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In this paper, the analytical and numerical procedures for multi-stiffened plate free vibra-
tion analysis are presented. The plate and stiffeners are treated as an assembled plate and stiff-
ening elements. The energy analysis leads to the nonlinear formulation of the non-dimensional
frequency function formulated for a group of similar palates. The generalized optimization
problem was solved by the use of the Nelder-Mead and genetic algorithms. The verification
of the results obtained was performed on FEM models created for the same examples of the
physical representation of the considered group of stiffened plates. This paper also aims the
study of the influence of geometrical and material parameters of the stiffeners as well as the
plate proportions on the fundamental frequency.
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1. Introduction

Changes in the rigidity of the plate elements generated by inserting a system of stiff-
eners has a slight influence on the mass of the whole system and a considerable impact
on the natural frequency as well as on the magnitude and distribution of the vibration
energy. The stiffeners can also be considered as an additional subsystem, which not
only changes the rigidity of the plate but also stores and dissipates a part of the energy
of vibration. The influence of the set of stiffeners on the rigidity of the stiffened plate
and on the energy of static mode and vibration modes is particularly important within
the range of low frequencies. The analysis of the dynamic behaviour of the structure
in several of the first natural frequencies as well as the introduction of changes in their
magnitude can result in a profitable structure modification. In consequence, a decrease
in the amplitude, dynamic stresses and the energy of vibration can be obtained. The
optimal design and choice of all the plate-and-stiffeners system properties stand for an
additional goal.
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Nondimensional properties [2] of the plate and stiffeners used in this analysis and
the proposed algorithm of calculations make it possible to evaluate the impact of the
geometrical and material parameters on the natural frequency of the group of related
plates. On this basis it is possible to calculate parameters of any practical realization
of a stiffened plate representative for a considered group. The analytical results of the
influence of the chosen geometrical and material properties of the stiffeners set on the
natural frequency were verified on models created by the use of the finite elements
method and were compared to the data reproted in literature [1, 7–9].

2. Analysis of the influence of the stiffeners parameters on the plate vibrations

The energy analysis of a ribbed plate was carried out by considering the vibrations
of the whole system treated as a combination of a homogeneous plate and a set of
beams [1, 2, 7]. The natural frequency of a group of stiffened plates can be estimated by
comparing the maximum kinetic energy with the maximum potential energy of a system
consisting of stiffeners and a homogenous plate.

The potential energy of a stiffened plate related to the field of stresses and strains
can be computed after a separate analysis of the energy accumulated by the homogenous
plate and a set of stiffeners. The strain energy of a homogenous plate is described by the
relation:
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where σij – components of stresses in the plate, εij – components of strains.
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where E – Young‘s moduli, G – Kirchoff’s moduli, J – torsional rigidity of the stiff-
eners, ε – strain composed of three components due to the plate bending and stiffeners
bending about the major and minor axes, ζ, η – non dimensional coordinates equal
respectively x/a and y/b.

The strain energy of the y-wise stiffeners can be determined in the similar way. The
kinetic energy of a stiffened plate can be computed as a sum of the kinetic energy of a
homogenous plate and that one of a set of stiffeners. The kinetic energy of a homoge-
nous plate can be estimated on the basis of the equation:
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where ρ – density of the plate material, a, b – dimensions of the plates.
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The kinetic energy of the stiffeners consists of the kinetic energy of the out-of-plane
and rotational motions. The kinetic energy of a typical stiffener along the x axis is
described by the equation:
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where mz – mass density of the stiffener, I – second moment of inertia about the major
axis.

Introducing separations of the coordinates, the out-of-plane W (ξ, η) and in-plane
displacement functions U (ξ, η), V (ξ, η) are given by:
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As the generalised functions Fi, Gj , Bm, Dn, Er, Hs, arbitrary functions satisfying the
boundary conditions at the plate edges can be selected. The coefficients wij , umn, υrs

determine the participation of basic functions in the displacements W (ζ, η), U(ζ, η),
V (ζ, η).

