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A numerical method is developed for estimating the acoustic power of any baffled planar structure,
which is vibrating with arbitrary surface velocity profile. It is well known that this parameter may be
calculated with good accuracy using near field data, in terms of an impedance matrix, which is generated
by the discretization of the vibrating surface into a number of elementary radiators. Thus, the sound
pressure field on the structure surface can be determined by a combination of the matrix and the volume
velocity vector. Then, the sound power can be estimated through integration of the acoustic intensity
over a closed surface. On the other hand, few works exist in which the calculation is done in the far
field from near field data by the use of radiation matrices, possibly because the numerical integration
becomes complicated and expensive due to large variations of directivity of the source. In this work a
different approach is used, based in the so-called Propagating Matrix, which is useful for calculating the
sound pressure of an arbitrary number of points into free space, and it can be employed to estimate
the sound power by integrating over a finite number of pressure points over a hemispherical surface
surrounding the vibrating structure. Through numerical analysis, the advantages/disadvantages of the
current method are investigated, when compared with numerical methods based on near field data. A
flexible rectangular baffled panel is considered, where the normal velocity profile is previously calculated
using a commercial finite element software. However, the method can easily be extended to any arbitrary
shape. Good results are obtained in the low frequency range showing high computational performance
of the method. Moreover, strategies are proposed to improve the performance of the method in terms of
both computational cost and speed.

Keywords: propagating matrix, far field, sound power, structural finite element analysis.

1. Introduction

Sound radiation from baffled planar sources is im-
portant in many areas of engineering where noise con-
trol is required. Particularly, the sound power is a
suitable parameter to characterize the strength of the
sound generated by a vibrating structure. The fun-
damentals of acoustic radiation analysis of vibrating
baffled planar bodies were established two centuries
ago by Lord Rayleigh, through the well-know Rayleigh
integral (Rayleigh, 1896), which relates the acous-
tic pressure at an arbitrary point of observation in
the propagation media to the distribution of out-of-

plane velocity on the structure. Analytical solutions
are possible for simple geometries (Wallace, 1972).
This is an useful feature to find analytical expressions
of the displacement vibrating field and, consequently,
the sound power. However, in many cases the vibrating
flat body has either a complex geometry or regular ge-
ometry and complicated out-of-plane velocity field. In
such cases the Rayleigh Integral is difficult or impos-
sible to solve analytically and numerical methods are
the only choice. In this case, the vibrating field may
be represented as a discrete velocity field or well as a
finite set of planar acoustic radiators with a specific
velocity amplitude.
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On the other hand, it is possible to distinguish two
ways for the sound power calculation: using the near
sound pressure field or using the far field, where the
sound pressure is calculated from the vibration field
data. The literature indicates that there are more ap-
proaches using the former. In this case the integra-
tion domain is the structure surface. Numerical eval-
uation of the Rayleigh Integral is possible as reported
by Sandman (1977). However, several more efficiently
solutions have been developed. Williams and May-
nard (1982) developed a wave number representation
of the Rayleigh Integral which is solved through the
fast Fourier transform algorithm, allowing a 400 times
computational speed increase, when compared to di-
rect numerical integration. In this case, the discretiza-
tion domain features must satisfy proper conditions
to guarantee the application of the Discrete Fourier
Transform over the velocity vibration function. Fi-
ates (2003) used the same approach to investigate the
radiation efficiency of stiffened panels modeled with
finite elements.
A more recently work of this kind was developed

by Langley (2007), who considered both wave num-
ber representation and impedance matrix formulation,
where the acoustic pressure is expressed in terms of
wavelets. The discretization domain may also be useful
to consider directly each sub-region as a small acous-
tic radiator, and thus, the whole structure as a fi-
nite set of elementary radiators. This point of view
was introduced simultaneously by Mollo and Bern-
hard (1989), Borgiotti (1990) and Cunefare and
Koopmann (1991). In this case, the pressure at any
point of the structure is also calculated by a summa-
tion of all contributions, but in a matrix form, in terms
of a combination of an impedance matrix and a volume
velocity vector.
So, both the Williams-Maynard’s approach as the

