in ap-
plications such as channel infiltration capacity testing,
delivery control, consumption verification, measure-
ment campaigns. Direct and indirect approaches can
be distinguished (Raffel et al., 1998). Direct meth-
ods typically involve probes that are placed directly in
the fluid drift. On the other hand, indirect methods
do not disturb fluid flow and consist of particle im-
age velocimetry (PIV) (Atkins, 2016; Kaipio et al.,
2017) and laser Doppler anemometry (LDA) (Solero,
Beghi, 1995; Doran, 2013).

Methods based on digital signal processing are be-
coming more and more popular. The cross-correlation
method is to look for the time delay of the flow struc-
ture passing from upstream sensors to downstream sen-
sors (Beck, Plaskowski, 1987; Lucas et al., 1999).
The pixel-based cross-correlation solution can recon-
struct the radial velocity distribution (Cui et al., 2016;
Xu et al., 2009). The ability of acoustic transduc-

ers to characterize underwater dynamic phenomena
may be used in non-invasive measurement scenarios
(Cochran, 2001; Jones, 1995; Buermans et al.,
2009). In medical echography, the Doppler signal ana-
lysis is one of the most vital diagnostic techniques
(Matani et al., 1996).

There are four basic measurement methods based on:

1) estimation of the time of a sine wave propagation
in the tube (transit-time flow) (Takeda, 2012),

2) using the Doppler effect for the emitted sinusoidal
wave (pulsed Doppler flow) (Mori et al., 2004;
Wu, 2018),

3) measuring of ultrasonic wave lift (Kang et al.,
2019),

4) correlation method (Avilán et al., 2013).

The operation of the transit flow involves send-
ing and receiving ultrasound pulses through a pair of
probes and measuring the difference in signal transit
time. The probes used are mounted outside the pipe,
generating pulses that pass through the wall of the
pipe. The liquid flowing in the pipeline creates a dif-
ference in the signal beam transit time. This time is
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measured by a flowmeter, and the flow rate is then cal-
culated. The key principle of the method is that sound
waves traveling in the direction of the liquid have
a higher speed than those traveling in the opposite di-
rection. The difference in the signal transit time is pro-
portional to the liquid flow rate. It is shown in Fig. 1
and can be written as:

Vliquid =
∆tc2

liquid

2L cos θ
=

∆tc2
liquid

2L sinα
. (1)

T1

T2

R1

R2

Transceiver

Vliquid

Transceiver

�

L�

Fig. 1. Time transit measurement method
of liquid flow velocity.

The time-of-flight flow measurement technology
can provide reliable performance over a wide range of
fluid flow conditions, but there are cases where a high
percentage of undissolved gases or solids can scatter
the acoustic beam and prevent the appropriate sig-
nal amplitude from reaching the receiving transducer
(Takeda, 1995). Under such conditions, a Doppler
measurement may be required to meet the customer’s
flow measurement needs.

The method of ultrasonic wave lift is based on shift-
ing the point of incidence of the wave along the pi-
peline, in proportion to the average speed of the fluid),
with:

Vliquid ∝ (A1 −A2), (2)

where A1 and A2 are the amplitudes of the ultrasonic
waves received by the receivers R1 and R2. As the ve-
locity of the fluid increases, the signal in the receiverR1

decreases and in the receiver R2 increases, and the dif-
ference in signal amplitudes carries information about
the fluid velocity. This approach is shown in Fig. 2.

Receivers

Transmitter

Vliquid

R1

T

R2

Fig. 2. Wave lift measurement method
of liquid flow velocity.

The correlation method (Fig. 3) of measurement
based on the time shift of the receiving signals for
which there is a maximum of cross-correlation. Such
a sensor can also be used for vortex frequency and
thermal disturbance detections.

Vliquid

Receivers

TransmittersT1 T2

R1 R2

Fig. 3. Correlation measurement method
of the flow velocity of liquid.