For a thin rectangular plate simply supported along four edges, considering the ad-
missible displacement functions [2] and the partial derivative ∂W/∂t, the kinetic energy
(3) of the plate obtained for the (i, j) mode, is given by:
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Then, introducing the partial derivatives ∂W/∂t and ∂2W/∂t∂η in Eq. (4), the
kinetic energy of stiffeners along the x axis for the (i, j) mode shape, is given by
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The stiffening of a simple-supported plate results in the fact that the first vibra-
tion mode shape consists of many harmonic functions, the participation of which in the
mode shape and the natural frequency of a stiffened plate is defined by the share coef-
ficients. The fundamental frequency of the stiffened plate can be defined [2, 7] in the
form of a nondimensional parameter Ω, which depends on the generalised material and
geometrical proportions of the plate and a stiffeners set. It is a very convenient method
of calculations, which makes it possible to compute on the basis of a single frequency
parameter Ω the fundamental frequency Ω of any plate representative for the group of
similar plates.
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E – Young’s moduli, ν – Poisson’s coefficient, tp – thickness of the plate, Ix, Iy – sec-
ond moments of inertia of the cross-section of the stiffeners along the x and y axes,
D – plate flexural rigidity, Nxy – number of x- and y-wise stiffeners, a, b – plate di-
mension. The functions P1, P2 and I1–I12 were defined by O.K. BEDAIR [2].
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3. Calculation procedures

The natural frequency parameter Ω given by the formula (1) can be expressed
shortly as a function depending on the physical parameters (8) and the coefficients wij ,
umn, υrs (5):

Ωmn = f
{
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2 γ5, γ6, γ7, γ8, δ
yi
1 , δyi
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}
. (9)

The object of the optimization process is to find the coefficientswij , umn, υrs for the
functions (8) that minimize the natural frequency parameter Ω. To this end the Nelder–
Mead’s optimization algorithm and the genetic algorithm [5] were used. In both cases,
the calculations were carried out in the Matlab environment. In the case of the Nelder–
Mead’s algorithm, the standard “fmins” function ([x] = fmins (function, vector, options))
was used. As criterion of the termination of the calculations, the author assumed the
decrease (below 0.001) in the distance between the symmetry centre of the simplex and
its points. In some cases the constant number of iterations was established – always
above 15000.

4. Genetic algorithm

Genetic algorithms are written on the basis of the imitation of nature, which is an
inspiration in many fields of science. The idea of genetic algorithms consists in de-
veloping a group of potential solutions, which become more accurate by using such
genetic operators as selection, cross-over, mutation and others. The better the solution,
the more likely it is to remain, just as in nature, the best-adapted individuals survive.
While looking for a maximum in a system, we should take into account that a better-
adapted individual is that one with the highest value of the adaptation function (each
individual undergoes a natural evaluation).

The minimum searched for (9) is a function of fourteen parameters, which are repre-
sented by chromosomes in the form of binary codes. The numbers of individuals, length
of the binary code for each parameter, the time of calculations and other basic values of
the GAs are chosen arbitrarily. Each chromosome is decoded into the space of variation
of individual variables and afterwards an evaluation of the usefulness of a given solution
is made. The genetic algorithm aims at the minimization of the value of the whole func-
tion for the searched vector of parameters. To this end, the method of ranking was used.
The most important operator of the genetic algorithm is the operator of selection. In
the considered problem, the universal method of selection was used. In this method, the
whole parents’ population in one turn of the roulette wheel is chosen. Another genetic
operator is the cross-over of the individuals, which guarantees the exchange of infor-
mation between them. The multipoint cross-over, where the number of points of the
cross-breeding was equal to the length of the chromosome minus one, was used. The
mutation operator in the classical form with a small coefficient of probability was ap-
plied. Additionally, the operator of longevity was employed; a few of the best-adapted
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individuals from the parents’ population were shifted to the descendants’ population.
While optimizing the fundamental frequency parameter of a stiffened plate, the genetic
algorithm turned out to be twice faster than the Nelder–Mead’s method. Moreover, the
advantage of GA is that it leaves the local optima and searches for the global optimum.
Other advantages of the genetic algorithms [5] arise from the features that distinguish
them from traditional optimizing methods: they do not process the parameters of the
problem directly but use their coded form, they start searching from a group of points
(not from a single point), they use only the goal function and not the derivatives or other
auxiliary information, they use probabilistic instead of deterministic rules of choice.
The simple diagram of the used genetic algorithm is shown in Fig. 1.

Fig. 1. Simplified block diagram of the applied genetic algorithm.

