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The paper presents the appearance of lateral waves of the acoustic and electromagnetic type
in various physical phenomena, from the earthquakes up to ultra-high frequency radio-wave
propagation in stratified medium. The lateral wave appears in the processof wave refraction to
the medium characterized by higher wave speed, if the angle of incidenceexceeds the critical
value. The lateral wave arrives at the receiver first and in some cases is the only remaining
wave at long distances, thus it plays an important role in early warning, wireless communi-
cation in lossy environments or ground penetrating radar applications, when geometric optic
model leads to significant errors.
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1. Introduction

The intent of the paper is to provide a better understanding of the physicalback-
ground of the lateral wave appearance and to stress its meaning in appropriate interpre-
tation of propagation phenomena. Negligence of the lateral wave in applied theoretical
model may lead to significant discrepancy between predictions of the theoryand the
experimental data, what will be presented on examples for both the acousticand elec-
tromagnetic lateral wave. Thus a necessity had arisen to develop adequatediffraction
model of wave propagation, accounting for real features of the environment in which
the propagation takes place.

According to Snell’s law, if the angle of incidence is less than the critical angle, a
reflected wave arises together with a transmitted wave. For waves incident at an angle
greater than the critical one, a phenomenon of total internal reflection is observed.

Consider a plane wave falling on the interface separating two media at the angle
exactly equal to the critical angle. According to the Fermat principle on extreme propa-
gation time, together with the Huygens principle, for the angle of incidence equal to the
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critical angle the incoming wave can propagate over some distance in the lowermedium
with greater velocity and come back to the upper medium. In fact such wave is observed
and called the lateral wave.

Considering the propagation of a spherical wave in layered media, application of the
model requires taking into account all the phenomena described above, with reflection
coefficient depending on the angle of incidence. The problem was formulated and solved
by BREKHOVSKIKH [1–2] by means of the fundamental papers of SOMMERFELD [3],
who had developed the far-field solution for dipole source and WEIL [4], who presented
a method of expansion of a spherical wave into plane waves.

Today the lateral wave of acoustic or electromagnetic type is a subject of widespread
investigations in the fields of seismology, radio-communication, undergroundobjects
detection and other shallow-water propagation problems, and also medicine.This will
be a subject of further considerations.

2. The two-media interface

The reflection of a spherical wave at a plane boundary between two media[1–2,
5–6] is considered. The point source (Fig. 1) is located at the heightzs in a medium
characterised by the densityρ1 and the speed of wavec1, equal toρ2 andc2 in the lower
medium, respectively. We assume thatc2 > c1.

Fig. 1. Geometry of the reflected field. The boundary between two media islocated atz = 0. The lower
medium is characterised by greater velocity, thus total reflection at the media interface takes place.

The plane-wave reflection coefficient is [1]

V (θ) =
m cos θ −

√
n2 − sin2 θ

m cos θ +
√

n2 − sin2 θ
, (1)
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wherem = ρ2/ρ1 for acoustic waves, while for electromagnetic wavesm = n2 for ver-
tical andm = 1 for horizontal polarisation (Fresnel reflection coefficients),n = c1/c2

for both types of waves. Remember that usually the refraction coefficientfor electro-
magnetic waves is related to vacuum/air and then, assuming the second medium to be
air, we haven = 1/n0 wheren0 = c0/c1 is the refraction coefficient of light. For
n < 1the critical angle is defined asθcr = arcsin(n). For vertical polarisation and the
angle of incidence equal to the Brewster angle (n = tanθB), the reflection coefficient
equals zero.

3. Plane-wave representation of a spherical wave

The first step is to present the plane wave integral representation of a spherical wave

Φ0(R) =
eikR

R
=

+∞∫

−∞

+∞∫

−∞

1

2πkz
ei(kxx+kyy+kzz)dkxdky, z ≥ 0, (2)

wherek = ω/c is the wave number,ω the wave frequency andc the speed of wave
[1, 6–7].