The pulse Doppler method appears to be the lat-
est and most accurate way to measure the flow of liq-
uids containing large amounts of undissolved gases or
suspended solids (Lucas et al., 1999). This method
uses the Doppler phenomenon to measure the fre-
quency difference of a continuous signal transmitted
and received in a liquid with reflective elements (e.g.,
air bubbles). Its method of operation is described
in the next section. It is possible to develop the
pulsed Doppler method that automatically switches
from time-of-flight to the Doppler measurement with-
out changing the transducer position, suggesting the
use of the transceiver method. In the minimum hard-
ware version, this solution requires only one transceiver
that acts as a transmitter and a receiver interchange-
ably. It is shown in Fig. 4. Ultrasonic liquid flow veloc-
ity methods have the following advantages:

– No moving parts: traditional mechanical flowme-
ters measure pressure through the use of moving
parts that serve as mechanical sensors. Because
there are no moving parts on ultrasonic flowme-
ters, one does not have to worry about them de-
grading or creating a blockage.

– Low maintenance: because ultrasonic flowmeters
do not involve moving parts, they last a long time
and need very little maintenance. They also have
low power consumption, so they often last several
years before the batteries are to be replaced.

– High accuracy: as long as the meter is properly
mounted and installed, these meters are highly ac-
curate. However, inline and insertion flowmeters

�
Vliquid

Transducer

Reflective element

T R

Fig. 4. Doppler measurement method of liquid flow velocity.
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are generally more accurate than clamp-on ultra-
sonic flowmeters.

– Bi-directional measurements: although many tra-
ditional flowmeters only measure in a single direc-
tion, transit-time ultrasonic flowmeters measure
flow in both directions, forward, and reverse.

– High stability: transit-time meters are unaffected
by the temperature, density, or concentration of
the liquids they measure, making them a more
stable measuring device. Ability to measure liq-
uids and gases. Ultrasonic flowmeters can be used
to measure a wide variety of liquids.

The disadvantages include:
– Sensitivity to temperature changes: Doppler-type

ultrasonic transducers are sensitive to changes in
temperature, density, and concentration, mean-
ing that any changes to the contents of the pipe
may negatively affect the accuracy of the Doppler
transducer results.

– Substance limitations: working with slurries where
the flow is not linear may produce measurement
errors.

The organization of the paper is as follows: in Secs. 2
and 3 we discuss the methodology for estimating the
liquid flow velocity. Sections 4, 5, and 6 include math-
ematical tools used for measuring system. Section 7
describes some simulations performed in the real-life
working system. The paper ends with some conclu-
sions and suggestions for the next steps in increasing
the accuracy of the measurement.

2. Metodology of measurements

In single-sensor detection, the signal is subjected
to individual preprocessing and then different Doppler
shift estimation methods are used. The environment
is characterized by a high level of noise (especially in
steel pipes), which leads to false results that are indis-
tinguishable from the true values. When using multiple
sensors, the actual fluid velocity is obtained by compar-
ing the results from individual sensors using different
methods. The decision is obtained from a joint den-
sity of the results taking into account the results from
all sensors. A joint density for as few as two sensors
gives significantly better speed detection than using
only one sensor. We compare the use of individual pa-
rameterisation methods to the case of multisensor data
fusion at the decision level. The results acquired from
the individual sensors are used to estimate the Doppler
shift; we estimate the probability density function of
the fluid flow velocity.

3. Doppler shift and velocity flow equation

We have the continuous-wave Doppler system. In
this case, two transducers are used: the first trans-
ducer transmits an acoustic signal into the fluid, while

the second transducer is used to receive the reflected
signal. Reflections come from the scattering particles
within the fluid. The Doppler shift frequency depends
on the fluid velocity. This affects the reflected signal,
which is an expanded (or compressed) version of the
transmitted signal. The difference between them gives
us the Doppler shift frequency. In the standard ap-
proach, the Doppler flow equation also takes into ac-
count the fluid sound speed as well as the beam angle
in the fluid. In our case, we do not need these two
parameters. It would be redundant because using the
refractive clamp-on transducer implies that the sine of
the beam angle and the sound speed are constant.

We have the Doppler shift frequency:

∆f = 2f sin(θ)
v

c
. (3)

From
Trphase =

c

sin(θ)
(4)

we have
∆f = 2f

v

Trphase
. (5)

It results in a form:

v = Trphase
∆f

2f
, (6)

where Vphase is the transducer phase parameter that
depends on the angle of the transmitted wave, f is the
transmit frequency, ∆f is the Doppler shift frequency,
v is the flow velocity, c is the sound velocity in the
liquid.

