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The types of linear motion over an ideal gas affected by gravity are specified
approximately in the case of large characteristic wave number of perturbation k:
k À 1/H, where H is the scale of density and pressure decrease of the background
gas, the so-called height of the uniform gas. The corresponding approximate oper-
ators projecting the overall vector of perturbations into specific types are derived,
along with equations governing sound in a weakly nonlinear flow. The validity of
approximate formulae are verified for the concrete examples of initial waveforms.
The numerical analysis reveals a good agreement of these approximate expressions
with the exact ones obtained previously by the author. The analysis applies to the
weakly nonlinear flow as well, with the small Mach numbers (M ¿ 1). The links
inside modes are redetermined by including terms of order M2 and M2/kH.
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1. Introduction

The nonlinear dynamics of fluids affected by external forces is, in general,
a very complex problem. The forces make the background of waves propagation
non-uniform, with at least density and pressure depending on height [1], what
essentially complicates the definition of linear motions (motions of infinitely small
amplitude) taking place in the non-uniform media. The mathematical difficulties
hamper significantly the studies of nonlinear dynamics of such media.

The difficulty appears also in other than acoustic types of motion. Determina-
tion of types of wave motion itself bases on the liner dispersion relation [2, 3]. The
number of roots of dispersion relation, or branches of possible types of motion
(modes), equals the number of governing equations. In one dimension, there are
three types of motion: two acoustic branches and, if attenuation is neglected, the
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stationary one with zero frequency. In the flows going out of one dimension, the
buoyancy waves appear. A possibility of modes distinguishing and prediction of
their dynamics analytically, in addition to advance in the theory, is of importance
in meteorology and atmosphere dynamics applications [4]. It may be resolved by
means of linear operators uniquely separating the modes in the linear flow [5, 6].
Further analysis should take into account the nonlinearity of governing equations.

The one-dimensional motions in the isothermal atmosphere affected by con-
stant gravity force are considered. Starting from the precise determination of
modes, the consideration is limited by the perturbations rapidly changing in the
space (as compared to the characteristic scale of atmosphere H): kH À 1, where
k is a characteristic wavenumber of perturbation. That takes place in the most im-
portant cases and permits to simplify consideration essentially, with insignificant
loss of accuracy. The links inside modes, including integro-differential operator
with a kernel being a sum of special functions, tend in this limit to simple inte-
grals. The nonlinear governing equation of sound is written, including terms with
accuracy of order M2/kH in Sec. 4.2. The validity of expansion of operators in
series is examined in Sec. 4.3.1. Some examples of approximate subdivision of
initial waveform into specific types of motion, valid also in the weakly nonlinear
flow, are considered in Sec. 4.3.2. The Sec. 4.3.3 illustrates the nonlinear dynamics
of a single pulse.

2. Conservation equations and dispersion relations in one dimension

Studies of nonlinear dynamics should start from the general equations of fluid
dynamics. They are nonlinear and determine dynamics of all possible types of
motion which may take place in a fluid. Mathematically, general solution of con-
servation equations is unavailable, except for some well-known types of flow un-
der strongly simplifying conditions [3]. The original method, proposed by the
author, is to start from determination of the types of motion in the linear flow
by links of excess density, pressure and velocity, specific for every mode. Basing
on these links, the system of conservation equations splits into dynamic equa-
tion for every mode, accounting for interaction between modes. Inclusion of body
forces like gravity complicates mathematical part of the analysis, making links
and splitting operators integro-differential.

The governing fluid equations in absence of attenuation manifest conservation
of momentum, energy and mass [2, 3] are:

ρ

(
∂v

∂t
+ v

∂v

∂z

)
= −∂p

∂z
+ F,

ρ

(
∂E

∂t
+ v

∂E

∂z

)
+ p

∂v

∂z
= 0,

∂ρ

∂t
+

∂(ρv)
∂z

= 0,

(1)
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where ρ, p, E, v denote fluid density, pressure, internal energy and vertical particle
velocity, F = −gρ is a projection of gravity force per unit mass on axis OZ,
z equals the distance from the Earth surface and t denotes time. The unperturbed
pressure and density are functions of vertical coordinate: ρ0 = ρ00 exp(−z/H),
p0 = p00 exp(−z/H) = ρ00gH exp(−z/H), where ρ00 = ρ0(0), p00 = p0(0) denote
the background density and pressure on the Earth’s surface, correspondingly.
Physical meaning of H is the following: the background density (or pressure) at
the levels z and z + H, differs exp(1) times. The thermodynamic relation for an
ideal gas completes the system (1):