The spherical wave is decomposed into an infinite number of plane waves incident
at the interface at angleθ and expressed as a contour integral of complex variableθ:

Φ0(R) = ik

π/2−i∞∫

0

J0(kr sin θ)eikz cos(θ) sin θdθ, (3)

wherer = R sinα, z = R cos α, J0(w) denotes the Bessel function of order zero.
Each of these contributing plane waves obeys the Snell’s law, what allows todeter-

mine the reflected field, which is calculated by incorporating the reflection coefficient
into the integrand of (3):

Φref(R, α) = ik

π/2−i∞∫

0

J0(kr sin θ)eikz cos θV (θ) sin θdθ. (4)

Equation (4) is the exact formula for the potential of a reflected wave. Express-
ing the Bessel function by combination of Hankel’s functions:J0(w) = 1/2 [H

(1)
0 (w)

+H
(2)
0 (w)] and extending, due to the symmetry properties, the integration limits in (4)

to π/2 − i∞,−π/2 + i∞, the last formula takes the form adequate for future applica-
tion, since asymptotic form [8] of the Hankel function can be easily incorporated into
integrand (compare Eq. (10)).

H
(1)
0 (w) =

√
2

πw
ei(w−π/4)

(
1 +

1

8iw
+ ...

)
∼=

√
2

πw
ei(w−π/4). (5)
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4. Potential of acoustic and electromagnetic field

Assume a point source of monochromatic wave of a given frequencyω. Acoustic
potential at a distanceR from the source is

Φ0(R) = A
ei(kR−ωt)

R
, (6)

whereA is the amplitude. The acoustic pressure in a medium of densityρ is defined as

pac = ρ
∂

∂t
Φ0. (7)

In electrodynamics [9] analogous role play the Hertz vectorial potentials, which
for the electric dipole of momentump or the magnetic dipole of momentumm are
defined as

Π = p
ei(kR−ωt)

R
, Πm = m

ei(kR−ωt)

R
. (8)

The Hertz potentialΠ is connected with scalarΦ and vectorialA electromagnetic
field potentials [9] by the relations

φ (r, t) = − 1

4πε0
divΠ (r, t) , A (r, t) =

1

4πε0c2
0

∂Π

∂t
(r, t) , (9)

what ensures fulfilment of the Lorentz gauge condition

div A +
1

c2
0

∂Φ

∂t
= 0. (10)

In nondissipative media (conductivityσ = 0) the Hertz potentialΠ, similarly to the
scalarΦ and vectorialA electromagnetic field potentials, fulfil the homogeneous wave
equation. The Hertz potentialΠm is connected in a similar way with dual antipotentials
and also fulfils the Lorentz gauge condition [9].

The electric and magnetic field vectors are expressed by means of the Hertzvectorial
potential of electric dipoleΠ (all symbols have a common meaning, subscript zero
refers to the free field, what means vacuum or air medium)

E =
1

4πε0
rot rotΠ, B =

1

4πε0c2
0

∂

∂t
rot Π, (11)

or the Hertz vectorial potential of the magnetic dipoleΠm

D = − 1

4πε0c2
0

∂

∂t
rotΠm, H =

1

4πε0
rot rotΠm. (12)

Remember that substitutingΠ → Πm, simultaneouslyE → H, B → − D.
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In lossy media, which will be of our future interest, the vectorial potentialΠ obey
the so-called inhomogeneous wave equation

∆Π − 1

c2

∂2Π

∂t2
= µσ

∂Π

∂t
, (13)

σ being the medium conductivity. For time-dependence exp(-iωt), introducing complex
electrical permittivityε̃ = ε+ε′with imaginary partε’ = σ/ω, the inhomogeneous wave
equation reduces to the homogenous one [9].

Thus, it is possible to study the phenomena of wave reflection and refraction without
deciding whether the acoustic or electromagnetic field is considered [1, 9].

5. Lateral wave – basic formulae

In this Section the simplest case of the lateral wave appearance is discussed, no mat-
ter whether the wave is acoustic or electromagnetic, thusΦ stands for acoustic potential
of a point source of unit amplitude (6) or any component of the Hertz vectorial poten-
tial of unit momentum (8). The interface between two media is planar, the media are
homogenous and nondissipative, thus the propagating wave does not experience any
attenuation.