4. Extended Kalman filter

To adapt the Kalman filter to nonlinear optimal fil-
tering problems, the Extended Kalman Filter (EKF)
(Jazwinski, 1970; Maybeck, 1982; Bar-Shalom
et al., 2004;Grewal,Andrews, 2001; Särkkä, 2006)
is used. It requires determining a Gaussian approxi-
mation to the joint distribution of state x and mea-
surements y (with Taylor series-based transformation
involved):

xk = f(xk−1, k − 1) + qk−1, (7)

yk = h(xk, k) + rk, (8)

where xk is the state, yk is the measurement, qk−1 is
the process noise, rk is the measurement noise, f is the
dynamic model function, h is the measurement model
function. The state vector (in the sine wave case) may be
written as:

xk = (θk, ωk, ak), (9)

where θk is the parameter for the sine function on the
time step k, dθ

dt = ω, ωk is the angular velocities in time
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step k, ak is the amplitude in the time step k. The
dynamic equation in the discretized form is:

xk =

⎛
⎜
⎜
⎜
⎝

1 ∆t 0

0 1 0

0 0 1

⎞
⎟
⎟
⎟
⎠

. (10)

The measurement function h(xk, k), given by

h(xk, k) = ak sin(θk), (11)

is a sine function. The measurement model as follows:

yk = h(xk, k) + rk, (12)

where rk is the white Gaussian noise with zero mean
and variance 1.

5. Power spectral density estimation

Power spectral density (PSD) estimation techni-
ques can be divided into parametric and non-para-
metric methods. Non-parametric methods estimate
PSD explicitly from signal samples, without making
any assumptions about the particular process struc-
ture. Parametric approaches assume that signal can
be described as the stationary process (MA, AR, or
ARMA) of order p. The power spetral density is
then calculated using estimated model parameters.
This paper presents PSD estimated with paramet-
ric approaches (Burg and Prony’s method) and non-
parametric methods (Welch’s and Thomson multitaper
method). On the basis of the signal spectrum, it is pos-
sible to determine the dominant frequency (weighted
average), which estimates the Doppler shift, ∆f .

5.1. The Burg algorithm

The Burg algorithm assumes that the signal can be
described as the AR process of order p:

x̂ = −
m

∑
k=1

am(k)x(n − k). (13)

There are many techniques for estimating the am pa-
rameters such as the Yule-Walker algorithm, or least
squares estimator (Kaipio et al., 2015). The Burg
algorithm solves the ordinary least-squares problem.
The AR parameters am are estimated by minimiz-
ing the prediction forward and backward errors, which
are referred to as the error between the actual value
signal and the corresponding estimators forward and
backward (Atkins, 2016):

PSDx(f) =
Em

∣1 +
m

∑
k=1

a(k)e−j2πfk∣
2
. (14)

The results obtained by the Burg algorithm have a high
frequency resolution (Atkins, 2016), and are more ob-
jective and stable than the other algorithms for esti-
mating the power spectral density using the AR model.

5.2. The Prony algorithm

Prony proposed that the N data samples can be
approximated using the sum of complex, damped ex-
ponentials:

x̂(k) =
p

∑
i=0

ai ⋅ z
k
i , k = 0, ...,N − 1, (15)

with ai = Ai ⋅ e
jθi , zi = eαi+2πjfT , where T is the pe-

riod, Ai, αi, fi, θi are the amplitude, damping factor,
frequency and initial phase of the complex, dumped
exponentials. The fitness problem leads to a minimiza-
tion error between the data x(n) and the fitted value
x̂(n). The complicated nonlinear problem, with the
Prony method, can be converted to the linear predic-
tion problem, and x(n) can be regraded as the output
of the p-th order of AR process. The PSD is given by:

PSDx(f) = ∣

p

∑
i=1

Ai ⋅ e
jθi 2αi

(α2
i + (2π(f − fi))2)

∣

2

. (16)

The Prony method provides greater accuracy and does
not have a problem with spectral leakage.

5.3. The Welch algorithm

To estimate PSD with the Welch method, the sig-
nal should be divided into overlapping segments and
multiplied by a window function. Then, for each part
of the signal, the modified periodogram is computed.
The power spectral density is estimated by averaging
the periodograms. The estimate is given by:

PSDx(f)=
1

M

M

∑
m=1

⎧⎪⎪
⎨
⎪⎪⎩

2

Nf
∣
N−1

∑
n=0

x(n+mD)e−j2πnk∣
2⎫⎪⎪
⎬
⎪⎪⎭

, (17)

where M denotes the number of signal fragments of
length Nf and D denotes delay. The Welch method re-
duces the variance of the classic periodogram (Lyons,
2004).

