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For many adaptive noise control systems the Filtered-Reference LMS, known as the FXLMS algorithm
is used to update parameters of the control filter. Appropriate adjustment of the step size is then important
to guarantee convergence of the algorithm, obtain small excess mean square error, and react with required
rate to variation of plant properties or noise nonstationarity. There are several recipes presented in the
literature, theoretically derived or of heuristic origin.
This paper focuses on a modification of the FXLMS algorithm, were convergence is guaranteed by

changing sign of the algorithm steps size, instead of using a model of the secondary path. A Takagi-
Sugeno-Kang fuzzy inference system is proposed to evaluate both the sign and the magnitude of the
step size. Simulation experiments are presented to validate the algorithm and compare it to the classical
FXLMS algorithm in terms of convergence and noise reduction.
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1. Introduction

Active noise control (ANC) systems have been
found attractive for acoustic noise reduction in indus-
trial environments (Elliott, Nelson, 1993). Many
different algorithms have been proposed in the litera-
ture. However, still the most popular is the Filtered-
reference LMS algorithm, also known as Filtered-x
LMS (FXLMS) (Takenouchi et al., 2006).
For many ANC algorithms (including FXLMS)

a sufficiently accurate model of the secondary
path is required in order to guarantee convergence
(Pawelczyk, 2008). The secondary path if defined as
the acousto-electric path between adaptive filter digi-
tal output and sampled error signal (effect of acoustic
sound interference). If the path is subject to change,
what is a common case during ANC system opera-
tion, the model should be accordingly updated. On-
line identification of the secondary path often requires
an additional excitation, which reduces effectiveness of
residual noise reduction.
In the literature some ANC algorithms are pre-

sented, which do not require secondary path modeling.
The method introduced by Zhou and DeBrunner
(2007), consists of four main steps: initialization, di-

rection search, adaptive filter update, and performance
monitoring. During direction search, prior to adapta-
tion, energy quantities of reference and error signals
are estimated. After a few samples, during adaptation,
they are estimated again. If the adaptation deterio-
rates the error-to-reference signal ratio, the step size
sign is changed. This method was cleverly modified by
Wu and Qiu (Wu et al., 2008), to search for adap-
tive filter update direction by using imaginary values
of the step size. It improves system convergence, es-
pecially for secondary path phase modeling error close
to ±90◦. A similar approach, based on best parame-
ters search, is presented by Chang and Chen (2010).
However, in that paper genetic algorithm is used to
update adaptive filter coefficients. A fitness function
is defined based on the residual error, and therefore
each individual set of adaptive filter coefficients must
be simulated.
The delayed-x LMS (DxLMS) algorithm with a

phase shifter can also be successfully used for reducing
narrowband noise. For that algorithm the secondary
path delay needs only to be known, instead of a full
model. For wideband noise that algorithm was succes-
fully used in a multi-bank structure by Pawelczyk
(2002).
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A fuzzy algorithm for step size adjustment was pro-
posed by Kunchakoori et al. (2008). It uses informa-
tion about error signal energy and its rate of change.
That algorithm, however, is dependent on secondary
path modeling.
In the classical FXLMS structure a model of the

secondary path is needed with absolute phase model-
ing error smaller than 90◦ (Wang, Ren, 1999). Then,
the step size should be greater than 0 but smaller than
a certain upper bound [10]. In this paper the authors
motivated by the research of Zhou and DeBrunner
(2007), are developing further that modification to the
FXLMS algorithm. To make the algorithm more ap-
propriate for time varying plants, a model of the sec-
ondary path is avoided. To guarantee convergence in
case of absolute phase errors greater than 90◦, the sign
of the step size is switched and the value of the step
size is adjusted to improve convergence rate. A fuzzy
inference system is proposed to evaluate both sign and
magnitude of the step size. The inference is based on
estimated of control and error signal energy quantities,
and an appropriate rule base. The fuzzy rule base fol-
lows from properties of the FXLMS algorithm and its
behaviour.

2. Modification to the FXLMS algorithm

The classical structure of the FXLMS algorithm is
presented in Fig. 1. This algorithm minimizes a cost
function defined as a instantaneous square value of the
error signal:

min e2(i) = min(d(i) + y(i))2, (1)

where i is the sample index. The adaptive filter co-
efficient update equation takes the form (see e.g.,
(Elliott, Nelson, 1993)):

w(i+ 1) = w(i)− µ(i)e(i)r(i),

r(i) = ŝTx(i),
(2)

where
w(i) = [w0(i)w1(i) . . . wN−1(i)]

T

is a vector of N filter parameters, µ is the step-size

ŝ = [ŝ0ŝ1 . . . ŝM−1]
T

is a vector of M parameters of the secondary path
model,

x(i) = [r(i)r(i − 1) . . . r(i −M + 1)]T

is a reference signal vector,

r(i) = [r(i)r(i − 1) . . . r(i −N + 1)]T

is a filtered-reference signal vector. According to
Takenouchi et al. (2006), for stability of (2) it is re-
quired that:

0 < µ(i) <
2

‖r(i)‖2max

, (3)

where ‖r(i)‖max is maximum norm of vector r(i).
Thus, the upper limit of the step size varies, dependent
on reference signal values, what should be accounted
for in the defuzzification stage of the fuzzy inference
system. Therefore to mitigate this problem the nor-
malized FXLMS version is used:

w(i+ 1) = w(i)− µ(i)

rT(i)r(i) + γ
e(i)r(i), (4)

where γ is a small constant to ensure that denomina-
tor in (4) is not equal to zero. There are also other up-
per bounds on the step size developed by different au-
thors to improve convergence properties, e.g. (Bismor,
2012), although their general outcome in this term is
similar. Analysis of FXLMS convergence, proposed by
Zhou and DeBrunner (2007), for a single-frequency
input signal gives the following upper bound of the
step size:

µ <
2 cos[∢S(f)]

cfPx(f) |S(f)|
, (5)

where Px(f) is the power spectrum of the input sig-
nal, cf is a real constant representing the amplitude
estimation error |S(f)| is the magnitude response of
the secondary path, and S(f) is the phase estimation
error, all for the given frequency f . When |S(f)| ≥
90◦, FXLMS diverges (Zhou, DeBrunner, 2007;Wu
et al., 2008).

Fig. 1. Classic FXLMS structure.

The idea in this paper for control of tonal or nar-
rowband noise is defined in the following steps:

a) apply a simplified version of the FXLMS algorithm
– the Delayed-x LMS algorithm (Pawelczyk,
2002), i.e.

w(i+ 1) = w(i)− µ(i)

rT(i)r(i) + γ
e(i)x(i − k), (6)

where x(i) = [r(i)r(i−1) . . . r(i−N+1)]T is a refer-
ence signal vector of the same number of regressors
as the control filter order, N .

b) evaluate value and sign of the step size µ(i).
A change of the sign is equivalent to phase shift
of the delayed-reference signal by 180◦. The step
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size update is proposed to be performed using the
Takagi-Sugeno-Kang fuzzy approach presented in
Sec. 3;

c) in case of impossibility to converge, which is only
possible for a special case of phase modeling error
being close to ±90◦, increase or decrease the time
delay k (this will increase/decrease the phase error,
what will automatically be corrected by change of
the sign of the step size).

3. Takagi-Sugeno-Kang fuzzy model

The Takagi-Sugeno-Kang (TSK) fuzzy model
uses functional dependency to describe consequences.
A typical TSK rule has the form:

if x1 is A and x2 is B then y = f(x1x2), (7)

where x1, x2 are system inputs, A and B are fuzzy
sets, y is the system output. Usually f(x1, x2) is an
n-th order polynomial (Jang et al., 1997).
Since first introduction of fuzzy logic by Zadeh

in 1965, many fuzzy operators have been suggested.
A generic structure of the fuzzy inference system and
description of fuzzy operators used in fuzzy controllers
can be found in (Cordón, et al., 1997).
In this paper the PROD operator is preferred as

the T-norm operator. The PROD is defined as:

PROD [χA(x1), χB(x2)] = χA(x1) · χB(x2), (8)

where χA(x1) (and χB(x2), respectively) is a degree of
membership input x1 to fuzzy set A. As the T-conorm
operator the PROBOR operator is used, which is de-
fined as:

PROBOR [χA(x1), χB(x2)] = χA(x1) + χB(x2)

−χA(x1) · χB(x2) (9)

assuming maximum degree of membership limited to
one.
The implication operator is ‘min’, and the aggrega-

tion operator is ‘max’. A weighted average is used for
deffuzification.

Fig. 2. Fuzzy inference structure for the auxiliary parameter β.

4. Fuzzy step size adjustment

In process of developing the inference system and
the rule base, the following assumptions are made to
simplify the notation and analysis:

• Assumption 1: the noise stationary.
• Assumption 2 the noise is tonal or narrowband.
Nonstatiory noise would result in a more complex

inference system taking into account energy of the ref-
erence signal. In turn, in case of a broader (or multi-
tonal noise), it can be split into narrowband compo-
nents, processed with this algorithm in parallel chan-
nels, and finally combined to produce a common con-
trol signal. Thus, the assumptions do not restrict con-
siderations presented below.
The step size is updated according to the following

law:
µ = β · µmax, (10)

where µmax is a user-defined bound, and the auxiliary
parameter β is tuned within the range [-1;1] based on
monitoring control and error signals energy estimates
The proposed fuzzy inference system for step size ad-
justment is presented in Fig. 2. For energy estimation
of the control signal (and for the error signal, respec-
tively) an inertial equation is used:

Eu(i) =
α

1−
(
1− 1

α

)
z−1

u2(i), (11)

where 0 ≪ α < 1 is a constant.
The gradient of the control signal energy is esti-

mated as (and respectively for the error signal):

∆Eu(i) = log

[
Eu(i)

Eu(i− L)

]
, (12)

where L is a time-span parameter.
Membership functions experimentally found suit-

able for the system inputs are shown in Fig. 3. The
primary path gain and input signal gain are condi-
tioned to ensure that amplitude of signal d(i) is re-
strained to [0; 1]. Therefore error signal energy mem-
bership functions are nonsymmetrical, and saturated
for Ee(i) ≥ 1.
The rule base is presented in Table 1.
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Fig. 3. Membership functions for system inputs.