The following expression for the potential has been derived from Eq. (4) by applying
the identityJ0(w) = 1/2[H

(1)
0 (w) + H

(2)
0 (w)] and substituting under the integral the

Hankel’s function asymptotic form valid for|w| ≫ 1 [8]. The spherical wave is then
decomposed into an infinite number of plane waves, each of which experience reflection
and refraction at the interface between two media [1–2]

Φref(R) = c

π/2−i∞∫

−π/2+i∞

eikR cos(θ−α)V (θ)
√

sin θdθ, c = [ik/(2πR sinα)]1/2. (14)

Regardless of the analytic formula basic for the given assumptions (soundor elec-
tromagnetic wave, homogenous or nonhomogenous, lossy or unlossy medium), the far-
field analytical results are obtained by means of the saddle point method or its varia-
tional option such as the stationary phase method or the steepest descent-path method.
Each of them requires evaluation of the singularities, branch points and branch cuts, as
the integrand always contains the reflection coefficientV (θ) (Eq. (1)) with a square root
term, thus it is a multivalued function determined on the Riemann surface. Performing
integration, the adequate contour of integration must begin and end on the same leaf of
Riemann’s surface, so it should not cut the branch line or cut it twice. The branch cuts
start at branch points±θcr (Fig. 2).

Applying the saddle point method, one comes to the result that the potential of the
reflected wave can be expressed symbolically in the form [1]

Φref(R, α) = V (α)
eikR

R
+

∫

L

F (θ)dθ, (15)
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Fig. 2. Contour of integration for the reflected field in the complexθ plane for the angles of incidence
α < θcr (left) andα > θcr(right). Integration around the branch cut (line L) represents the lateral wave

appearing above the critical angle.

where the second component represents the lateral wave and is equal tozero if the angle
of incidence is less than the critical angle. Due to the symmetry properties, the integral
overL, representing the lateral wave, can be written down as

Φlat(R, α) =

F (θ)∫

L

dθ = c

i∞∫

θcr

eikR cos(θ−α) 4m cos θ
√

n2 − sin2 θ

(m cos θ)2 − (n2 − sin2 θ)

√
sin θdθ. (16)

To sum up, for angles of incidenceα > θcr, the potential of the reflected wave can be
represented by a sum of two waves – the wave reflected according to Snell’s law, and
the lateral wave:

Φref = Φsnell + Φlat, α > θcr. (17)

Geometrical representations of a lateral wave, acoustic and electromagnetic, are
given in Figs. 3 and 4.

Fig. 3. Schematic representation of Snell’s (1) and lateral (2) acoustic waves on a plane boundary between
two homogenous media for the reflection coefficientn < 1.
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Fig. 4. Detection of lateral electromagnetic wave originated from the source S located at the depthz0

in the earth or ocean.

Detailed calculations lead to the expression for the potential of the sphericalwave [1]

Φlat =
2in

k1m(n2 − 1)
√

RL
3/2
1

eik1(L0+L)+ik2L1 , (18)

wherek1, k2 are wave numbers in both media. If the receiver is situated on the boundary
between two media or close to (L ≈ 0) and moreoverL1 ≫ L0, thenR ≈ L0 and thus

|Φlat| =
2n

k1m(n2 − 1)R2
, (19)

what means that the potential of the lateral wave decreases with the squareof distance
from the source. For the electromagnetic wave (Fig. 4) the last formula takes the form

|Φlat| =
2n2

0

k0(1 − n2
0)R

2
e−k0δ z0 , (20)

whereδ is the damping coefficient of the ground,k0 is the wave number in the air and
n0 = c2/c1 = 1/n (because the second medium is air,c2 = c0) andz0 is the depth on
which the source is located (z0 ≈ L0, especially for long distancesL). It is obvious that
the electromagnetic lateral wave reaching the receiver is much stronger than the direct
wave because of significant wave absorption in the ground or water [1].

The author of [10] expects that there should also appear some electromagnetic pre-
cursors waves, generated some time before the earthquake takes place.Damped dipole
oscillations occurring due to some electrical properties of rocks in the lithosphere are
considered to be responsible for excitation of extra-low and ultra-low frequency (ELF,
ULF) waves.

6. Lateral wave in lossy environment

In some problems, as for example during propagation of radio waves in a forest or
sound waves in air, when long distances are considered, the attenuation of wave ampli-
tude with the distance cannot be ignored. The property of energy dissipation is expressed
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by complex wave number, which in turn demands the complex wave propagationveloc-
ity, refraction coefficient, electrical permittivity and magnetical permeability.