E =
p

ρ(γ − 1)
(2)

with γ = Cp/Cv being the specific heats ratio. Instead of perturbations of density
ρ′, pressure p′ and velocity v, we introduce the following quantities:

R = ρ′ · exp(z/2H), P = p′ · exp(z/2H), V = v · exp(−z/2H). (3)

This well-known change of variables allows to apply the Fourier analysis in the
studies of infinitely small signal flows. Meaning the weakly nonlinear flow M ¿ 1
(the Mach number is the ratio of particle velocity and sound speed, M = v/c0,
c0 is the infinitely small signal sound velocity in the gas), we keep only second-
order nonlinear terms in the right-hand side of the system, while the left-hand one
contains the linear quantities. The resulting system along with the correspondent
quadratic terms is:

∂V

∂t
+

1
ρ00

(
∂

∂z
− 1

2H

)
P +

gR

ρ00
= ϕ1,

∂P

∂t
+ γgHρ00

(
∂V

∂z
+

1
γH

(γ/2− 1)V
)

= ϕ2,

∂R

∂t
+ ρ00

(
∂

∂z
− 1

2H

)
V = ϕ3,

ϕ1 = − exp(z/2H)
(

V

(
∂

∂z
+

1
2H

)
V − R

ρ2
00

(
∂

∂z
− 1

2H

)
P − g

ρ2
00

R2

)
,

ϕ2 = − exp(z/2H)
(

V

(
∂

∂z
− 1

2H

)
P + γP

(
∂

∂z
+

1
2H

)
V

)
,

ϕ3 = − exp(z/2H)
(

R
∂V

∂z
+ V

∂R

∂z

)
.

(4)

The motions of infinitely small amplitudes satisfy the system (4) with zero
right-hand side. In this case, the Fourier analysis applies. The quantities R, P ,
V may be represented by the Fourier integrals as follows:
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R =

∞∫

−∞
Rk · exp(iωt− ikz) dk + cc,

P =

∞∫

−∞
Pk · exp(iωt− ikz) dk + cc,

V =

∞∫

−∞
Vk · exp(iωt− ikz) dk + cc.

(5)

The dispersion relations of this flow are well-known, they are roots of the
dispersion relation resulting from the linearized version of Eq. (4), after inserting
Eq. (5) in the system (4) and assuming ϕ1, ϕ2, ϕ3 to be zero, we obtain:

Det

∣∣∣∣∣∣∣∣∣∣∣∣

iω − 1
ρ00

(
ik +

1
2H

)
g

ρ00

−iγgHkρ00 + gρ00(γ/2− 1) iω 0

−ρ00

(
ik +

1
2H

)
0 iω

∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

ω1(ac) =

√
γgH

(
k2 +

1
4H2

)
,

ω2(ac) = −
√

γgH

(
k2 +

1
4H2

)
,

ωst = 0.

(6)

The two first data (ω1(ac), ω2(ac)) correspond to the acoustic, upwards and
downwards progressive waves, and the last one (ωst) correspond to the stationary
(entropy) type of motion. The formulas above tend to those describing motion
over the uniform background without gravity forces when H → ∞, g → 0 but

E0 =
gH

γ − 1
= const.

3. Linear definition of modes and governing equation of sound

The dispersion relations (6) determine linear links of specific variations of
pressure, density and velocity inside every mode in the Fourier space (k, t). The
correspondent links for acoustic and internal modes in (z, t) space are integro-



Weakly Nonlinear Dynamics of Short Acoustic Waves. . . 201

differential. The exact links for acoustic and entropy modes and relative projec-
tors have been established by the author for any, not obligatory large product
kH [5, 6]. For example, links connecting the acoustic pressure and velocity for
motion taking place in the positive direction of axis OZ looks:

P (z, t) =
ρ00

π
√

γgH

∞∫

−∞
dz′

(
g(1− γ/2)F (z − z′)

− γgHF (z − z′)
∂

∂z′

)
Vz(z′, t), (7)

where F (z) reflects the dispersive features of a stratified gas,

F (z) =
2
π

(I0(z/2H)− L0(z/2H)) =

∞∫

0

dk
sin(kz)√

k2 + 1/4H2
,

with I0, L0 denoting the modified Bessel function of zero order, and the Struve
function, respectively.