Impedance Matrix approach are suitable to import
the normal velocity data from structural finite element
models, and they have interesting advantages. For ex-
ample, the method based on the Fourier transform can
be very fast only under the condition that the number
of elements is a power of two. In the case of regular
mesh this is easy to achieve, however, complex struc-
tures with more detail often require irregular mesh and
therefore, the number of elements becomes difficult to
controlling.
On the other hand, the method based on the

impedance matrix also offers advantages: for exam-
ple, due to the reciprocity principle, the matrix [Z]
is always symmetric, and this useful feature can be
combined with linear algebraic techniques. In that
sense, Fahy (Fahy, Gardonio, 2007) notes that in
the symmetrical case it is always possible to separate
the diagonal and off-diagonal terms of the impedance
matrix for any shape of baffled flat panel, allowing
to express the sound radiation in terms of modes

that radiate independently. This property was use-
ful to Baumann, Ho and Robertshaw (1992), El-
liott and Johnson (1993) and Borgiotti and
Jones (1994) to develop the useful and well-known
concept of radiation filters to be applied in the
active control of radiated sound power. Moreover,
the quadratic nature of Wrad has been considered
by Mollo and Bernhard (1989), Naghshineh et
al. (1992), Naghshineh and Koopmann (1993), and
more recently by Fisher et al. (2012) to be applied in
quadratic optimization theory to minimize the acous-
tic radiated power. In that sense, Naghshineh and
Koopmann (1993) considered localized forces (actua-
tors) in the vibrating structure to explore the control
mechanisms.
It should be noted that for the calculation of sound

power, either by velocity field based methods (such as
Williams-Maynard’s Method (Williams, Maynard,
1982)) or by the Matrix Impedance Method, it is
always considered the sound pressure at the vibrat-
ing surface. Mathematically, it means that the sound
power is calculated from two double integrals, one
nested on the other, with the same integration domain.
In fact, some authors had reported formulations using
quadruple integrals (Naghshineh, Koopmann, 1992;
Atalla, Nicolas, 1994; Li, 2006; Langley, 2007;
Fahy, Gardonio, 2007). In general, this feature can
lead to an expensive computational effort when con-
sidering a large number of elements. In that sense,
it is interesting to ask whether it is possible to use
two different integration domains. This could be use-
ful to reduce the computational cost associated with
the calculation of sound power. One way to do that
is to consider another different surface outside the vi-
brating surface and the sound pressure to any point
located on that new domain. Indeed, few works have
been found in the literature related to this idea and
using radiation matrices, like the radiation impedance
matrix [Z].
Atalla and Nicolas (1994) compared several

models used to evaluate the radiation efficiency of
plate-like radiators, included radiation impedance ma-
trix techniques. Moreover, the authors investigated
about both near field and far field approaches.
In the later is introduced a method developed by
Berry (1991), who employed the two-dimensional
Fourier transform approach over a hemisphere of in-
finite radius to integrate the radial acoustic intensity
in the far field. Berkhoff (2002), used a cost func-
tion associated to sound power in the far field to min-
imize it in terms of time-averaged squared pressure
data, considering a large distance from the structure
and using a sufficient number of measurement posi-
tions. Zou and Crocker (2009) derived an equation
for calculating the sound power radiated from a rect-
angular plate with arbitrary boundary conditions, in
which the sound power radiated from the plate is rep-



M.A. González-Montenegro et al. – A Numerical Approach to Calculate the Radiation Efficiency. . . 251

resented in terms of the normal velocity distribution
on the plate and a coupling matrix, by integrating
the sound intensity over a hemisphere in the far field.
Pàmies et al. (2011) estimate the sound power radi-
ated by an aperture placed in an enclosure wall to low
frequencies by adding the sound intensity over a hemi-
sphere of fixed radius surrounding the aperture. So,
these researches suggest to use an hemispherical sur-
face in the far field, like as the standardized method
ISO 3745 (2003) to measure the sound power of a
sound source. However, Atalla and Nicolas (1994)
consider that far field approaches could be more com-
putational expensive than near field ones, mainly at
middle and high frequencies, due to large variations
of directivity of the source. In that sense, it would be
interesting to found some strategy for using the far
field approach and this idea is the main focus of this
paper.
In regard to the analysis of sound radiation of vi-

brating structures by means of matrix methods, it
could be cited the work of Fan et al. (1997) who mod-
eled the sound field of a single-source ultrasound trans-
ducer as composed of many small elements, where the
sound pressure vector, that represents the acoustic far
field, is calculated in terms of a matrix [H ], similar to
[Z], but different since it is a relationship between the
far field acoustic pressure vector and the normal veloc-
ity vector of the source. Bai and Tsao (2002) used the
same matrix technique to analyze the acoustic radia-
tion of baffled planar sources, and called such matrix
as propagating matrix. Arenas et al. (2010) also use
the propagating matrix [G] and a singular value de-
composition to estimate the directivity pattern from a
vibrating baffled elliptical piston and considering the
radiation of each element as an equivalent circular pis-
ton.
The approach proposed here differs from previous