Introducing the wave number as a complex numberk̃ = k + ik′, the wave prop-
agating along thex-axis can be written asA0e

i(ekx−ωt) = A0e
−k′xei(kx−ωt), thusA0

exp(−k
′

x) represents the decaying amplitude, withk
′

= δ being the absorption coeffi-
cient. The basic relation,̃k = ω/c̃, leads to complex velocity,̃c = c + ic′. For a given
absorption coefficientδ, bearing in mind thatδ → 0 results inc

′ → 0 andc̃ → c (c is
understood as propagation velocity /phase velocity in a considered medium)

Im c = c′ =
−ω +

√
ω2 − 4δ2c2

2δ
, (21)

where the sign “+” between two terms in the numerator was chosen according to what
was stated above. The real and imaginary parts of the refraction coefficient,ñ = n+n′,
for the wave originating from medium 1 and passing to medium 2,ñ = c̃1/c̃2, are
calculated to be

Re ñ = n =
c1c2 + c′1c

′

2

(c2)
2 + (c′2)

2
∼= c1c2

|c̃2|2
=

Re c̃1Re c̃2

|c̃2|2
, if c′2 → 0, (22)

Im ñ = n′ =
c′1c2 + c1c

′

2

(c2)
2 + (c′2)

2
∼= c′1c2

|c̃2|2
=

Re c̃2Im c̃1

|c̃2|2
, if c′2 → 0. (23)

In many applications, the wave absorption in the second medium is negligible (c
′

2 →
0), what is reflected in approximate terms in the last two expressions.

For electromagnetic waves and lossy media the reflection coefficient is equal to ñ =√
ε̃2µ̃2/ε̃1µ̃1, where, in general, electrical permittivity and magnetical permeability are

complex.
For media of similar magnetic permeability(µ̃1 ≈ µ̃2), we havẽn =

√
ε̃2/ε̃1, so

if the second medium is air (ε2 = ε0), thenñ = 1/
√

ε̃1r, whereε̃1r denotes relative
electrical permittivity of the first medium. In forest environment, important in many
applications, its value in a canopy medium (branches and leaves) is equal to: ε1r = 1.03
and0.006 < ε′1r < 0.06.

7. Lateral wave in radio-communication

Progress in wireless technology and continuous demand for more and moreeffi-
cient and reliable devices result in many new applications connected with extension of
the frequency band towards high frequency (HF), very high frequency (VHF), up to
ultra-high (UHF). This calls for a more precise diffraction model accounting for those
attributes of environment, which may no longer be neglected with decreasing wave-
length. Since ground, vegetation or air layers constitute the usual wave propagation
medium, the model should account for possible reflections and refraction,multipath
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propagation, scattering on nonplanar boundary between two media and their inhomo-
geneity. All these assumptions severely complicate the mathematical formulae thus, in
practice, only some of them are taken into account, according to specific future applica-
tions.

Results of measurements carried out several decades ago, for the emitterand re-
ceiver placed in forest, depicted a considerably smaller wave attenuation than that pre-
dicted by the theory of that time. The distortion was especially visible for long distances
between the emitter and receiver. The first to propose an explanation wasTAMIR [11]
who pointed out at a new possible wave, apart from direct and reflected wave, to reach
the receiver – the lateral wave. Ray theory describes it by means of a ray emitted from
the dipole source in the forest at the critical angle, travelling in air along the flat interface
with adequate velocity and negligible attenuation to emerge, in turn, at the receiver at the
critical angle. Considering planar interface between two homogenous mediarepresent-
ing forest and air and accounting for wave attenuation in the forest, Tamir recognised
the lateral wave even as a dominant wave detected by a distant receiver.

As it was said before, to meet the requirements of modern technique, more sophisti-
cated models of diffraction are considered, assuming medium inhomogenity, roughness
of the boundary between the media etc. [12–13]. As most of the surface on Earth is
covered with water (seas, oceans) or plants (fields, forests), the wave propagation in a
stratified medium, accounting for phenomena on the media interface (water/sediment,
air/water, air/ground, air/plants) are of substantial interest, especially if inone medium
the waves experience visible attenuation. The situation often encountered inradio–
communication is the one considered some forty years ago by TAMIR [11], with the
emitter and receiver embedded in a forest, anyhow the frequencies applied nowadays
belong to the VHF or UHF band (200–2000 MHz), what demands more complex mod-
elling. First, four layers should be distinguished: ground, trunks, canopy, constituted by
branches and leaves, and air, each one characterised by its electricalpermittivity ε̃ being
in general, complex. The magnetic permeability of all these four layers can beassumed
to be equal to vacuum permeabilityµ0. Due to the wavelength, the trunk and branches
and leaves layer should be considered to be anisotropic, with dyadic permittivity. The
dipole source of electrical momentump, with current density

j
(
r ′

)
= pδ

(
r ′ − r0

)
, (24)

whereδ( ) means the Dirac distribution, is located at the pointr0 in the trunk layer.
Two methods are usually applied to solve the problem – the Hertz vectorial potential