To simplify the consideration, let us concentrate at motions with characteristic
vertical scales much smaller than the specific scale of the background H: kH À 1.
In view of that, the dispersion relations and the following from them formulae
may be expanded in the Taylor series in the vicinity of 1/kH = 0. Finally, links
for acoustic modes, upwards and downwards propagating (indexed by 1 and 2,
respectively), have the form:

ψ1(ac) =




V
P
R




1(ac)

=




1

c0ρ00

(
1 +

γ − 2
2γH

∫
dz

)

ρ00

c0

(
1− 1

2H

∫
dz

)




V1(ac),

ψ2(ac) =




V
P
R




2(ac)

=




1

−c0ρ00

(
1 +

γ − 2
2γH

∫
dz

)

−ρ00

c0

(
1− 1

2H

∫
dz

)




V2(ac),

(8)

where c0 denotes the infinitely small sound velocity over the isothermal ideal gas
of constant background pressure and density:

c0 =
√

γp0/ρ0 =
√

γgH.

Vectors ψ1(ac), ψ2(ac) relate to positive and negative signs of acoustic circular
frequency (6). Limits of integration should agree with the physical meaning of
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the problem. The stationary mode, relating to ωst = 0, possesses the fixed links
of quantities P , R and V as follows:

ψst =




V
P
R




st

=




0

− c2
0

γH

∫
dz

1


Rst. (9)

In contrast to the motion over the uniform background, the excess pressure of
the stationary mode does not equal zero. Matrix operators, projecting the overall
field into acoustic modes (Π1(ac)ψ = ψ1(ac), Π2(ac)ψ = ψ2(ac), Πstψ = ψst),
follows from links inside the specific modes (8, 9):

Π1(ac) =




1
2

1
2ρ00c0

(
1− 1

2H

∫
dz

)
g

2ρ00c0

∫
dz

ρ00c0

2

(
1− 2−γ

2γH

∫
dz

)
1
2
− 1

2γH

∫
dz

g

2

∫
dz

ρ00

2c0

(
1− 1

2H

∫
dz

)
1

2c2
0

− 1
2c2

0H

∫
dz

1
2γH

∫
dz




,
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1
2

− 1
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(
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2H

∫
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)
− g

2ρ00c0

∫
dz

−ρ00c0

2

(
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2γH

∫
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)
1
2
− 1

2γH

∫
dz
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2

∫
dz

−ρ00
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(
1− 1

2H

∫
dz

)
1

2c2
0

− 1
2c2
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∫
dz

1
2γH

∫
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,

Πst =




0 0 0

0
1

γH

∫
dz −g

∫
dz

0
1
c2
0

(
−1 +

1
H

∫
dz

)
1− 1

γH

∫
dz




.

(10)

The projectors form the full orthogonal basis with properties:

Π1(ac) ·Π2(ac) = Π1(ac) ·Πst = ... = Πst ·Π2(ac) = 0,

Π2
1(ac) = Π1(ac), ...Π1(ac) + Π2(ac) + Πst = I,

where 0, I are zero and unit matrix operators.
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It is easy to establish an accordance of the projectors to that written on for
any product kH [5, 6] assuming the approximate expressions for the following
operators in the case kH À 1:

1
π

∞∫

−∞
dz′F (z′ − z)

∂

∂z′
≈ 1,

exp(−z/2H)

z∫

−∞
dz′ exp(z′/2H)

∂

∂z′
≈ 1,

exp(z/2H)

z∫

∞
dz′ exp(−z′/2H)

∂

∂z′
≈ 1.

