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The analysis of streaming caused by aperiodic sound of different types (switched
on at transducer sound or sound determined by initial conditions) is undertaken.
The analysis bases on analytical governing equation for streaming Eulerian velocity,
which is a result of decomposition of the hydrodynamic equations into acoustic and
non-acoustic parts. Its driving force (of acoustic nature) represents a sum of two
terms; one is the classic one, which, being averaged over the sound period, coincides
with the well-known expression. The second one depends on the periodicity of the
sound; at the axis of beam propagation it becomes exactly zero after averaging
for the strictly periodic sound but differs from zero for other acoustic waves. Both
terms are nonlinear and proportional to the standard attenuation due to shear,
bulk viscosities and thermal conductivity. Numerical analysis reveals a qualitative
agreement with experimental data. Some theoretical conclusions concerning features
of streaming caused by sound determined by initial conditions, are made.

Keywords: instantaneous acoustic streaming, radiation force, non-linear sound
propagation,
PACS No. 43.25 Nm

1. Introduction

The term “acoustic streaming” refers to a bulk movement arising from the
transfer of momentum from an acoustic field to a fluid. The well-understood
origins of acoustic streaming are nonlinear losses in momentum of acoustic wave
during its propagation in a thermoviscous fluid. They cause solenoidal mean mass
flow, which arises exclusively in the multi-dimensional flows.

The traditional method for successive separation of different types of motion
consists in linear combination of the continuity and momentum equations after
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their averaging over the sound period [1, 2]. It does not account for energy bal-
ance and, therefore, discards thermal conductivity, though it is well-understood
that streaming depends on total attenuation involving heat conduction [3]. The
temporal average over the sound period of quantity ∂ρ/∂t is supposed to be
zero, where ρ is total density. In the thermoviscous flows, excess density includes,
among the acoustic parts, the slowly decreasing part originated from isobaric
heating, so that the averaged value of ∂ρ/∂t is not longer zero. The important
inconsistency of classical treatment is supposing that the fluid is incompress-
ible [1]: sound itself can propagate because of fluid compressibility. We can avoid
inconsistencies by means of instantaneous combining of initial equations in the
differential form using the properties of acoustic, vortex and entropy motions.
That allows to decompose specific dynamics equations in a weakly nonlinear
flow.

The present study continues the investigations of acoustic streaming and
heating, basing on consistent division of conservative equations into specific
parts [4–6]. The procedure starts from the determination of all modes (or possible
types of fluid motion) as links of hydrodynamic variables independent of time,
and pointing out the ways to separate dynamic equations for every mode by linear
combining of initial equations. The correspondence in the leading order of classi-
cal acoustic radiation force and that obtained by projecting, is demonstrated in
the case of strictly periodic sound in Sec. 2. The role of sound aperiodicity in the
generation of streaming is discussed in Sec. 3.

2. Dynamic instantaneous equation of acoustic streaming
in the thermoviscous unbounded flow

The continuity, momentum and energy equations for a thermoviscous fluid
flow in an unbounded space without external forces read:

∂ρ

∂t
+ ∇(ρv) = 0,

∂v
∂t

+ (v∇)v =
1
ρ

[
−∇p + µ∆v+

(
µB +

µ

3

)
∇(∇v)

]
,

∂e

∂t
+ (v∇)e =

1
ρ


−p∇v+ χ∆T + µB (∇v)2

+
µ

2

∑

i,k=1,2,3

(
∂vi

∂xk
+

∂vk

∂xi
− 2

3
δik∇v

)2

 .

(1)

Here, v denotes the Eulerian velocity of fluid, ρ, p are density and pressure, e,
T denote internal energy per unit mass and temperature, µB, µ, χ are bulk,
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shear viscosities and thermal conductivity (all supposed to be constants), xi, t
– spacial coordinates and time. Two thermodynamic functions e(p, ρ), T (p, ρ)
should complete the system (1).

Basing on the linearized version of Eqs. (1), the dispersion relations can be
obtained for three independent “modes” of small-signal disturbances in an un-
bounded fluid, called the acoustic (two branches), vortex flow (two branches),
and thermal (or entropy) modes. They determine the links of excess pressure,
density and three components of velocity specific for every mode. On the other
hand, each of the field variables contains contributions from each of the three
modes, for example, v = vac + vent + vvort. The method developed by the au-
thors gives a possibility of consequent decoupling of the initial system (1) into
specific dynamic equations for every mode, basing on the specific properties of
each mode in weakly nonlinear, thermoviscous and diffracting flow in other words,
basing on the links inside modes.

