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Most diseases of the vocal tract cause changes in the voice quality. Acoustic analysis of
the speech signal is a widely used, noninvasive, objective and low-cost method of laryngeal
pathology recognition and classification. There have been numerous attempts [1–3] to develop
an automatic system which could aid the laryngological diagnosis. The goal of the presented
research is to verify, whether the new approach to the acoustic analysis and parameters intro-
duced in the Voice Analysis and Screening System (VASS 3.0 [4]) such as turbulence noise
index (TNI) and normalized first harmonic energy (NFHE), can improve the effectiveness of
automated diagnosis. The automated diagnosis was performed using Artificial Neural Net-
works (ANN). Multilayer perceptron and radial basis function neural networks of various
architectures were trained to classify between pathologic and non-pathologic voices, while
the parameters computed with VASS were used as input data. Preliminary results show that
the Voice Analysis and Screening System coupled with ANN can be a highly effective tool
for ANN-aided pathological speech diagnosis.

Keywords: speech analysis, pathological speech, speech recognition, neural networks, surgi-
cal treatment.

1. Introduction

Pathological processes that affect the vocal tract in most cases cause changes in the
speech production process, which can be heard as abnormal voice (dysphonia). These
changes are often the first, isolated and therefore very important symptom in early stages
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of larynx pathologies. It should be emphasized, that voice problems such as hoarseness
are frequently underestimated by the patients. Moreover, they often cannot be properly
diagnosed on the most accessible primary health care level, since they require an expert
laryngologist and expensive professional equipment. Consequently, in many cases the
correct diagnosis and treatment is introduced in advanced stages of the disease, often
when it is no longer possible to cure the patient. There are many diseases which can be
characterized by the sequence described above, but it is evident that the most important
problem in this field is early detection of the larynx cancer. It is well known that at
early stages, the disease can be cured by means of minimally invasive methods, while
advanced stages of cancer often require more aggressive, crippling treatment, including
permanent loss of the ability to speak (laryngectomy, i. e. excision of the larynx). The
mortality rate in advanced stage is also significantly higher than in early stages (the 5-
year survival rate equals 80–90% in the lowest Stage I and decreases to 30–40% in the
highest Stage IV) [5]. An easily accessible, low-cost and noninvasive method of laryn-
gological pre-diagnosis, based on acoustic signal analysis and advanced processing of
the phonological data, could therefore improve the detection and treatment of larynx
diseases.

There have been many attempts to create a reliable computer system, which could
distinguish between patients without serious vocal tract problems and those who need a
consequent laryngological diagnosis and treatment. A noninvasive, automated method
of voice diagnosis is based on advanced acoustic analysis of the speech signal and using
of artificial intelligence methods. Acoustic parameters which can be extracted from the
signal reflect such changes in the voice as loss of power, changes in the pitch, constric-
tion of the voice range (displacement towards lower frequency), addition of noises, etc.
which are important from the medical point of view [6].

Although the range of parameters which can nowadays be calculated for a speech
sample is very wide, it is not always possible to determine, what changes (or patterns
of changes) are distinctive for larynx pathologies. Therefore, artificial neural networks
(ANN) are an effective and frequently applied tool for acoustic analysis based voice
diagnosis. The ANN learn to classify cases during a process of training, where acoustic
parameters for pathological and non-pathological speech are presented.

The main purpose of the research projects mentioned above was to increase the
accuracy of pathology detection and eliminate the most dangerous error – classification
of a patient with laryngeal disease as a normal speaker [7].

The presented work is based on the use of Voice Analysis and Screening System
(VASS) – a new computer system for acoustic analysis of pathological voice signals
and screening of laryngeal diseases, which introduces a novel approach to the acoustic
analysis of the speech signal and introduces new parameters for estimation of the turbu-
lent noise and breathiness in the voice. The most detailed description of such system is
given in the paper [6]

The acoustic parameters extracted by means of VASS were used as input param-
eters in all previous (preliminary) analyses, which were performed for evaluation of
the usefulness of acoustical parameters as an element of diagnosis, prognosis and treat-
ment control in various laryngological problems [8, 9]. In this paper we use the same
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parameters as the input signals for the artificial neural networks, because we hope the
combination of a good description of the object under consideration (speech articulation
system) by means of the selected parameters combined with the well-known power of
neural network-based modeling ability, can provide an effective and accurate prelimi-
nary diagnosis of the larynx.