(11)

Complete perturbation is a sum of all specific parts, for example, R = R(1,ac)+
R(2,ac) + Rst, and so on. In order to get equations with accuracy M2, projectors
apply to the both sides of system (4). They distinguish the corresponding pertur-
bation in the left-hand linear side and yield in the nonlinear terms of all modes
while acting at the right-hand side [5, 6]. Considering the terms relating to the
first, “upwards progressive” mode, the nonlinear dynamic equation in the leading
order looks similarly to the corresponding equation for a wave propagating over
the uniform background (the difference is in the factor ez/2H which tends to 1 if
H tends to infinity):

∂V(1,ac)

∂t
+ c0

∂V(1,ac)

∂z
+

γ + 1
2

ez/2HV(1,ac)

∂V(1,ac)

∂z
= O(M3,M2/kH). (12)

In the linear part, dispersive features of the medium, relating to a term of
order 1/(kH)2, are not accounted for. The linear links of perturbations (8) make
the sound isentropic in the leading order. The nonlinear links keeping sound
isentropic in the second order, may be established using the links analogous to
that for the Riemann wave [3, 7]:

P(1,ac) = c0ρ00

(
1 +

γ − 2
2γH

∫
dz

)
V(1,ac) + exp (z/2H)ρ00

γ + 1
4

V 2
(1,ac),

R(1,ac) =
ρ00

c0

(
1− 1

2H

∫
dz

)
V(1,ac) + exp (z/2H)

3− γ

4
ρ00

c2
0

V 2
(1,ac).

(13)

It may be easily verified that the governing equation for the sound with the
corrected links (13) is still Eq. (12). The aim of linear projecting is to decompose
linear parts of Eq. (4) and to distribute properly their nonlinear right-hand sides
between the different dynamic equations.
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4. Governing nonlinear equations for sound

4.1. The Riemann waveform – an exclusive example of complete separation
of acoustic quantities in the nonlinear flow

It is helpful to remember at this point the Riemann acoustic wave propagating
over an ideal gas of background constant density and pressure in absence of
attenuation. It is known to be a wave which does not generate other types of
motion and is an exact solution of the system of hydrodynamic equations. The
links of the rightwards progressive (in the positive direction of axis OZ, denoted
by index 1) Riemann wave are as follows:

P1,R =
ρ0c

2
0

γ

(
1 +

γ − 1
2

V1,R

c0

)2γ/γ−1

− ρ0c
2
0

γ
,

R1,R = ρ0

(
1 +

γ − 1
2

V1,R

c0

)2/γ−1

− ρ0.

(14)

This coincides with links (13) when H →∞, ρ0(z) ≡ ρ00. On the other hand, the
exact dynamic equation governing the nonlinear Riemann wave is the Earnshaw
equation:

∂V1,R

∂t
+ c0

∂V1,R

∂z
+

γ + 1
2

V1,R
∂V1,R

∂z
= 0, (15)

which corresponds to Eq. (12) when H → ∞, ρ0(z) ≡ ρ00. Note that Eqs. (14),
(15) are exact but (12), (13) are obtained with accuracy up to quadratic terms.
Making the links inside acoustic mode more precise, one can specify the links (13)
within any accuracy. The Riemann wave is an exclusive example of complete sep-
aration of acoustic quantities in the nonlinear flow. Similar waveforms of both
directions of propagation, exist also in the flow over the medium affected by
gravity.

It is well understood that such separation is impossible in the viscous flows,
where exists a nonlinear generation of non-acoustic types of motion [3, 8, 9].
The nonlinear losses of acoustic momentum induces the vortex flow (acoustic
streaming), and losses of acoustic energy result in acoustic heating [10]. Dynamic
equations governing acoustic heating include nonlinear terms standing by the
viscosity coefficient, which plays a role of acoustic source of heating [10, 11].

4.2. Links of perturbations and governing equations
for an acoustic waveform

For such a waveform to exist (for example, upwards progressive), the links
connecting excess pressure, density and velocity (like (14)) must lead to three
equivalent equations for velocity (like (15)). In order to correct links and equations
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up to the terms of order M2/kH, Eqs. (13) should be completed by the new terms
as follows:

P1,ac = c0ρ00

(
1 +

γ − 2
2γH

∫
dz

)
V(1,ac) + exp (z/2H)ρ00

γ + 1
4

V 2
(1,ac)

+ exp (z/2H)P 1,

R1,ac =
ρ00

c0

(
1− 1

2H

∫
dz

)
V(1,ac) + exp (z/2H)

3− γ

4
ρ00

c2
0

V 2
(1,ac)

+ exp (z/2H)R1,

(16)

where P 1, R1 are suitable quadratic functions of V(1,ac) of order M2/kH, for
example, proportional to

1
H

V(1,ac)

∫
V(1,ac) dz or to

1
H

∫
V 2

(1,ac) dz.