The first step of evaluation of the accuracy of the mathematical model and the op-
erating of both the programs consisted in the estimation of the fundamental frequency
of the homogenous plate. In Table 1, there are presented selected calculation results
achieved by different authors and methods. The evaluation of the accuracy of the fun-
damental frequency parameter is of utmost importance as this value is computed for the
whole system and the result depends on many optimized coefficients. These coefficients
describe the participation of basic functions composing the complex mode shape of the
stiffened plate. The errors of calculations of these coefficients add up and result in the
summary error of the calculated natural frequency of a stiffened plate. A careful evalua-
tion of these errors is possible when the precision of the natural frequency computations
is assessed.
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Table 1. Comparison of the fundamental frequency of a homogenous plate made of typical constructional
steel (700 [mm] × 500 [mm] × 1.2 [mm]) estimated by different authors and methods.

Author Frequency [Hz]

BEDAIR [2] 17.65

LEISSA [9] 17.69

FEM 20×20 elements 17.51

FEM 40×40 elements 17.68

Algorithm Nelder–Mead 17.75

Genetic Algorithm 17.7

In the case of a homogenous plate, the results of calculations are obtained very
quickly and their precision, compared to results obtained by other methods, is entirely
sufficient for engineering purposes.

5. Examples of the natural frequency of stiffened plate computations

Evaluation of the dimensionless coefficient of the fundamental frequency Ω allows
to determine quickly the fundamental frequency ω of a given stiffened plate belonging
to the group of plates of similar physical properties described by the Eq. (8). Also at this
stage, the accuracy of computations carried out by the use of the optimizing algorithms
was verified on the basis of the nondimensional coefficient of the fundamental frequency
Ω determined for a specified stiffened plate. In the next step, the estimated value of the
fundamental frequency was compared with the fundamental frequency value obtained
by the use of the finite elements method.

A. The plate and stiffeners made of the same material

The approach presented allows to compute the fundamental frequency of a plate
stiffened with any system of ribs. In the case of a plate with identical and equally spaced
stiffeners, the calculations become much more simple. The following example deals
with a stiffener placed symmetrically (Fig. 2). The system consists of a homogenous
plate supported simply at the four edges and the stiffener with the following parameters:

• side dimensions ratio β = a/b = 1.4;
• Young’s modulus ratio of the used materials Ep/Es = 1;
• Poisson’s coefficient 0.29;
• the dimensionless parameters of the stiffeners second moment of inertia Is of the

cross-section and the plate flexural rigidity Ip per unit width Ip/Is were changed
in a wide range presented in Fig. 3.

The results of calculations carried out using the optimization algorithm were verified
by calculating the fundamental frequency of the plate representative for the group of
plates analysed by the use of the FEM method. The FEM model of the stiffened plate
with dimensions: 700 × 500 × 1.2 [mm] consisted of 400 surface elements of the type
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Fig. 2. The scheme of a symmetrically stiffened plate with a cross section of the stiffener bs × hs.

QUAD4 and 20 elements of the BEAM modelling the stiffeners. The degrees of freedom
at the plate edges were defined by limiting three linear displacements of the nodes. The
height of the 4 [mm] wide stiffener was changed from 0 to 40 mm in of 5 mm steps.
The scheme of the stiffened plate is presented in Fig. 2.

Fig. 3. The non-dimensional frequency parameter Ω computed for the group of similar plates and the first
natural frequency Ω of a group of representative stiffened plates (700× 500× 1.2 [mm]) made of typical

constructional steel.
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The results of the influence of the stiffeners relative rigidity Is/Ip on the natural
frequency magnitude are presented in the Fig. 3. The non-dimensional frequency pa-
rameter Ω computed for a group of plates with the parameters given above is presented
on the left scale. On the right scale of Fig. 3, there is the magnitude of the fundamental
frequency Ω of the physical realization representative for the group of similar plates
with one stiffener of a rectangular cross section. The curve ∗ indicates the natural fre-
quency Ω of a given plate computed upon the non-dimensional frequency parameter Ω,
while the curve 2 denotes the results obtained using the FEM method. For orientation,
the stiffener height-to-plate thickness ratio is shown on the upper scale.

In the case considered above, the magnitude of the fundamental frequency is estab-
lished at an almost constant level, while the second moment of inertia Is of stiffeners in
relation to the flexural rigidity of the plate Ip per unit width achieves about 3.4 · 107.