Our limited aim is an equation for acoustic streaming valid within the accu-
racy up to the second order of the number of small parameters. The first one is
acoustic Mach number M = v0/c0, where v0 is the magnitude of particle velocity,
c0 is the infinitely-small amplitude sound speed. The next small parameters are
dimensionless viscosities and thermal conductivity,

β =
µω

ρ0c2
0

,

βB =
µBω

ρ0c2
0

,

δ =
χω

ρ0c2
0

(
1
Cv

− 1
Cp

)
,

where Cp and Cv denote the specific heats per unit mass at constant pressure and
constant volume, respectively, ω is characteristic circular frequency od sound, ρ0

is static density. The weak diffraction presupposes smallness of ε = (c0/Rtω)2,
where Rt is a transversal scale of a flow (in the plane (x, z)), for example, radius
of a transducer. The beam geometry is considered: a weakly diffracting sound
beam propagates along the axis y.

At last, sound is dominative, so that the ratio of particle velocities correspon-
dent to sound and vortex flow, should remain small. All formulae everywhere
below in the text, including links of modes and governing equation, are written
in the leading order. Following Lighthill, we choose to treat total attenuation
b = 4β/3 + βB + δ and M of comparable smallness, and we shall discard the
O(b2M) and O(M3) terms in all expansions. The resulting model accounts for the
combined effects of nonlinearity, dissipation and diffraction on three-dimensional
sound waves and vortex flow.
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It is convenient to rearrange the formulae in the dimensionless quantities as
follows:

p′ =
p− p0

c2
0 · ρ0

, ρ′ =
ρ− ρ0

ρ0
, v′ =

v
c0

,

x′ =
√

εω

c0
x, y′ =

ω

c0
y, z′ =

√
εω

c0
z,

t′ = ωt,

(2)

where p0 is the static pressure.
Everywhere below in the text, primes at dimensionless quantities are dropped.

The acoustic field is represented in general by two branches, progressive in the
positive and negative directions of y, and vortex modes (two branches of motion
in perpendicular planes z = 0 and x = 0). There are five eigenvectors of the
linearized system (1), including the entropy, or thermal mode. The acoustic wave
progressive in the positive direction of axis y, and a sum of two vortex branches
possess links as follows:

∇× va = 0,

va,y =
(

1− 0.5ε∆⊥
∫

dy

∫
dy − 0.5b

∂

∂y

)
ρa,

pa =
(

1− δ
∂

∂y

(
1 + 0.5ε∆⊥

∫
dy

∫
dy

))
ρa,

∇vvort = 0,

ρvort = pvort = 0,

(3)

where ∇ = (
√

ε∂/∂x, ∂/∂y,
√

ε∂/∂z) is the dimensionless divergency,

ε∆⊥ = ε

(
∂2

∂x2
+

∂2

∂z2

)

is a Laplacian that operates in the plane perpendicular to the axis of beam. In
evaluations of modes, the series of square root of Laplacian ∆ = ∂2/∂y2 + ε∆⊥
is used:

√
∆ ≈ ∂/∂y + 0.5ε∆⊥

∫
dy.

The projection of overall velocity into specific vortex part may be proceeded
by acting at it by the following row operator:

Pvort,y =
(
−√ε

(
1− ε∆⊥

∫
dy

∫
dy

)
∂

∂x

∫
dy, ε∆⊥

∫
dy

∫
dy,

−√ε

(
1− ε∆⊥

∫
dy

∫
dy

)
∂

∂z

∫
dy

)
. (4)
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It warrants the requirements below in the leading order:

Pvort,yva = 0, Pvort,yvvort = vvort,y. (5)

That allows to decompose successfully the vortex longitudinal velocity in the
linear part of momentum equation, and to account for acoustic quadratic terms
in the role of driving force of streaming by acting of Pvort,y at the momentum
equation. Collecting the O(M) terms on the left, O(M2) on the right in the sys-
tem (1), and acting Pvort,y at its both sides, we decouple perturbations in the
linear part and yield in nonlinear “force” reflecting modes interaction. If right-
wards progressive beam is dominant, only the corresponding nonlinear terms are
kept. That coincides with the context of acoustic streaming, where a ratio of
magnitudes of vortex and acoustic velocities is expected to be small. Interactions
of other types of motion are left out of account (between vortex and entropy
motions and so on). This means that conclusions are true over temporal and
spacial domains, where acoustic perturbations are dominant comparatively to
both other slow modes, solenoidal and entropy. The right-side acoustic “force” is
automatically solenoidal: ∇Fa = 0.