works because the sound power of a baffled planar vi-
brating structure is calculated using the far field, by
means of the Propagating Matrix [G]: since the ve-
locity vibrating field is previously known, it is pos-
sible to determine the acoustic pressure of a set of
points over an hemispherical surface and integrate the
acoustic intensity over this domain, as indicated in the
standardized method ISO 3745 (2003). Through nu-
merical analysis, the advantages/disadvantages of the
current method are investigated, when compared with
numerical methods based in near field data. A flex-
ible rectangular baffled panel is considered, where
the normal velocity profile is calculated using the fi-
nite element software ANSYS. After that, the veloc-
ity field was used as a input data to the current ap-
proach implemented in MATLAB. So, the method can
easily be extended to an arbitrary shape. Moreover,
strategies are proposed to improve the performance of
the method in terms of both computational cost and
speed.

2. Theory

The sound radiated from a flat panel (rigid or flex-
ible) depends strongly on the coupling between the vi-
brating surface and the surrounding fluid. When the
structure is vibrating, the particles of fluid very close to
the body also vibrate, generating acoustic waves. Con-
sider a baffled flat panel of rectangular shape whose
surface is located in the x−y plane, centered at the ori-
gin of the coordinate system which is radiating acoustic
waves into a fluid in the half space z > 0, as indicated
in Fig. 1. Let the panel be divided into N elements of
area Ae, with e = 1, 2, . . . , N . Thus, the vibration pro-
file can be specified in terms of the elementary normal
velocity ve at their center positions. Assuming that the
characteristic size of the elements is small compared
with both the structural wavelength and the acoustic
wavelength, the pressure at M points in the acoustic
medium can be represented by a linear transformation
of the volume velocity vectors Aeve through a propa-
gating matrix operator [G], defined by:

{p} = [G] {v},

Grs =
jωρ0Aee

−jkRrs

2πRrs
,

(1)

where
{p} = [p1, p2, · · · , pM ]T

and
{v} = [v1, v2, · · · , vN ]T

are the sound pressure and normal velocity vectors,
Rrs is the distance between the center of the r-th ele-
ment and the s-th point in the far field, ω is the circular
frequency and ρ0 is the density of the fluid. Now, con-
sider that the M field points are distributed into an
hemispherical surface surrounding the vibrating body,
with center at the origin of the coordinate system as
indicated in Fig. 2. In general, the choice of location of
the points is arbitrary. However, we will consider the

Fig. 1. Geometry of rectangular baffled flat panel.
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Fig. 2. Geometry of a hemispherical surface surrounding
the source.

following regular partition to the spherical coordinates
θ and φ:

Θ = {θi ∈ [0, π/2] | θi = θi−1 +∆θ,

and i = 1, · · · ,Mθ} ,

Φ = {φj ∈ [0, 2π] | φj = φj−1 +∆φ,

and j = 1, · · · ,Mφ} ,

(2)

where Mθ and Mφ are integer positive numbers such
as:

M = MθMφ, (3)

and ri,j is a vector with the spherical coordinates
to any point in the hemispherical surface defined by
Eq. (2), such that:

ri,j = (θi, φj , r), with |ri,j | = r. (4)

Now pi,j , pi,j+1, pi+1,j and pi+1,j+1 are the sound pres-
sure at positions ri,j , ri,j+1, ri+1,j and ri+1,j+1, re-
spectively. In addition, let ∆Ai,j be the area of the
hemispherical region among those points, defined by:

∆Ai,j = r2 sin θ∆θ∆φ. (5)

To estimate the sound power, we can consider the
sound intensity for each ∆Ai,j , in a similar way that
the standardized method ISO 3745 (2003). In that
sense, we can use the following spatial average of sound
pressure:

〈
p2
〉
∆Ai,j

=
p2i,j + p2i,j+1 + p2i+1,j + p2i+1,j+1

4
, (6)

and the well-know expression for the sound intensity
in the far field (Wallace, 1972; Fahy, Gardonio,
2007):

I∆Ai,j
=

〈
p2
〉
∆Ai,j

ρ0c
, (7)

where c is the speed of sound.
The following expression of sound power is obtained

by combination of Eqs. (5), (6) and (7):

Wrad =

Mθ−1∑

i=1

Mφ−1∑

j=1

I∆Ai,j
∆Ai,j . (8)