2. Material and methods

2.1. Speech samples

The speech samples were obtained from 32 patients hospitalized in the Chair of
Otolaryngology, Collegium Medicum UJ. In this group 12 patients presented various
larynx diseases (vocal fold cancer, vocal fold polyp, chronic laryngitis) and 20 were
a control group with no laryngeal pathology (the latter patients were hospitalized be-
cause of other pathologies that did not involve the larynx). The presence or absence of
the laryngeal pathology was proved by ENT examination, in several cases followed by
computer tomography and/or histopathological examination of the pathological tissue.

All patients pronounced Polish vowel /a/ repeated three times in a sustained manner
at comfortable levels of pitch and volume, which corresponded to their conversational
natural voice. All recordings were carried out in the same idealized acoustical envi-
ronment (sound-treated room in the Chair of Otolaryngology, Collegium Medicum UJ,
where the measured noise level was below 32 dB). The equipment used for recording
consisted of a microphone G.R.A.S 40 AF, a preamplifier Norsonic 1201, an amplifier
G.R.A.S. 12AA with gain of 40 dB, a professional digital audio tape recorder HHB
PDR 1000 with dynamical range min. 80 dB, two channel real time sound analyser
Nor 840 for fast inspection of the samples, and PC computer for data analysis and
database collection. During the digitalization process the sampling rate was 44100 Hz
and the sample quantization resolution was 16 bit without amplitude compression. The
recorded samples were converted into *.wav files with the Samplitude Project V5.55
program [10]. From the three consecutive vowels pronounced by a patient, only the
quasi-stationary state was extracted, after this the concatenation the samples was per-
formed (with guarantying of the signal continuity conditions) and the combined signal
was used as a single voice sample.

2.2. Voice analysis and screening system

For analysis of the speech signal, the Voice Analysis and Screening System (VASS)
was used [4]. The new approach introduced in the system consists in tracing all glottal
cycles by means of a cross-correlation detector. Basing on the so determined begin-
ning and duration of all glottal cycles, shimmer, jitter, harmonics-to-noise ratio and
other widely used acoustic parameters are calculated. New parameters introduced in
VASS are TNI for estimation of the turbulent noise in voice signals and NFHE for the
“breathy” voice characterization [6]. Other parameters calculated in VASS include: stan-
dard deviation of the fundamental frequency, maximal, minimal and mean fundamental
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frequency (in this work replaced with NF0, that is a new parameter which we introduce
to measure the fundamental frequency changeability – see Table 1), pitch perturbation
quotient (jitter) and amplitude perturbation quotient (shimmer), harmonic-to-noise ratio
(HNR) calculated by Yumoto’s method, HNR in frequency domain, HNR in frequency
domain by Qi’s, normalized noise energy (NNE), amplitude and frequency of the most
intensive amplitude and frequency tremors. More detailed description of the parameters
is presented in Table 1.

Table 1. Acoustic parameters used as input data for the ANN.

Parameter (abbr.) Parameter description

SD F0 Standard deviation of the fundamental frequency.

NF0

Measure of the fundamental frequency changeability.

NF0 =
F0 max − F0 min

F0m
,

F0 max – maximal fundamental frequency,
F0 min – minimal fundamental frequency,
F0m – mean fundamental frequency.

Pitch Perturbation
Quotient (jitter)

PPQ =
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,

Pi – pitch of the i-th glottal cycle,
N – number of cycles contained in the considered segment of the voice
signal [11, 12, 13].
This method for calculation reduces the influence of slow amplitude and

pitch variations (tremors) due to non-pathological factors
(physical overtension) [6].

Amplitude
Perturbation

Quotient (shimmer)

APQ =
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Ai – amplitude of the i-th glottal cycle,
N – number of cycles (as above).

Turbulence Noise
Index (TNI)

Ratio of the turbulent noise energy to the total energy of the voice signal:

TNI = 100
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R(pi, Ti) – correlation coefficient between two consequent glottal cycles
of the signal with beginning pi and a duration of Ti,

N – number of cycles contained in the segment [14].
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HNR by Yumoto’s
method

Ratio of harmonic energy to noise energy, informative for the hoarseness of
the voice signal. It accounts for the turbulent noise in the voice and for the

modulation noise due to the jitter and shimmer [15, 16, 17].

HNR in frequency
domain

As above, but counted in frequency domain after FFT transform.

HNR in frequency
domain by Qi’s

A modification of Yumoto’s method that consists in normalisation of the
spectrum [18].