Note, that in any thermoviscous nonlinear flow, acoustic energy loss induces
heating, which may input noticeably in the background density and temperature.
The correspondent acoustic “source” is proportional to the total attenuation,
analogously to the acoustic radiation force of streaming. Heating does not induce
bulk movement of a fluid (though there exists secondary weak movement with
velocity proportional to the thermal conductivity [5]). This type of slow process
is left out of account in the present study.

Acting by Pvort,y at the momentum equation results in the dynamic equation
for the longitudinal component of vortex flow velocity vvort,y:

∂vvort,y
∂t

− β
∂2vvort,y

∂y2
+ (vvort∇)vvort,y =

εb

2

(
1− ε∆⊥

∫
dy

∫
dy

)

∫
dy

(
3

∂

∂x

(
ρa

∂2ρa

∂x∂y

)
+ 3

∂

∂z

(
ρa

∂2ρa

∂z∂y

)
− 2∆⊥

∫
dy

(
ρa

∂2ρa

∂y2

))
. (6)

More details may be found in [6]. The nonlinear term corresponding to the vortex
mode itself, (vvort∇)vvort,y, though small compared to acoustic ones, is held to
remind the hydrodynamic nonlinearity, which is of importance at the latest stages
of evolution and restricts the growth of the streaming velocity [7–9]. Nonlinear
terms standing by the total attenuation b originate from the series of density
(1 + ρa)−1 and thermoviscous links connecting va,y, pa and ρa (3). Links for
acoustic mode (3) were used to express all acoustic perturbations in terms of the
specific excess density.

An excess acoustic density of the rightwards progressive beam itself satisfies
the famous Khokhlov–Zabolotskaya–Kuznetsov equation (the well-known ver-
sion using the dimensionless retarded time τ = t − y, which is convenient in
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the boundary regime problems, follows the first one in the brackets; B/A =
(ρ0/c2

0)(∂
2p/∂ρ2)s is the parameter of fluid nonlinearity, evaluated at the unper-

turbed state):

∂ρa

∂t
+

∂ρa

∂y
+

ε

2

∫
∆⊥ρa dy + (1 + B/2A)ρa

∂ρa

∂y
− b

2
∂2ρa

∂y2
= 0, (7)

(
∂

∂τ

(
∂ρa

∂y
− 0.5(1 + B/2A)

∂ρ2
a

∂τ
− b

2
∂2ρa

∂τ2

)
− ε

2
∆⊥ρa = 0

)

which may be derived consistently on the basis of projecting [4]. Let us consider
the axial symmetry relatively to the axis y of beam propagation: ρa(x, y, z) =
ρa(r =

√
x2 + z2, y), ∆⊥ = 1/r∂/∂r + ∂2/∂r2. The Laplacian ∆⊥ acting at

acoustic excess density may be replaced by the following operators:

ε∆⊥ =
∂2

∂t2
− ∂2

∂y2
+ O(M, b),

ε∆⊥ = −2
∂2

∂t∂y
− 2

∂2

∂y2
+ O(M, b).

(8)

In the leading order, these operators apply not only to the rightward acoustic
values V , but also to a product V W , if W also satisfies the wave equation for the
rightward progressive sound (8). By consequent replacing of operators in Eq. (6),
it is easy to rearrange it into the following equation:

∂vvort,y
∂t

− β
∂2vvort,y

∂y2
+ (vvort∇)vvort,y = Fy = Fy,class + Fadd,

Fy,class = −bρa
∂2ρa

∂y2
,

Fy,add =
b

2

(
2− ∂2

∂t2

∫
dy

∫
dy

)

(
−3

2
ε

(
∂ρa

∂r

)2

+
3
2

∂2

∂t2
ρ2

a +
∂

∂t

∫
dy

(
3

(
∂ρa

∂y

)2

− 2
∂

∂t

∫
dyρa

∂2ρa

∂y2

))
.