3. Numerical results

In order to verify the effectiveness of the proposed
method, in what follows it will be considered a vi-
brating flexible plate with a rectangular shape and
mounted flush into a rigid infinite baffle. This kind
of geometry and boundary conditions are suitable to
compare the results of this work with some analytical
and numerical models found in the literature.
When the panel is vibrating, the largest amount

of energy is concentrated at the natural frequencies of
the structure (Fiates, 2003). Taking this fact into con-
sideration it is possible to obtain the velocity profile of
each mode shape by using localized excitation at natu-
ral frequencies. This kind of analysis can be applied to
either experimental tests or numerical models such as
finite elements. However, in the last case the same re-
sults may be obtained by using numerical modal analy-
sis. This option is computationally less expensive and
faster in terms of CPU time than the former and it
will be used in this work. The parameters of the plate
are: area = 1.0× 0.8m2, thickness h = 7 mm, Young’s
modulus E = 210 GPa, density ρ = 7860 kg/m3, and
Poisson ratio ν = 0.33. The plate is the same used
by Fiates (2003), who investigated the radiation effi-
ciency of stiffened panels. In the same research, several
structures were modeled with FEM and the sound radi-
ation was estimated by using the algorithm developed
byWilliams andMaynard (1982). In this work, the
structure described above is modeled by using the Fi-
nite Element software ANSYS. The modal analysis op-
tion was used to obtain the normal velocity distribu-
tion of each mode shape.
The procedure to calculate the normal velocity is

described in Fig. 3. To ensure a good comparison the
same mesh used in Fiates’s research was employed:
the structure was modeled by using a regular mesh
with quadrilateral shell elements, each one having four
nodes. A total of 3969 elements and 4096 nodes were
used. In that case it was important the choice of a num-
ber of nodes equal to a power of two because Fiates
used the Williams-Maynard’s Method which is based

Fig. 3. Numerical determination of normal velocity.
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in the spatial two-dimensional Fast Fourier Transform
of the velocity vibration function. The normal velocity
information is also important to estimate the vibrat-
ing energy of the structure. In that sense, the sound
radiation efficiency, σrad, is a suitable parameter to
describe the effectiveness of any vibrating structure
to radiate sound energy and is defined by (Wallace,
1972; Fahy, Gardonio, 2007):

σrad =
Wrad

ρ0cS
〈
v2
〉 , (9)

where
〈
v2
〉
is the average mean-square velocity and S

represents the area of the panel.
The radiation efficiency may be seen as a measure

of the sound radiation in dependence of the geome-
try of the panel, because is equivalent to a normal-
ized sound power with respect to the specific acous-
tic impedance of the surrounding media, the area and
vibrating normal velocity of the source. Indeed, this
parameter depends strongly of the mode shape, as re-
ported by Wallace (1972).
In Fig. 4 it is shown the curve σrad as a func-

tion of frequency, for the structure defined above.
Fiates (2003) estimates this parameter using the
method developed by Williams and Maynard
(1982), which has been compared with a previous the-
oretical model given by Maidanik (1962). That is a
very efficient approach so that we can be sure about
the reliability of the results. On the other hand, Fig. 5
presents σrad for the same structure and boundary con-
ditions, but calculated with the current method devel-
oped in this work. Because this approach is based on
the calculation of the sound intensity in the far field,
it is important to use an hemispherical surface large
enough to ensure plane wavefronts in the vicinity of
the hemisphere (shown in Fig. 2), where the sound
pressure is calculated. This is absolutely necessary for
making use of Eq. (7). Thus, it should be clear that the
calculation of σrad by using this approach is sensitive
to the radius of the hemispherical surface.

Fig. 4. Radiation efficiency calculated by Fiates (2003)
(blue line), and the theoretical model developed by Maid-
anik (1962) (red line). The dotted line indicates the coin-

cidence frequency.

Fig. 5. Radiation efficiency calculated by the current
method (blue line), and the theoretical model developed

by Maidanik (1962) (red line).

In order to quantify the sensitivity of σrad with the
radius of the hemisphere, a new simulation was per-
formed for the same structure. This time, the maxi-
mum frequency analyzed was 4819 Hz. A total of 8000
elements and 8181 nodes were used to ensure compli-
ance with the criterion of twelve elements for each flex-
ural wavelength. In Figs. 6 and 7 it is shown a family
of curves of σrad for several values of the radius of the
hemisphere. It should be noted that σrad is too sensi-
tive at middle and high frequencies, while it remains
unchanged at low frequencies. Moreover, we can see

Fig. 6. Radiation efficiency calculated for several values
of radius of the hemisphere.