It is easy to prove that links (16) with zero P 1 and R1 make the mode isentropic
up to the terms of order M2. Taking into account the dynamic Eq. (12), the
Eqs. (4) transform into the following system:

ξ + ez/2H 1
ρ00

∂P 1

∂z
= −ez/2H

2H

(
3 + γ

2γ
V 2

(1,ac) +
∂V(1,ac)

∂z

∫
V(1,ac) dz

)
,

ξ + ez/2H 1
ρ00c0

∂P 1

∂t
= −ez/2H

2H

(
3γ2 + γ − 6

4γ
V 2

(1,ac)

− (2− γ)
∂V(1,ac)

∂z

∫
V(1,ac) dz

)
,

ξ + ez/2H c0

ρ00

∂R1

∂t
= −ez/2H

2H

(
γ − 3

4
V 2

(1,ac) −
∂V(1,ac)

∂z

∫
V(1,ac) dz

)
,

(17)

where

ξ =
∂V(1,ac)

∂t
+ c0

∂V(1,ac)

∂z
+ ez/2H γ + 1

4

∂V 2
(1,ac)

∂z
.

Calculating the difference of the first and the second equations, one gets:

c0
∂P1

∂z
− ∂P1

∂t
≈ 2c0

∂P1

∂z

=
c0ρ00

2H

(
3γ2 − γ − 12

4γ
V 2

z(1,ac) + (γ − 3)
∂Vz(1,ac)

∂z

∫
Vz(1,ac) dz

)

and therefore,

P 1 =
ρ00

4H

∫ (
3γ2 − γ − 12

4γ
V 2

(1,ac) + (γ − 3)
∂V(1,ac)

∂z

∫
V(1,ac) dz

)
dz,
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which yields the expression for R1 and dynamic equation for velocity of sound:

R1 = − ρ00

4Hc2
0

∫ (
γ + 9

4
V 2

(1,ac) + (γ + 1)
∂V(1,ac)

∂z

∫
V(1,ac) dz

)
dz,

∂V(1,ac)

∂t
+ c0

∂V(1,ac)

∂z
+ ez/2H

(
γ + 1

4

∂V 2
(1,ac)

∂z
+

3(γ + 1)
16H

V 2
(1,ac)

+
γ − 1
4H

∂V(1,ac)

∂z

∫
V(1,ac)dz

)
= 0.

(18)

It is easy to verify that the links and relative equation for the downwards directed
wave are the following:

P2,ac = −c0ρ00

(
1 +

γ − 2
2γH

∫
dz

)
V(2,ac) + exp (z/2H)ρ00

γ + 1
4

V 2
(2,ac)

+ exp (z/2H)P 2,

R2,ac = −ρ00

c0

(
1− 1

2H

∫
dz

)
V(2,ac) + exp (z/2H)

3− γ

4
ρ00

c2
0

V 2
(2,ac)

+ exp (z/2H)R2,

P 2 =
ρ00

4H

∫ (
3γ2 − γ − 12

4γ
V 2

(2,ac) + (γ − 3)
∂V(2,ac)

∂z

∫
V(2,ac) dz

)
dz,

R2 = − ρ00

4Hc2
0

∫ (
γ + 9

4
V 2

(2,ac) + (γ + 1)
∂V(2,ac)

∂z

∫
V(2,ac) dz

)
dz,

∂V(2,ac)

∂t
− c0

∂V(2,ac)

∂z
+ ez/2H

(
γ + 1

4

∂V 2
(2,ac)

∂z
+

3(γ + 1)
16H

V 2
(2,ac)

+
γ − 1
4H

∂V(2,ac)

∂z

∫
V(2,ac) dz

)
= 0.