(9)

In many applications, it is convenient to use acoustic pressure instead of ex-
cess density. In the dimensionless quantities, they are equal in the leading order
in accordance to links (3), so that ρa may be replaced by pa in Eqs. (7), (9). In
its form (9), the governing equation exhibits that absorption, nonlinearity and
divergence are the origins of streaming. It is useful to establish the equivalence
of the acoustic force from the right-hand side of Eq. (9) and the well-known
one for periodic acoustic wave coming from [1]. For the strictly periodic sound,
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averaged acoustic radiation force may be rewritten in the form as follows (over-
baring denotes temporal average over sound period, 2π in dimensionless variables,

Fy =
1
2π

t+2π∫
t

Fy dt):

Fy,periodic = Fy,class + Fy,add = b

(
−ρa

∂2ρa

∂y2
− 3ε

2

(
∂ρa

∂r

)2
)

. (10)

Formula (10) differs from the classic result Fy,class by the last term in brackets,
which is less or equal to zero for any dependence ρa on r but exactly equals to

zero at the axis of beam propagation r = 0:
∂ρa

∂r
= 0. So that, at the axis of

beam, classic and instantaneous radiation forces coincide for the periodic sound.
Outside the beam, the instantaneous formula gives somewhat smaller quantities.
That confirms some experimental data [10].

3. Examples of radiation force and induced by it streaming

3.1. Buildup of acoustic streaming

In spite of a number of simplifying conditions during derivation of Eq. (9),
the complexity of mutual solution of Eqs. (7), (9) is obvious. A hard lock to pick
is nonlinearity in the both equations. There are no general analytical methods to
solve the KZK equation (7); moreover, there is still absent the general analytical
method to solve the KZ equation (non-viscous limit of KZK), except the one
considering the periodic Gaussian beams in the paraxial area [11].

The limited aim of the present study is to give simple illustrations of the
applicability of the dynamic Eq. (9) in the flows differing from the strictly pe-
riodic ones. The exactly periodic ones are covered by the well-known formula
for radiation force (Eq. (10)). The first question is what to insert in the role of
acoustic excess density in the right-hand side of (9). Strictly speaking, it should
be a solution of the KZK equation (7). The difficulty of considering non-periodic
sound is also in solution of the KZK equation under the corresponding boundary
regime at transducer which is an aperiodic function.

Let us suppose, that the plane wave propagating in the positive direction of
axis y, may be taken in the role of acoustic source. Hence, the effect of nonlinearity
is considered only by the quadratic form of the acoustic radiation force, and
the effect of diffraction and attenuation are considered by two corresponding
multipliers ε and b standing by it at the right-hand side of Eq. (9). That is
supposed to be valid at least at the distances not very far from the transducer,
but not very close where acoustic field is rapidly oscillating. The choice of possibly
simple sound in the role of an origin of streaming is very important in view of
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complexity of the formula for acoustic force, involving integration with respect
to y four times.

The second question is account for hydrodynamic nonlinearity of the con-
vective term in the right-hand side of Eq. (9). There is a number of theoretical
and well-agreed with them experimental investigations underlying the impor-
tance of taking into account of hydrodynamic nonlinearity [7–9, 12]. It makes
the streaming velocity not to grow infinitely. At the early stages, linear theory
and experiment dealing with the periodic sound, agree well [12]. The effect of
shear viscosity on the streaming velocity grows with distance from a transducer.
So that, at the beginning of evolution, the radiation force is simply a partial
derivative of the streaming velocity with respect to time:

∂vvort,y
∂t

= Fy. (11)

There is unfortunately poor literature concerning the investigations of stream-
ing establishment. We will refer to the papers [12, 13], where some experimental
data of time history of the axial streaming in water are given when ultrasound
is instantaneously or gradually switched on. A set of measurements was under-
taken using a laser Doppler velocimeter. The transducer transmitting 5.05 MHz
is 10 mm in diameter.

3.1.1. Instantaneous switching of ultrasound

Some experiments of [13] reveal the history of streaming induced by instan-
taneous switching of ultrasound. In the majority of experiments in water, the
frequency is approximately f = 5 MHz, that corresponds to the sound period of
T = 2 · 10−7 sec. For characteristic times of sound switching on of order 10−6 sec
or less, an acoustic pressure or its excess density (the dimensionless quantities are
equal in the leading order) may be approximated by slowly varying envelope mul-
tiplied by periodic function such like sin(t− y) at the axis of beam propagation
r = 0:

pa(t, y, r = 0) = P0(1− exp(−nτ)) sin(τ), τ > 0, (12)

where τ = t− y is the dimensionless retarded time, n is responsible for the rate
of sound increasing, P0 denotes amplitude. The parameter n may be chosen arbi-
trarily, it determines the characteristic time of amplitude increase T0 = λ/(nc),
where λ denotes the characteristic wavelength. Two exemplary initial waveforms
are plotted in Fig. 1 for two values of n: n = 0.05 and n = 0.001, correspond-
ing to the characteristic times of acoustic amplitude growth T0 = 4 · 10−6 sec,
T0 = 2 · 10−4 sec, respectively. For the simple waveform (12), the parts of lon-
gitudinal radiation force at the axis of beam propagation may be immediately
calculated by means of Mathematica. The limits of integration for the second part
are [0, y].
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a) b)

Fig. 1. The normalized acoustic pressures pa/P0 as functions of retarded time τ = t − y for
different n: 0.05 and 0.001.