Fig. 7. Radiation efficiency calculated for several values
of radius of the hemisphere: 2 m , 5 m ,
10 m . , 20 m , 30 m .... , 60 m

(Detail of Fig.6).
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that for a radius greater than 30 m, no changes are
observed in the frequency range. However, it is impor-
tant to determine quantitatively a suitable value of the
radius that may be used with confidence in the follow-
ing analysis. One way to do this is by defining an error
ratio between two different σrad curves for two different
values of radius as follows:

εradius =

Nfreq∑
j=1

|σrad(f, rhemisph,i+1)−σrad(f, rhemisph,i)|

Nfreq∑
j=1

σrad(f, rhemisph,i)

, (10)

where rhemisph,i is the i-th radius of the hemisphere
and Nfreq is the number of structural natural frequen-
cies. This analysis considered up to the first 170 natu-
ral frequencies.
In Fig. 8 it is possible to observe the convergence

error rate of the radiation efficiency as a function of
the hemispherical radius. For rhemisph = 2 m, the error
rate is approximately 40%, while for a radius of 30 m
the same is less than 0.1%. Thus, rhemisph = 30 m may
be considered as quite reliable so that this information
will be used in the following analysis.

Fig. 8. Convergence error rate (log scale) of radiation
efficiency with hemispherical radius.

4. The mesh of the hemispherical surface

Until now, it was discussed the discretization of the
vibrating surface (by using FEM). However, nothing
has been said about the discretization of the hemi-
spherical surface. From Eq. (8), it is possible to note
that the hemisphere is divided into (Mθ − 1)(Mφ − 1)
small regions. Because there is no information about
the effects of such discretization in the radiation ef-
ficiency, it is absolutely necessary to make a proper
analysis that allow us to understand the advantages
and limitations of this approach. In Fig. 9, it is shown
a set of radiation efficiency curves considering differ-
ent values of the hemispherical surface parameter M,
defined in Eq. (3). Particularly, we shall consider that

Fig. 9. Radiation efficiency calculated for several values
of the parameterM :M ′ = 10 ,M ′ = 20 ,

M ′ = 50 .

Mθ = Mφ = M ′, so that M = M ′2. Thus, one can
see that for small values of M ′(M ′ = 10), there is
considerable error in the calculated radiation efficiency
in middle and high frequencies, which distorts the ex-
pected typical nature of σrad, particularly at frequen-
cies near and above the coincidence frequency. How-
ever, the same error can be reduced by increasing M ′.
In fact, for M ′ = 50 small distortions are observable
and the curve presents the asymptotic behavior ex-
pected at high frequencies. In order to quantify the
error of σrad as a function of M ′, the following error
function is defined:

εM ′ =

Nfreq∑
j=1

∣∣σrad(f,M ′
i+1)− σrad(f,M

′
i)
∣∣

Nfreq∑
j=1

σrad(f,M ′
i)

. (11)

In Fig. 10 it is shown the convergence error ratio of the
radiation efficiency as a function of M ′. For M ′ = 2
the error rate is very large. However, for M ′ = 63 the
same is less than 0.1%. On the other hand, the conver-
gence as a function of the radius is much faster than
the convergence in terms of M ′. It is noteworthy that
the increase in radius does not influence the computa-
tional cost in calculating σrad. However, the parameter
M has a strong influence on the computational cost,

Fig. 10. Convergence error rate (log scale) of radiation
efficiency as a function of M ′.
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because it is directly related to the dimension of [G]
(see Eq. (1)). For example, for M = 202, the size of
[G] is 44 MB, while for M = 702 is 563ḾB. Moreover,
the computational time in the former was only 121 sec-
onds, while the later was 1390 seconds. In this work,
the current approach was implemented using MAT-
LAB, so that [G] is always a mat file. Evidently, it
is desirable to obtain a clean curve of radiation effi-
ciency, but the method requires a high computational
cost compared to a distorted curve. This may indeed
be a great disadvantage compared to other methods
that do not exhibit this type of error. However, in the
next section it will be shown that taking into account
some considerations it will be possible to get reliable
curves with a much lower computational cost.
It is very important to understand the nature of

the errors that appear in the σrad curves when using
the current approach. From Fig. 9 it is possible to ob-
serve that the distortion varies with frequency. In fact,
it is possible to quantify the associated error, consid-
ering that the radiation efficiency calculated here is a
discrete information, because depends of the vibration
mode.
On the other hand, one possible way to obtain an

approximation of such error, is considering a reference
to σrad as “reasonably acceptable”. In this research,
the reference are the σrad values forM ′ = 70. Although
such approach is not entirely accurate, the same will
be helpful to understand the evolution of the distortion
associated when using the current method to calculate
the radiation efficiency. Thus, the error as a function
of frequency is defined by:

εf =
|σrad(f,M ′)− σrad(f,M

′
70)|

σrad(f,M ′
70)

. (12)

In Fig. 11 are shown four plots of εf for different values
of M ′. Clearly, the distortion on σrad depends on the
frequency, but not in a simple way. For example, for
M ′ = 5 the error increases with frequency and has sev-
eral abrupt jumps, so it is quite irregular. In general,
the error reaches extremely high values, indicating that
low values of M ′ are unsuitable for a reasonable esti-
mate of σrad. For M ′ = 20, the error remains crescent
in the frequency range, but with fewer irregularities to
high values, and therefore presents a more uniform be-
havior, particularly at middle and high frequencies. In
the same frequency range we can note that the error
is still high, however, the overall error rate is less than
that for M ′ = 5.
For M ′ = 40 and M ′ = 60 the error behavior takes

a different form: from 40 Hz to 980 Hz the error can be
considered constant with frequency. Between 750 Hz
and 2400 Hz, the behavior is clearly concave with a
maximum value at 1400 Hz. This data set has a well
defined trend, and in fact, a polynomial curve fit of
order 2 appears to be quite reasonable for representing
the error in this region.

Fig. 11. Error of radiation efficiency with different values
of M ′ as a function of frequency.

For frequencies above 2500 Hz, the behavior of the
error is clearly crescent although with high dispersion
of data. The information given by the Fig. 11 is
valuable, because it indicates that the error generated
in σrad depends on both the frequency and the number
of points used in the hemispherical surface. However,
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Imax = 4.21 watt m−2 Imax = 17.66 watt m−2

Mode 1 – 45.80 Hz Mode 2 – 99.41 Hz

Imax = 64.88 watt m−2 Imax = 2.83 · 106 watt m−2

Mode 3 – 183.16 Hz Mode 54 – 1804.60 Hz
Fig. 12. Acoustic intensity in the far field generated by the vibrating structure surface.

Fig. 13. Acoustic intensity in the far field generated by the vibrating structure surface. Zoom of mode 54.
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by itself it is not enough to understand the nature of
the error. The concept that can be useful is the di-
rectivity of the source. In fact, the present methodol-
ogy to calculate σrad is based on the far field of the
sound pressure generated by the vibrating structure,
and therefore, the sound power must also be sensitive
to the spatial distribution of sound pressure, i.e. the
directivity of the source.
It is interesting to show the directivity patterns

for a structural mode of the panel. At high frequen-
cies, the directivity pattern exhibits an important in-
crease in the number of lobes and consequently, the
hemisphere should have more points if we need to per-
form an accurate integration of the acoustic intensity
on the surface. In Figs. 12 and 13 it is illustrated
the modulus of the acoustic intensity to the far field,
for various modes of vibration of the structure con-
sidered in this work. Black spots belong to the sur-
face of a sphere with radius equal to the maximum
value of the sound intensity modulus, where the spa-
tial discretization is the same as that used for the
hemispherical surface of Fig. 2, and is defined simi-
larly to the Eqs. (2), (3). In that sense, it was chosen
a complete sphere and not just one hemisphere, in or-
der to have a better spatial visualization of radiation
patterns.
The first and second vibration modes are associ-

ated to a monopole and dipole, respectively, which are
typical radiation patterns for a flat rectangular panel
mounted in a infinite baffle according to the litera-
ture (Cremer et al., 1988). The spheres of Fig. 12
are formed by 800 points each, which corresponds to
the case M ′ = 20. In Fig. 11 it is noted that the er-
ror is approximately 2.9% for the first vibration mode,
while for the second and fourth modes is 4.2 and 5.2%,
respectively. Clearly the error is increased, at least
to the first modes, and this can be justified by the
directivity, because the directional patterns become
more complicated (geometrically) at higher frequen-
cies, so that it is not possible to realize a good in-
tegration of the sound intensity over the hemispheri-
cal surface using few points. That is the reason why
better results are obtained for σrad for higher values
of M ′.
Particularly, this is true for the mode 54, which

is highly directional and has several minor lobes in
different directions (see Fig. 13). Thus, for this case it
is clearly noticeable the need of a more refined mesh
for the hemispherical surface.