Normalized Noise
Energy (NNE)

NNE = 10 log10

„

1

n

n
X

i=1

ENi

EHi + ENi

«

[dB],

EH – harmonics energy,
EN – noise energy

TNtSR Turbulence Noise-to-Signal Ratio.

DH Degree of Hoarseness in spectral domains.

Normalized First
Harmonic Energy

Ratio of the amplitude of the first harmonic from the power spectrum to the
total energy of the rest of harmonics in the 4 kHz frequency band, used

instead of the most frequently used ratio between the amplitudes of the first
and second harmonics [19]. The parameter reflects non-simultaneous

lengthwise closing of vocal fold resulting in so-called ‘breathy’ phonation.

Fr AT, A AT,
Fr FT, A FT

Frequency and amplitude of the most intensive amplitude and frequency
tremor, respectively. Tremors are slow fundamental frequency and amplitude

variations (of frequency 15–20 Hz), due to physical over-tension [6].

2.3. Artificial neural networks

The acoustic parameters listed above were used as input signals for artificial neural
networks, which were designed, implemented, optimized, learned and performed using
professional program Statistica Neural Networks 6.0 [20].

We decided to use two types of popular neural networks architectures: multilayer
perceptron (with three-layer architecture) and radial basis functions feed-forward neural
network. Every network under consideration was formed with the following numbers of
elements constituting its structure:

• 4–16 neurons in the input layer,
• 5–15 neurons in the hidden layer,
• 1 neuron in the output layer.
The single output neuron, which is the only common feature for all of the tested

models, was expected to provide binary output (1 or 0 for samples recognized as patho-
logical or non-pathological, respectively). However, the structure described above in-
cludes two levels of freedom – the number of neurons in the input layer and the number
of neurons in the hidden layer. The values of these parameters had to be determined by
means of special goal oriented experiments.

The first and most important parameter under consideration was therefore the di-
mension (and content) of the input vector. In the first step all of the parameters used as
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input data were scaled linear within the 0-1 range to eliminate potential domination of
some parameters over the other.

The next, more complicated and confusing step included selection of the input pa-
rameters. It is very well known (and evident) that using more input signals provides
better and more complete information about the process passed to the neural network
working as a model of such process. It means that the neural model of any object un-
der consideration can be more precisely and better adapted to the real process, and this
result is very profitable. In the discussed case the richest model (fed by more input pa-
rameters) can better reproduce the speech articulation process and can better help in
differentiation between the normal and pathological situations. On the other hand it is
also known that too many input parameters cause always increasing difficulties during
the learning process, delaying the model tuning and sometimes leading up to the in-
stability of the learning iterations and total loosing of the generalization abilities in the
trained neural model.

In our research we tried to find out, how many input parameters are necessary for
proper functioning of the neural network model of the speech articulation process, and
– what was much more difficult – which from the posed input parameters (describing
and measuring different aspects of the analyzed speech signal) are absolutely necessary
to build an adequate model. The latter problem has not been solved entirely in the pre-
sented work and requires further investigation, but the results of preliminary trials are
described below.

The second level of freedom during the neural network forming is always the num-
ber of neurons in the hidden layer. If this number is too big, the network can not solve
the problem because its “intelligence” is too low. Nevertheless, a too big number of
hidden neurons (which theoretically produces a “too smart” network) is also not good,
because limited amount of information, given by so-called “learning set” (see below)
can not determine all necessary values of connection parameters (“synoptic weight”)
inside the rich internal structure of the network, which often makes its behavior unpre-
dictable and the whole network – useless. The theory of neural networks until now gives
no precise solutions, answering the question: How many hidden neurons do we need for
such collection of modeled data? It brings about an indispensable next series of time
consuming experiments, during which one must change the structure of the network,
giving more or less hidden neurons, evaluating after full learning process the quality of
the obtained solutions for every structure under consideration.

Not only the network architecture but also the learning algorithms (error backprop-
agation, quick-backpropagation, conjugated gradient descent, Levenberg–Marquadt),
were adjusted experimentally.

The experiments were conducted with the help of the Statistica Neural Networks
Intelligent Problem Solver (IPS). The IPS selects the best network structures with search
algorithms that use state-of-the-art techniques to determine the selection of inputs, the
number of hidden units, and other key factors in the network design. As many as 2000
experiments with different designs were conducted, and the best networks were selected.
Afterwards, the most promising of the developed models were learned to obtain the best
achievable performance. The best results will be discussed below.
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The learning process was performed using such assumptions: the input data were
divided at random into three groups: 19 samples formed the training set, 7 and 6 cases
were used as the validation and test set respectively.