5.4. Multitaper PSD estimate

Power spectral density estimate computed using
the multitaper method utilizes mutually orthogonal
windows – discrete prolate spheroidal (Slepian) se-
quences:

PSDxMT
(f) =

1

L

L−1

∑
l=0

PSDxl(f), (18)

where

PSDxl(f) = ∆t ∣
N−1

∑
n=0

sl(n)x(n)e
−j2πfn∆t

∣ (19)

can be considered as the modified periodogram com-
puted with the l-th Slepian sequence sl(n). The mul-
titaper PSD estimate averages the L periodograms.
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The multitaper method (MTM) is similar to the Welch
estimators, but in this approach, the periodograms are
decorelated due to the orthogonality of Slepian se-
quences. The Welch approach computes the modified
periodograms using the overlapping segments of the
signal, whereas the MTM method uses the entire sig-
nal to compute the modified periodogram. The exam-
ples of the first five Slepian sequences are presented in
Fig. 5.
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Fig. 5. Examples of five Slepian sequences used in MTM
method.

6. Kernel density estimation

In order to estimate a probability density function
f̂(x) we need to use a statistical method using a set
of samples x1, ..., xn. For this we use kernel density
estimation (KDE). In each step, the i-th sample xi is
assigned to a kernel function K(x, t):

f̂ =
1

n

n

∑
i=1

K(xi, t). (20)

In the special case we have a form:

Ksym(x, t) =
1

h
K (

x − t

h
), (21)

which is valid when our kernel is symmetric. In Eq. (21)
h represents the smoothing parameter or bandwidth.
Control the smoothing factor for each sample. It is
very important to choose the right value for h. Taking
a wrong value, too small or too large, will affect the
estimator. There are insignificant details shown when
h is too small. On the other hand, the estimated prob-
ability density function will be too smooth and the
information from the sample may be lost.

In our proposal, we use the bivariate extension:

f̂(x, y) =
1

nhxhy

n

∑
i=1

K (
xi − x

hx
,
yi − y

hy
), (22)

where xi, yi, for i = 1,2, ..., n are the samples, hx, hy
stand for smoothing coefficients. It can be easily de-
duced from the univariate case.

There are many different multivariate kernels which
can be found in applications, e.g., the Epanechnikov
kernel:

K(u) =
3

4
(1 − u2

), (23)

or the Gaussian kernel:

K(u) =
1

√
2π
e−

1
2u

2

. (24)

From Eq. (22) following estimators are available – the
product kernel estimator and the radial kernel estimator.

7. Estimation of Doppler frequency
signal scheme

The scheme of the measurement system is shown
in Fig. 6.

Signal from
transducer

Signal from
transducer

Preprocessing PSD
estimation

Doppler shift
estimation

Doppler shift
estimationEKF

KDE Flow velocity
estimation

Preprocessing

Fig. 6. Signal processing scheme.

The signals from the transducers are first pre-
processed for noise cancelation. The PSD estimation
is then calculated. When the results obtained from
both transducers (oriented in opposite directions) are
obtained, the Doppler shift can be determined. Using
the KDE approach allows to estimate the fluid flow
velocity.

8. Results

The schematic of the measurement system is visi-
ble in Figs. 7 and 8. Siemens 191N1S transduc-
ers were used with a sampling frequency of 10 MHz
and with separate transmit and receive transducers.
Such a transducer selection provides the high amount
of reflected sound energy with the least synchronous
noise from the pipe wall or transducer cross coupling,
so this was considered to be the easiest case to prove
the principle without any major barriers. The trans-
mitting sine-wave signal was stored in a flash mem-
ory and sent to the pipe as a burst every 10 ms. The
received signal was amplified by a fixed factor, sam-
pled (16 bits) and sent to the signal processing unit

transducers

Fig. 7. Measurement equipment.
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Phase control

Doppler shift
frequency

Quadrature
demodulator
circuit

Fixed gain
amplifier

ADC sampling

Signal processing

XMIT RECV

FREQ Divider
(0.889 to 1.78 MHz)

Master clock
64 MHz

Transmit circuit

Pipe with fluid

Fig. 8. Measurement system details.