B. The plate and stiffeners made of different materials

The calculations of the non-dimensional frequency parameter Ω were also carried
out for a group of simple-supported plates with a stiffener of varied stiffness placed at
the centre of the plate as shown in Fig. 2. The plate was made of steel, while the stiffener
is of aluminium alloy. The relative parameters were chosen as follows:

• side dimensions ratio β = a/b = 1.4;
• ratio of the plate Young’s modulus to that of the stiffener material Ep/Es = 2.9;
• Poisson’s coefficient of the plate material 0.29;
• Poisson’s coefficient of the stiffeners material 0.33.
The frequency parameter and the fundamental frequency of the steel plate stiffened

with one central stiffener made of aluminium alloy are presented in Fig. 4. The funda-
mental frequency of the plate stops growing with the increase in the second moment of
inertia along the major axis of the stiffener Is in relation to the rigidity of the plate Ip

approximately above 3.8 · 107.

C. The stiffened plate with variable number of stiffeners

The calculations of the dimensionless frequency parameter Ω were carried out for
a group of the previously considered simple-supported plates stiffened with maximum
5 stiffeners of 4 mm × 10 mm which were parallel and evenly located perpendicular to
the x axis (ζ).

The following parameters of the plate and stiffeners were assumed:
• side dimensions ratio β = a/b = 1.4;
• number of stiffeners 1÷ 5;
• Young’s modulus ratio Ep/Es = 1;
• Poisson’s coefficient of the plate material 0.29;
• Poisson’s coefficient of the stiffeners material 0.29;
• cross-section of the stiffeners 4 · 10−3 × 10 · 10−3 [m×m];
• relative rigidity of the stiffeners Is/Ip 3.03 · 106

(defined by the second moment of inertia Is along the ξ (x) axis and the plate flexural
rigidity Ip per unit width Is/Ip).
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Fig. 4. The non- dimensional frequency parameter Ω for the group of similar plates and the first natural
frequency ω of a group of representative stiffened plate made of typical constructional steel with aluminium

alloy stiffeners.

The result were achieved analytically in the general form of the frequency parameter
Ω. and then the fundamental frequencies of representative plates were calculated and
referred to the values obtained by the use of the FEM method. The comparison of the
achieved results is shown in Fig. 5.

Fig. 5. The frequency parameter Ω and the natural frequencies ω of a steel plate with a variable number
of ribs.
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As shown in Fig. 5, the introduction of additional stiffeners results generally in an
increase the fundamental frequency magnitude. The frequency parameter (left scale ×)
and the fundamental frequency ω (right scale) of a representative steel plate is shown
in Fig. 5 as function of the number of stiffeners. For the number of examined stiffen-
ers N, the natural frequency of the tested panel can be approximated by the function:
ω = 16.794Ln(N) + 17.95.

In Fig. 6, the results of the fundamental frequency calculated for plates stiffened
with a variable number of stiffeners with growing cross-section area are presented. The
thicknesses of the stiffeners/beams were assumed to be constant but the height has been
changed in the range from 0 mm to 40 mm.

Fig. 6. The fundamental frequency computed for plates stiffened with a variable number of stiffeners.

For each system of stiffeners, there is a certain limit of rigidity. After going be-
yond this limit no significant increase in the natural frequency of a ribbed plate can be
observed.

6. Conclusions

The application of energy analysis of a stiffened plate considered as a combination
of a homogenous plate and a set of beams allows the calculation of the natural frequency
and the distribution of energy stored and dissipated by the plate and by the stiffeners.
In the model, plates with various numbers of ribs could be taken into account, as well
as various cross-sections of the ribs and different materials that the stiffeners and the
plates are made of.
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The evaluation of the accuracy of the genetic algorithm was carried out by com-
paring the results obtained with those achieved by other authors and with the method
of finite elements. The accuracies of both the methods are similar and sufficient for
technical uses.

Comparing the times of computation using the genetic algorithm and the method
of finite elements, we are led to conclude that the program here presented has several
advantages; the calculations are conducted simultaneously for a whole group of similar
plates and the time needed for the preparation of the model is much shorter than that in
FEM.

The analysis of the stiffened plates’ vibration applying mathematical equations in
the analytical form makes it easier to solve technical problems and to arrive at optimal
constructional solutions.
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