Figures 2, 3 show the parts of acoustic radiation pressure and relative stream-
ing for this kind of acoustic source. Fy,class and the corresponding part of stream-

a) b)

c) d)

Fig. 2. The dimensionless radiation force and velocity of streaming for n = 0.05 and Y0 = 0.1 m
(2a, 2b) or Y0 = 0.3 m (2c, 2d). Fy,class, Vy,class are plotted by the dotted line, and Fy,add,
Vy,add are plotted by the solid thin line, and overall force or summary velocity of streaming are

plotted by the bold line.
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a) b)

Fig. 3. The dimensionless radiation force and velocity of streaming for n=0.001 and Y0 =0.3 m.

ing velocity are plotted by the dotted line, and Fy,add with its part of velocity are
plotted by the solid thin line, and overall force or summary velocity of streaming
are plotted by the bold line. All quantities are averaged over the interval [t, t+2π].
Both figures show the dimensionless quantities (F , t and V denote dimensional
values).

The velocity of streaming is calculated simply by integration of radiation
force over the time interval [y = Y0/λ, t]. The rate of the streaming velocity in-
creases with the increase of distance from the transducer Y0. That is in agreement
with Fig. 3 from [13]. Experimental data reveal that the second partial deriva-
tive ∂V 2/∂t2 at any distance is not positive. Simple evaluations for the part of
streaming velocity corresponding to the classical force give:

∂2Vclass

∂t2
≈ ∂Fy,class

∂t
≈ n · exp(−nτ)(1− exp(−nτ)) > 0.

The account for the deviation from periodicity by the second part of radiation
force, Fy,add, provides the proper sign. For calculations, typical data for water
are taken: c = 1491 m/s, b = 50 · 10−15cf/π.

3.1.2. Gradually switched ultrasound

In some series of measurements described in [13], the voltage applied at the
transducer grows linearly with different rates. Since the applied voltage is pro-
portional to the acoustic intensity, the acoustic pressure may be assumed as

pa(t, y, r = 0) = P0

√
k(t− y) sin(t− y), (13)

where
√

k(t− y) is a slowly varying function with a dimensionless rate of growth k.
Integrals in (9) may be approximately evaluated. At the axis of beam r = 0, one
obtains:
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∂

∂t

y∫

0

pa
∂2pa

∂y2
dy =

k(t− y)
2π

y∫

0

sin(t− y)
∂2 sin(t− y)

∂y2
dy

∣∣t+2π

t
+O(k), (14)

and so on. Finally, the parts of radiation force averaged over interval [t, t + 2π]
are:

Fy,class = 0.5bP 2
0 k(t− y), Fy,add = 1.5P 2

0 ky. (15)
At the early stages of streaming, the velocity is a simple integral of radiation
force, in accordance to (11):

∂vvort,y
∂t

= Fy = 0.5bP 2
0 k(t− y) + 1.5bP 2

0 ky, (16)

vvort,y = vvort,y,class + vvort,y,add =

t∫

y

(Fy,class + Fy,add) dt,

vvort,y(τ = t− y, y) = 0.25bkP 2
0 τ(τ + 5y).

Hence, the rate of streaming increase depends not only on τ = t− y, but also on
y: larger y provides larger rate of streaming increase. This conclusion agrees with
experimental data of [13] (Fig. 3 of it) as well as with data on streaming caused
by planar ultrasound [12] represented by Fig. 5 of this paper, though the detail
comparison is rather impossible in frames of very simple illustrative consideration
and lack of details of the sound used in experiments of [12].