5. Comparison in terms of computational

performance

It is very important to evaluate the approach in
terms of computational performance. One way to do
this is to compare the current method (or G method),

with some near field approach, such as the Radia-
tion Impedance Matrix Method (or Z method). In
that sense, the sound power can be expressed in the
following quadratic matrix formulation introduced by
Fahy (Fahy, Gardonio, 2007):

Wrad =
S

2
Re{{ve}H}{pe}}

=
S

2
Re{{ve}H}[Z]{ve}},

{pe} = [Z]{ve},

Zrs =
jωρ0Aee

−jkRrs

2πRrs
,

(13)

where [Z] is the Impedance Matrix, which incorporates
the point and transfer acoustic impedance terms over
the grid of elements that represent the structure, {pe},
{ve} are the acoustic pressure and normal velocity vec-
tors, Rrs is the distance between the centers of the r-th
and s-th elements, S represents the area of the surface
and H is the hermitian operator. It should be noted
that for r = s, there is a singular problem. In this
case, it may be useful the following approximation of
the Rayleigh integral given by Bai and Tsao to the
diagonal terms (Bai, Tsao, 2002):

Zrr =
1

2

(
k

√
S

π

)2

− j
8

3π

(
k

√
S

π

)
. (14)

One more time, it will be consider the same struc-
ture analyzed in Secs. 3 and 4. Figure 14 shows a
comparison in terms of the radiation efficiency. The Z
Method may be consider as a “good reference”, since
this approach is well-known in the literature. More-
over, the results should be reliable, because the cal-
culations are based in the near field data and thus,
there are no problems associated with directivity. At
high frequencies there are some little perturbations
of σrad (Fig. 14, grey line) but, in general, the curve
presents the expected behavior. On the other hand, the

Fig. 14. Radiation efficiency calculated by two methods:
Z Method (blue line), G Method (black line).
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G Method (blue line) exhibits excellent agreement in
almost all of the frequency range. At low and middle
frequencies no errors are detected, but important ones
are clearly visible above the critical frequency, due to
the directivity of the source, which has been indicated
by Atalla and Nicolas (1994).
For all simulations the mesh was composed of

8000 elements. That means the dimension of [Z] is
8000× 8000. However, the storage of large matrices
is computational expensive, and requires high compu-
tational resources in terms of RAM memory. In that
sense, the symmetry of [Z] may be useful to save mem-
ory. Indeed, [Z] can be expressed in terms of an upper
triangular matrix, [ZU ], and the diagonal of [Z] as:

[Z] = [ZU ] + [ZU ]
T + diag[Z], (15)

where “T” is the transpose operator, and diag[Z] is
the N ×N matrix containing the diagonal elements of
[Z]. This matrices are computationally less expensive
to storage than the full matrix. To this case, the size
of [ZU ] was 368 MB and 7205 seconds were required
(approximately 2hrs) for the σrad calculation. To the G
case and withM ′ = 70, the size of [G] was 544 MB and
1395 seconds (approximately 23 minutes) were neces-
sary. Thus, it is observed that even when [ZU ] is com-
putationally less expensive, the use of Eq. (13) along
with Eq. (15) is much slower than the G Method, pos-
sibly due to the matrix operations such as transposi-
tion. This operation may be computational expensive
for large matrices. Moreover, the multiplication of a
matrix by a vector must be performed more than once.
On the other hand, the G Method is very fast, al-

though the size of [G] may cause problems of storage.
So, it is desirable to decrease the size of [G] and this
is possible by consider small values of M ′. However,
it was seen in the last section that important errors
are associated to σrad that depends on the value of
M’. In that sense, there is concern whether it would
be possible to decrease the size of [G] in terms of M ′

without sacrificing the quality of results, particularly
at middle and high frequencies. The CPU times and
the sizes of [G] are shown in Table 1, for the four sim-
ulations, considering different values ofM ′. Obviously,
increasing M ′ implies an increase of these computa-
tional parameters. In Fig. 15 the corresponding σrad
curves are plotted. As already discussed, it appears
that the G Method is computationally expensive at
high frequencies, and therefore requires a large num-
ber of points in the hemisphere surface (M ′ larger), in

Table 1. Computational parameters of G Method
for several values of M ′.