Table 1. Rule base for the proposed algorithm. In cases not mention in this table β = βi−1.

∆Eu is ‘steady’ ∆Eu is ‘rising’

∆Ee is ‘steady’ ∆Ee is ‘dropping’ ∆Ee is ‘rising’ ∆Ee is ‘dropping’

Ee is ‘high R1: β = 1 · sgn(βi−1) R4: β = 1 · sgn(βi−1) R5: β = −1 · sgn(βi−1) R4: β = 1 · sgn(βi−1)

Ee is ‘medium’ R2: β = 0.6 · sgn(βi−1) β = βi−1 R6: β = −0.6 · sgn(βi−1) β = βi−1

Ee is ‘low’ R3: β = 0.1 · sgn(βi−1) β = βi−1 R7: β = −0.1 · sgn(βi−1) β = βi−1

Rules R1–R3 are responsible for adjusting the step
size, when the system reduces noise. In turn, rules R5–
R7 are active in case of large phase error, and they
detect the situation when an increase of control signal
energy causes an increase of error signal energy.

5. Simulation experiment

All simulations are conducted for data recorded in a
real power plant environment. For the secondary path,
S, in Fig. 1 an FIR filter of 250 parameters is used.
Magnitude and phase responses of the secondary path
are presented in Fig. 4. No model is used for filtering

Fig. 4. Magnitude and phase of frequency response of the secondary path.

the reference signal as required by the classic FXLMS
algorithm in Fig. 1, i.e. Ŝ = 1. The sampling frequency
is 2 kHz.
The first simulation concerns FXLMS with fuzzy

step size adjustment for a single-frequency input signal
(tone freq. 532 Hz, S(532 Hz) = 105.2◦, µmax = 0.01,
L = 500). Obtained results are presented in Fig. 5.
Narrowband random noise has also been simulated.

Figure 6 presents power spectral density (PSD) of the
reference signal, x (|S| > 90◦, µmax = 0.1, L = 200).
Obtained results are presented in Fig. 7.
A comparison between classic FXLMS algorithm

and the proposed modified FXLMS with fuzzy step
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Fig. 5. ANC results for a single-tone noise, f = 532 Hz,
obtained using FXLMS with fuzzy step size adjustment,
without a secondary path model. ANC starts at 1 s.

Fig. 6. Power spectral density of narrowband input signal.

Fig. 7. ANC results for a narrowband noise, obtained using
FXLMS with fuzzy step size adjustment, without a sec-

ondary path model. ANC starts at 1 s.

size adjustment for narrowband noise is presented in
Fig. 8. The proposed algorithm increases the error sig-
nal energy at the beginning of simulation. This effect

Fig. 8. Comparison between classic FXLMS (47.9 dB re-
duction in last 5 s) with ideal secondary path model and
modified FXLMS without secondary path model (56.6 dB

reduction in last 5 s).

is due to initially and on purpose chosen positive value
of µ, whereas the phase modeling error was greater
than 90◦. Then, a certain time is needed for the infer-
ence system to make decision. Algorithm convergence
properties can be improved by using an estimate of
the delay of the secondary path instead of Ŝ = 1, as it
was mentioned in Sec. 2. System performance would
be then similar to that for FxLMS, although with-
out necessity to fully model the secondary path with a
high-order filter. In Fig. 8, a transient short-time con-
vergence problem is observed for the classic FXLMS
algorithm, (Bismor, 2014), whereas the proposed al-
gorithm operates successfully all the time thanks to the
signal energy based criterion used in the update pro-
cedure for the step size. This exhibits another positive
property of this algorithm.

6. Summary

This paper presents a modification of the FXLMS
algorithm allowing avoiding necessity of modelling the
secondary path. Instead, the sign and value of the step
size are changed to provide algorithm convergence.
Both the sign and value of the step size follow from
fuzzy inference. The proposed method requires two pa-
rameters only – bound of the adaptation step size, and
time span for the signal energy estimator. Simulation
results for data recorded in a power plant, for tonal and
narrowband noises have been presented in the paper
Although the plant response is demanding, the algo-
rithm is convergent and results in noise reduction level
as that for the FXLMS algorithm based on a full plant
model. Moreover, it avoids transient convergence prob-
lems thanks to signal energy based criterion for updat-
ing the step size. If the noise is multitonal or broad-
band, it should be split into a number of subbands
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and processed individually in parallel channels. The
algorithm can be then directly applied for each chan-
nel. The bandwidth in each channel is dependent on
the phase response in terms of convergence itself, and
magnitude response in terms of convergence rate. Pro-
cessing narrowband components also helps to satisfy
causality requirements for successful operation of the
feedforward system (Zhang, Qiu, 2014). Presented
approach can be coherently employed for problems,
where the secondary path is subject to change and
current solutions involve additional heuristics, based
on other measured signals to update or switch between
different models (Mazur, Pawelczyk, 2011) In case
of nonstationary noise the rule base can easily be ex-
tended by including estimate of the reference signal
energy.
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