(STM32 processor). Test studies were carried out on
an actual system. The test environment consisted of
a set of pipes made of PVC, galvanized, and ungalva-
nized steel. Examples of recorded signals are presented
in Fig. 9.
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Fig. 9. Examples of the recorded signals:
a) PCV pipe; b) steel galvanized pipe.

Pipes with diameters ranging from 50 mm to
150 mm with closed circulation were used. Measure-
ments were made using air bubbles with a diameter
of 1–2 mm. This made it possible to use the pulsed
Doppler method. The pump used a guaranteed con-
stant and the same speed of air bubbles and water
inside the pipe. Transducers acting as sensors pro-
vided measurements for our tests. These were fixed
on the horizontal plane. Two transducers measure the
Doppler shift – the first measures the negative shift
and the second measures the positive shift. It is a re-
sult of the fluid velocity. The obtained liquid velocities
are presented in Fig. 10.
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Fig. 10. Obtained liquid velocities:
a) PCV pipe; b) steel galvanized pipe.

The transducers operated at a sampling frequency
rate of 10 MHz. The operating signal was a single sine
wave with a frequency of 2 MHz and a burst duration
of 20 µ. The transmit frequency was equal to 10 kHz.
The flow velocity estimated by two methods separately
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is presented in Fig. 11 and the accuracy speed liquid
for the PCV pipe in Table 1.
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Fig. 11. Flow velocity estimated by two methods separately.

Table 1. Accuracy speed liquid for PCV pipe.

Real flow [m3/h] Single method KDE
0.5 0.6 0.51
1.0 0.94 1.02
1.5 1.40 1.49
2.0 1.92 1.98
2.5 2.53 2.51
3.0 3.10 2.98

8.1. Comparison of fluid velocity estimation results
for the analysed PSD estimators

PSD were estimated with two non-parametric meth-
ods: MTM and Welsh algorithms and two parametric:
Burg and Prony methods. Different cases were ana-
lysed: positive and negative flow, different liquid flow
velocity, different pipe diameters, and different pipe
material. The mean flow velocity of the liquid estima-
tion results for each of the four estimators of the PSD
is shown in Table 2.

Table 2. Accuracy speed liquid for PSD pipe.

Pipe number Real flow Burg Prony MTM Welch
1 0.20 0.2120 0.51 0.2202 0.2374
2 0.21 0.2099 0.4277 0.2126 0.1968
3 0.66 0.6639 1.2993 0.5740 0.6321
4 0.65 0.6776 1.3036 0.5898 0.6126
5 0.21 0.2162 1.0013 0.2189 0.2009

For each power spectral density estimator, the rel-
ative error between the exact value of the liquid flow

velocity and the measured value was calculated. Errors
are expressed as a percentage and results are shown
in Fig. 12. It follows from Fig. 12 and Table 2 that
the estimation of the power spectral density using the
parametric Burg method had the smallest errors. To
maintain the legibility of the above figure, the relative
values of errors using the parametric Prony method
were not included, as the errors reached several hun-
dred percent.
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Fig. 12. Relative error plot of liquid flow velocity estimation
for four power spectral density estimators.

After averaging the results, the global error was
determined for each of the estimators. The results are
presented in Table 3.

Table 3. Global error [%].

Burg Prony MTM Welch
2.77 166.58 7.58 7.86

Figure 13 shows the variance of the power spec-
tral density estimators used, for each of the analysed
pipes in which fluid flow was studied. It is clear from
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Fig. 13. The variance of the PSD estimators.



148 Archives of Acoustics – Volume 48, Number 1, 2023

Fig. 13 above that the non-parametric MTM estimator
has the smallest variance. Similar to the error analy-
sis, the parametric Prony estimator has the highest
variance.

9. Conclusions

The methods used to combine measurements for
non-invasive measurement of the fluid flow veloci-
ty have proven to be accurate and return cor-
rect values. This has the advantage of using algo-
rithms with low computational complexity. In com-
bination with the KDE approach, a convenient and
accurate tool was obtained. Another advantage of this
solution is the ease of mounting the sensors in the pipe.
A measurement accuracy of >95% was obtained.
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