The learning coefficient was fixed on the value 0.1 (without changes during the
learning process) and the momentum coefficient was selected on the value 0.3. Both
values were selected basing on preliminary experiments.

3. Results

The best networks developed in the experiments are presented in Table 2.

Table 2. Other developed networks (examples).

No. Structure Learning error Validation error Testing error

1 RBF 16:16-4-1:1 0.3389 0.5387 0.5783

2 RBF 13:13-5-1:1 0.2965 0.5493 0.5215

3 RBF 13:13-7-1:1 0.2555 0.4821 0.4537

4 RBF 13:13-4-1:1 0.3425 0.4093 0.3936

5 MLP 16:16-10-1:1 0.4187 0.2222 2.1032

6 MLP 16:16-10-1:1 0.4641 0.1888 1.3847

7 MLP 16:16-10-1:1 0.4239 0.1763 1.6367

8 MLP 16:16-10-1:1 0.4122 0.0886 1.5568

9 MLP 16:16-10-1:1 0.5253 0.4406 0.5762

10 MLP 16:16-9-1:1 0.4735 0.3717 0.5794

11 MLP 13:13-8-1:1 0.3160 0.3898 0.5855

12 MLP 16:16-14-1:1 0.1707 0.3661 0.4699

13 MLP 16:16-12-1:1 0.0004 0.3516 1.6081

14 MLP 16:16-14-1:1 0.0051 0.2783 0.7650

The best of the developed models was a three-layer perceptron with 16 neurons in
the input layer, 7 neurons in the hidden layer and 1 neuron in the output layer. The
structure of the network is shown in Fig. 1.

The learning algorithm which proved to be most efficient in this model was a com-
bination of backpropagation (applied during first 50 epochs) and Levenberg–Marquadt
(applied during last 50 epochs). The process of learning is presented on the training
error graph (Fig. 2).

The learning error of the trained network was 0.007773, while the validation and
testing errors were 2.53 · 10−11 and 1.62 · 10−12 respectively. The network classified
all cases correctly, which means that the specificity and sensitivity of the classification
was 100%.
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Fig. 1. Structure of the best developed multilayer perceptron.

Fig. 2. Training error graph for the best developed network.

4. Discussion

The artificial neural network presented in this work achieved very good performance
in classification between pathological and non-pathological speech in the samples used
as the learning, validation and training set. However, there are several reasons why the
research into this problem still needs to be developed.

The preliminary research project which was presented above involved a group of
patients with advanced larynx pathologies. Further research is necessary to determine
whether it is possible to achieve satisfactory performance of the ANN-based classifi-
cation for patients at early stages of the disease. This problem is most crucial in the
larynx cancer which, as mentioned before, can be cured easily in the beginning of its
progression, but is characterized by high mortality when the process is advanced.

Secondly, the ANN trained to classify between pathological and non-pathological
speech, would be a useful tool only if it could be used easily by any general practitioner.
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As it was mentioned earlier, the voice signal applied in the presented work was recorded
in a sound-treated room with noise level below 32 dB. Such conditions are hardly avail-
able in the primary health care. It is therefore necessary to prove whether the ANN can
produce accurate diagnoses for voice samples recorded with a background noise level
typical for a general practitioner’s office.

Other authors have also made attempts to provide a possibility of preliminary voice
diagnosis without personal contact with a physician. These attempts included assess-
ment of the speech signal transmitted by the public telephone network [21]. Further
research that will follow the project presented in this paper will include training of the
ANN to classify the voice samples processed in a telephone network or even an internet
microphone.

5. Conclusions

The very high rate of accurate predictions achieved by the ANN applied in the re-
search suggests that the novel approach to acoustic analysis of the speech signal may
improve the effectiveness of automated laryngological pre-diagnosis. The artificial neu-
ral network proved to be a promising, cheap and convenient tool for voice pathology
recognition. Possible application of the presented results includes preliminary laryngo-
logical diagnosis on the primary health care level, “remote” voice diagnosis via internet
or telephone network and screening (early detection) for larynx diseases, especially can-
cer. A widely available, easy-to-use computer system, providing sensitive and specific
voice diagnosis, could improve the results of laryngological treatment.
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