(19)

In the frames of the accepted accuracy, the specific density and pressure of
stationary modes are not affected by the sound and are governed by equations:

∂Rst

∂t
=

∂Pst

∂t
= 0,

with Vst = 0.
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4.3. Numerical examples

4.3.1. Validity of expansions of integrals in the series

The question concerning validity of expansion of the linear operators (11)
needs additional examinations. Generally, the larger is k compared to 1/H, the
smaller is the difference. Every perturbation localized in the space possesses
in its spectrum zero wavenumber, among other, though the larger input has
a wavenumber of order L−1, where L is a characteristic scale of perturbation. In
order to examine how precise the approximate expressions (11) are, four exem-
plary waveforms, modulated impulses V = V0 exp(−(z/H − 5)2) cos(10z/H),
V = V0 exp(−5 · 104(z/H − 0.02)2) cos(5 · 103z/H), and single Gauss pulses
V = V0 exp(−10(z/H−5)), V = V0 exp(−5·104(z/H−0.02)) are considered. Nu-
merical results of applying of the first and second operators from the set of (11)
to all waveforms are shown consistently in Fig. 1.

The discrepancy of the initial waveform and results of integration are quite
small even for waveforms at Figs. 1a and 1c with characteristic scale of order H,

a) b)

3 4 5 6 7 8
z
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V
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z
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Fig. 1. The waveform V/V0 as a function of vertical distance z/H (solid line),
1

πV0

∞R
−∞

dz′F

(z′ − z)
∂V (z′)

∂z′
(bold line),

1

V0
exp(−z/2H)

zR
−∞

dz′ exp(z′/2H)
∂V (z′)

∂z′
(dotted line). At the sets

a, b, and d, the dotted and solid curves are very close to each other.
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and therefore, for the ones being out of frames of consideration. Note that typical
quantity of H in the atmosphere is about 10 km, so that such perturbations
are actually very extended. In Figs. 1 a, b, d the difference between original
waveform and the second integral from the set (11) is indistinguishable. Much
larger difference exhibits the first integral of the set (11). This deviation may be
explained partially by the limited accuracy of special functions forming F (z). The
calculations were performed with the help of Mathematica. Such linear variations
in waveform caused by a linear operator may be investigated also by means of
spectral analysis.

To demonstrate the difference between two last integrals in the set (11),

1
V0

exp(−z/2H)

z∫

−∞
dz′ exp(z′/2H)

∂V (z′)
∂z′

and
1
V0

exp(z/2H)

z∫

∞
dz′ exp(−z′/2H)

∂V (z′)
∂z′

,

respectively, the initial waveform V = V0 exp(−20(z/H − 3)2) is considered. The
Fig. 2a represents the first and second integrals (fine and large-scale dotted lines,
respectively). The initial waveform V/V0 and

1
πV0

∞∫

−∞
dz′F (z′ − z)

∂V (z′)
∂z′

are plotted by solid normal and boldface lines, respectively, in Fig. 2b.
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1

V0
exp(−z/2H)

zR
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dz′ exp(z′/2H)
∂V (z′)

∂z′
and

1

V0
exp(z/2H)

zR
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dz′ exp(−z′/2H)

∂V (z′)
∂z′

(fine dotted line and large-scaled dotted line, respectively) as functions of vertical dis-

tance z/H; b)
V

V0
= exp(−20(z/H−3)2) (solid line) and

1

πV0

∞R
−∞

dz′F (z′−z)
∂V (z′)

∂z′
(boldface

line).
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4.3.2. Decomposition of initial waveform into specific parts

Using operators (10), any initial perturbation may be decomposed into specific
parts, acoustic and stationary. In the linear flow, the subdivision is exact in the
frames of the problem (kH À 1). In the weakly nonlinear flow, the projection
may be used as approximate estimation. The analysis reveals that even for the
large Mach numbers of order 1, modes with linear links keep the property to
propagate mainly in one chosen direction according to the roots of dispersion
relation (6) [5].