M ′ = 10 M ′ = 30 M ′ = 50 M ′ = 70

cpu-time [s] 37 264 715 1393

size [G] [MB] 10.4 101 286 563

order to reduce the associated error. Figure 16 presents
the same cases, but considering the radiation efficiency
in frequency bands. Indeed, in this work has been used
third octave bands. It is very interesting to compare
Fig. 15 and Fig. 16, because even being exactly the
same performed simulations, the σrad curves of Fig. 16
are practically equal, particularly for M ′ = 30, 50
and 70.

Fig. 15. Radiation efficiency calculated for several values
of the parameter M : M ′ = 10 , M ′ = 30 ,

M ′ = 50 .... , M ′ = 70 .

Fig. 16. Radiation efficiency calculated for several values
of the parameter M : M ′ = 10 , M ′ = 30 ,

M ′ = 50 .... , M ′ = 70 .

The preceding observation is undoubtedly valuable,
since it indicates that the errors associated with M ′

can be reduced without greatly increasing M ′, which is
helpful to decrease the computational effort in terms of
CPU time and memory size storage. This means that
when considered the analysis in frequency bands, the
results can be obtained more faster with the G Method
than the Z Method, because [G] it is a M ×N matrix,
while [Z] it is a N × N . Indeed, M may be substan-
tially small than N since M can be choice with more
“flexibility” (represents the number of points over a
hemisphere surface), whereas N represents the num-
ber of elements of the panel and therefore, with few
possibilities of changes.
The same observations can be derived from a con-

vergence analysis, such as the one illustrated in Fig. 17.
Evidently, the frequency band representation of σrad
converges faster than the mode-by-mode representa-
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Fig. 17. Convergence error rate (log scale) of radiation
efficiency with discretization of the hemispherical sur-
face parameterM ′: Mode by Mode , in frequency

bands .

tion, allowing obtaining the vibroacoustic information
in less time and with less computational resources.

6. Discussion

Regarding numerical methods, any improvement in
the accuracy of results implies some type of loss. In-
deed, the current method is not the exception, since
the advantages of speed and computational effort were
obtained by sacrificing the specific information of each
mode, and now the radiation efficiency is obtained in
frequency bands. This type of representation is not in-
appropriate and this is particularly true in acoustic
and vibration problems.
In that sense, the approach proposed in this work,

along with the representation in frequency bands,
yields a good representation of radiation efficiency in
a wide frequency range.
Although the advantages of using frequency bands

are obvious enough (see Fig. 17), it would be appro-
priate to develop a research to explain, on the basis
of underlying physics, why this way of representation
entails to the consequences referred above.
Another point of discussion is related to the in-

tegration method over the hemispherical surface. In-
deed, the current approach was implemented by using
a common Riemann summation. Even so, important
results have been obtained in this work using such a
simple algorithm. However, Figs. 10 and 17 show some
fluctuation in the convergence plots, and it is thought
to be due to the oddness or evenness of Mθ and Mφ

(Eqs. (2) and (3)). Perhaps it would be possible to de-
crease these errors by using a more efficient algorithm
such as a Simpson method. In this respect, it is thought
that even using a very efficient one on the hemispheri-
cal surface, it would be necessary to use a large number
of points due to the complexity of the far-field direc-
tivity. Thus, it would be interesting to develop and in-
vestigation about numerical integration methods over
an hemispherical surface along with a more thorough
study about the nature of the directivity function.

7. Concluding remarks

A numerical method for estimating the sound
power of a baffled planar vibrating structure has been
presented. This approach is based on the concepts of
acoustic far field and the propagating matrix. Finite el-
ement codes were used to calculate the vibrating veloc-
ity profile, so that it is possible to estimate the sound
power and radiation efficiency of an arbitrary shape.
Good agreement was achieved when compared with
near field techniques, such as the impedance matrix
method (Fahy, Gardonio, 2007) and the Williams-
Maynard’s method (Williams, Maynard, 1982).
Although the literature review indicates that far

field approaches are expensive due to large variations
of directivity of the source (Atalla, Nicolas, 1994),
in this investigation has been found that this type of
approach is computationally more efficient than other
methods when the numerical data (in this case the ra-
diation efficiency) is represented in frequency bands.
Indeed, it has been shown that this advantage is possi-
ble when the number of pressure points in the far field
is reduced, enabling to reduce the size of the matrix [G]
and without loss of the vibrating velocity information.
Some issues related to this methodology need to

be investigated in further researches. For example, al-
though were shown the advantages of using a frequency
band representation of the vibroacoustic data, it would
be appropriate to explain why this occurs from a math-
ematical and physical point of view. Also, it would be
important to improve the numerical integration over
the hemisphere surface along with further study of the
directivity function, by considering several types of vi-
brating structures.
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