3.2. Sound determined by initial conditions

Meaning more complex than plane wave type of sound, it is reasonable to
account first of all for diffraction in the acoustic pressure participating in forming
of the radiation force. The attenuation of water is small in comparison to gases.
As the first approach, the coefficient standing by the force accounts for viscous
effects. The radiation force contains only nonlinear acoustic terms and considers
nonlinearity, both in its form and the nonlinear distortions of sound itself. In spite
of complexity of the problem we will not account for the nonlinear distortions
of sound, but only of its diffraction. The exact solution of the linear parabolic
equation

∂pa

∂t
+

∂pa

∂y
+

ε

2

∫
∆⊥pa dy = 0 (17)

for the beams with initial condition (t = 0):
pa(y, r, t = 0) = F (y) exp(−r2) (18)

is the following:

pa(y, r, t) =

∞∫

−∞

Aκeiκ(y−t)

1 + 2iεt/κ
exp

(
− r2

1 + 2iεt/κ

)
dκ, (19)
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Fig. 4. Dimensionless radiation force and velocity of streaming for n = 0.001 and Y0 = 0.3 m.
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where Aκ =
1
2π

∞∫
∞

F (y)e−iκy dy. The waveforms for initially periodic in space

waveforms are not periodic in time at t > 0 due to diffraction. The series of
acoustic pressure in ε gives a strictly periodic part of order ε0 and the aperiodic
one of order ε1:

pa(y, r, t) = pper + εpaper. (20)

Let us consider the radiation force at the axis of beam symmetry. The additional
part in the leading order equals:

Fy,add =
b

2

(
2− ∂2

∂t2

∫
dy

∫
dy

)(
3
pperpaper

∂t2
+

∂

∂t

∫
dy

(
6
∂pper
∂y

∂paper
∂y

− 2
∂

∂t

∫
dy

(
pper

∂2paper
∂y2

+ paper
∂2pper

∂y

)))
. (21)

The exemplary form at the axis of beam F (y) = P0 sin(y):

pper = P0 sin(t− y), paper = 2P0t cos(t− y) (22)

results in the following part averaged over the sound period:

Fy,add = P 2
0 cos(2(t− y)).

The parts of waveform with the frequency of beating n are following:

pper = P0 sin(t− y) sin(n(t− y)),

paper = − P0t

n2 − 1
((n + 1) sin((n− 1)(t− y))− (n− 1) sin((n + 1)(t− y))) .

(23)

They correspond to the spatially periodic radiation force. The plots below show
the averaged over the sound period, both parts of longitudinal radiation force at
the axis of beam. The deviation from the classical formula increases with time.
Smaller n guarantees also larger deviation.

The decoupling of the acoustic pressure into two parts according to the ex-
pansions into series of ε, allows to evaluate input of aperiodic part but essentially
restricts the time interval over which the expansion is valid: t ≤ 1/ε. In dimen-
sional quantities, it results in the upper boundary of about 2 ·10−4 sec for typical
data of experiments of water, but at any longitudinal coordinate y. The value of
ε in these conditions is about 9 · 10−4.

4. Conclusions

In the last decades, attention to the aperiodic sound and the phenomena
caused by it grows. Some experiments appeared (including medical and techni-
cal applications) dealing with aperiodic sources: series of pulses or modulated by
slow function sound [12–14]. In spite of growing interest in acoustic streaming,
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only a few papers discussed the establishment process both experimentally and
theoretically. The possibilities of analytical methods in the study of such multidi-
mensional dependences are superior to that of experimental as well as numerical
investigations. Analytic approach provides usually more flexibility, is less time-
consuming, and unlike other methods, is not constrained by fixed and limited
set of values or various parameters. The mathematical difficulties in studies of
nonlinear multidimensional fluid dynamics are well-known.

The analytical method proposed by the authors allows to consider dynamics
of streaming caused by loss in momentum of different types of aperiodic sound.
The investigation of the present paper concerns the gradually or instantaneously
switched sound and the sound determined by initial conditions. The longitudi-
nal radiation force at the axis of beam and corresponding streaming velocity are
considered for simplicity, though the dynamic Eq. (9) describes dynamics in the
paraxial area as well. The rough illustrations discovering the role of aperiodicity in
this study exploit the linear plane sound and the solution of linear wave parabolic
equation for a sound beam, though effects of nonlinearity, diffraction and atten-
uation should be necessarily considered while deriving the radiation force and
corresponding governing equation for acoustic streaming velocity. The conclu-
sion is that the instantaneous (after averaging over the sound period) formula of
the radiation force differs from the classical one by a term, which consists of a neg-
ative value proportional to the divergence ε (it equals zero at the axis of beam),
and the other term being exactly zero after averaging over the sound period for
periodic sound and different from zero for any other waveforms. In this last part,
the slightly different from periodic sound is hardly expected to produce a no-
ticeable difference compared to the classic formula. The difference increases with
deviation of sound from periodic. The numerical analysis reveals a qualitative
agreement with the experimental data concerning buildup of acoustic streaming.
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