The examples of subdivision of pure perturbation of velocity

V/V0 = sin(2πz/H)

or pressure
P/(ρ00c0V0) = sin(2πz/H)

for 0.5H < z < 1.5H and zero outside this interval, into specific parts, are
illustrated by the Figs. 3, 4 below. Pure velocity perturbation decouples into two
acoustic branches, and pure pressure perturbation into all three types of motion,
each with fixed links of pressure, density and velocity according to (8), (9).
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Fig. 3. a) Initial perturbation
V

V0
; b), c) The excess pressure, density and velocity of relative

acoustic branches.
V

V0
is plotted by the boldface line,

Rc0

ρ00V0
is plotted by the dotted line, and

P

ρ00V0c0
by the solid line.
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Rc0

ρ00V0
is plotted

by the dotted line, and
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4.3.3. Nonlinear sound dynamics

Weakly nonlinear dynamics of upwards moving sound is governed by Eq. (18).
All three terms in the brackets are nonlinear. The first one leads in the motion

over the background of constant density to
γ + 1

4

∂V 2
(1,ac)

∂z
while H → ∞, and

the two other tend to zero. Since ez/2H is a growing function of z, the general
conclusion is that nonlinear effects grow while the wave propagates upwards. The
dynamics of two positive Gauss pulses of different amplitudes

V

V0
(z, t = 0) = 0.1 exp(−10(z/H − 2)2)

and
V

V0
(z, t = 0) = 0.3 exp(−10(z/H − 2)2)
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as functions of the retarded non-dimensional coordinate Z =
z − tc0

H
at different

times
c0

H
t is shown by Fig. 5.
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Fig. 5. a) Dynamics of the Gauss pulse
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= 0.1 exp(−10(z/H − 2)2) at dimensionless times
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H
= 0, 0.3, 0.6, 0.9 as a function of the retarded coordinate Z =
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; b) Dynamics of

the Gauss pulse
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Figure 6 explains the relative role of two last nonlinear terms in the brackets
of Eq. (18) for the same initial pulses and two analogous negative. The solid
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accounts for the first one only.
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line denotes the initial waveform, the dotted one accounts for exclusively first
nonlinear term in the brackets, and the bold line accounts for all three terms.

The difference in distortions of the analogous pulses of different polarity may
be explained by the presence of the factor exp(z/2H) which makes distortions
stronger for larger z.

5. Conclusions

The method of decomposing of dynamic nonlinear equations from the overall
system of conservation equations was proposed and applied by the author in the
variety of fluid dynamics problems, concerning interaction of sound and non-
acoustic types of motion in the one- or multi-dimensional flow [5, 6, 11–13]. It
bases on properties of the motions of infinitely small amplitude following from
the fixed links of gasdynamic perturbations of infinitely small amplitude.

Both the successive separation of acoustic and stationary parts of the general
perturbation, and decomposition of specific dynamic equations from the general
system, proceed with the help of linear matrix operators. The idea of project-
ing relatively to the fluid dynamics problems was also worked out by the au-
thor. Projectors may be considerably simplified in the case of large characteristic
wavenumber k: 1/k ¿ H, as well as links of wave perturbations inside every
mode (Eqs. (8)–(10)). The numerical examples of the investigation concerning
the examinations of the simplified and exact operators, present a satisfactory
agreement of the waveforms even for fairly extended ones: 1/k ∼ H.

It is demonstrated that the conclusions of the linear flow theory apply to the
weakly nonlinear motion. Thus the consideration above concerns the weakly non-
linear flows with M ¿ 1 and 1/kH ¿ 1. The separation of any perturbation into
acoustic and stationary branches at any moment may be successfully undertaken
by means of linear projectors.

The nonlinear corrections to specific links inside acoustic modes of order
M2/kH are derived. They support constant entropy of sound within this ac-
curacy. The corresponding dynamic equations for the acoustic branches individ-
ually become written on. The illustrations of nonlinear distortions of a single
waveform reveal the main features of dynamics compared to the nonlinear dis-
tortions of wave in the medium with constant background density and pressure.
The individual role of all nonlinear terms is studied: taking into account these
of order M2/kH makes the positive peaks lower but the negative ones-deeper.
The dispersive deformations are not taken into account in the dynamic equa-
tions for sound, in their linear part, because the expansion of dispersion relations
ω(k) (6) into the series includes terms of order 1/k2H2, which are outside the
frames of consideration. But links inside modes (8), (9), nonlinear corrections
to them and nonlinear parts of dynamic equations (18), (19) lead to disper-
sion.
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The results may be easily applied in studies of a fluid different from an ideal
gas (by involving the correspondent equations of state), in presence of a constant
force other than the gravity force.
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