(Eq. (8)) or the Green’s function technique, which leads to the following result for the
electric field:

Ei (r) = iωµ0

′∫

V

G
(
r , r ′

)
j
(
r ′

)
dV ′, (25)

where integration is taken over volumeV ′, G denotes dyadic Green function reflecting
medium anisotropy, subscripti – consecutive layers. Applying the adequate expres-
sions for the reflection coefficient (1) to the vertical and horizontal termof the dipole
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momentump and adopting the saddle point method, which is especially suitable for
high frequencies, the approximate evaluation of the electric field is obtained.

Fig. 5. Propagation of radio waves through forest in the case of emitter and receiver located in vegeta-
tion layers (trunks or branches and leaves), when strong lateral wave(continuous line) accompanies the
reflected and refracted waves (dashed lines). The lateral wave wouldnot contribute to the field at the

observation point located in the air, since it is an evanescent wave there and it decays exponentially.

Even though the method is approximate, it provides a better physical insight into the
considered phenomena than the exact solution [6], since different termsresulting from
integration over the singularities or branch cuts could be ascribed to different compo-
nents of the field at the receiver, such as direct wave, waves reflected at the interfaces
and lateral wave, the latter being represented by integration over the branch-cut and
thus appearing for the angle of incidence being not smaller than the critical angle (com-
pare Fig. 2).

8. Some other applications

Another contemporary application of the lateral wave phenomena is the problem of
detection of underground objects, mines in between, [14] by means of ground pene-
trating radar [15], located on media interfaces. Objects of interest are often situated in
the near–field, within a few wavelengths, when assumptions of the geometric optics fail
and interference of the appearing space (direct) and lateral waves have to be considered.
The theoretical model can be investigated by means of numerical methods such as the fi-
nite difference time-domain method. Directivity patterns, theoretical and measurement,
indicate a strong interference of both waves (compare Fig. 6).

The far-field criteria of dipole propagation in the absence of interface are fairly inad-
equate to provide acceptable explanation of the results obtained. The appearance of the
lateral wave must be considered, otherwise a significant discrepancy between predic-
tions of the theory and the experimental data would appear and the hidden underground
targets would not be found.
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Fig. 6. Wave fronts of direct (dashed line) and lateral (continuous line)waves for refraction coefficientn =

0.25 and the source located at the media interface. Strong interference between both waves is observed.

In medicine, the lateral wave was observed in propagation of ultrasonic waves in hu-
man cortical bones, when the so-called axial transmission technique had been applied
[16–17]. The measurements were carried out at the frequency 1.25 MHz, which cor-
responds to 0.003m waves in bone tissue. It has been determined that the first arriving
signal is the lateral wave propagating along the cortical bone. The arriving signal analy-
sis provides us with information on the state of the bone and is important in osteoporosis
diagnostics.

9. Conclusions

The essential role played by the lateral wave in various phenomena is based on its
two features:

• It travels faster and reaches the receiver first. For that reason, in seismology the
lateral sound wave is called P-wave, what means Primary wave (but also Push-
wave). It is a longitudinal wave and is heard and felt as a sharp thud. Earthquakes
are accompanied also by transverse wave, called S-wave, what means Secondary
wave. From the time difference between the arrival of P and S-wave, thedistance
from the earthquake centre can be estimated.
The same method can be applied to electromagnetic waves – adequate network
of radio antennas would allow to locate the earthquake.

• It plays the decisive role in the case of radio-communication between points situ-
ated in the strongly absorbing media, such as ground or ocean. The direct and
reflected electromagnetic waves propagate then in absorbing medium and are
rapidly damped. As a result, at great distances, only the lateral wave remains.
Apart from that, some other features are important in lateral wave phenomena.

• It is an evanescent wave and it decays exponentially away from the interface in
the medium in which it travels faster.

• It appears also at the nonplanar interface, but due to scattering it is weaker.
• In some problems it complicates the directivity patterns producing lobes due to

interference and blurring the simple geometric optics approach.
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