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It is well known that spatial-temporal Green function characterizes sufficiently
the elastic media. For the case of elastic interface waves which propagate at the
interface between two, perfectly mechanically contacting piezoelectric half-spaces,
this function, or its scalar counterpart that is the planar harmonic impedance, pro-
vides full characterization of electric properties observed at the interface, which can
be applied in analysis of interdigital transducers embedded there, for instance. This
impedance however is not easy for evaluation as a function of complex wave-number
in the most interesting domain near the cut-off wave-number of bulk waves. Here,
a perturbation analysis is presented exploiting the Stroh matrix formulation for
piezoelectrics which yields the analytical approximation to the investigated electric
impedance at the crystal planar cross-section.
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1. Introduction

In the theory of surface acoustic wave (SAW) transducers and other dis-
tributed transducers of surface waves, there are certain problems with charac-
terization of elastic substrates on which the transducers work. The theory of
such transducers usually are quite complicated and application of the full for-
mulation of the boundary-value problem for elastic body makes the theory too
complicated and the results difficult for interpretation. It is better to apply an
analytical characterization of the body having few most important parameters
for the analyzed problem. Usually, such exact characterization, an example of
which is the planar harmonic impedance describing the dependence of surface
electric field on surface electric charge, does not exist and we need to find its ap-
proximation that is correct in most important albeit relatively narrow domain of



190 E.J. Danicki

the wave number of the analyzed surface waves. The presented analysis proposes
a method for developing such approximation in the case of interfacial waves in
piezoelectrics.

2. Wave motion in piezoelectric half-spaces

For harmonic wave-field f depending on the propagation direction x and
vanishing in depth of the crystal half-space z < 0:

f = exp(jωt) exp(−jrx− jsz);

f,x = −jrf, f,z = −jsf,

where ω, r, s are temporal and spatial angular frequencies, the wave motion is
governed by the following Stroh equations [1, 2] (A and B are 4×4 real matrices
depending only on the material constants of the body):

−js

[
A 0
B I

] [
U
T

]
− jr

[
BT −I
C 0

] [
U
T

]
= 0, (1)

for convenient variables describing the wave-field (superscript T means transpo-
sition):

U = [−jrui,−jrϕ]T, T = [Ti3, D3]T,

where u, ϕ, T , D are displacements, electric potential, stress, and electric induc-
tion, respectively (index i takes values 1, 2, 3; do not confuse it with j =

√−1
appearing in entirely different circumstances); I and 0 are unitary and zero ma-
trices. See the above-mentioned references for details. It is worth to note here
that A and C are symmetric matrices, where only C = diag{[1, 1, 1, 0]}ω2g/r2

depends on the wave-motion parameter; g is the mass density of the substrate.
Easy inversion of the first matrix of Eq. (1) transforms the above equations into
the eigenvalue problem for matrix H:

Fq = HF,

H =

[
−A−1BT A−1

BA−1BT −C −BA−1

]
,

F =
[

U
T

]
, q = s/r.

(2)

It can be checked by inspection that the left eigenvector E of the Stroh matrix
H which is a real matrix for real r, can be obtained directly from its right one F:

EH = qE, E = [TT,UT]. (3)

The matrix H has eight eigenvalue-eigenvector pairs {qi,F(i)} describing the
wave-field on the surface z = 0, resulting from the wave-motion inside the body:
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four pairs satisfying the radiation conditions at z < 0 and other four satisfying
the conditions at z > 0 [2]. In the known Rayleigh–Lamb boundary-value prob-
lem for the half-space z < 0, three mechanical boundary conditions requiring
that T3i = 0 at z = 0 provides additional three equations, which allow us to
evaluate the electric admittance which is the relation between the applied sur-
face charge Q or normal induction D3 and the surface electric field E1 = −ϕ,x.
In the most interesting analyzed cases, the admittance exhibits a resonant depen-
dence on the wave-number r in close vicinity of the cut-off wave-number of bulk
waves rc. Figure 1 presents an example computed directly from the above system
of equations and from its analytical approximation derived by using the method
presented in [2] (which is generalized in this paper); note the scale of r − rc.
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Fig. 1. a) Eigenvalues dependent on the wave-number r (horizontal axis) draw the slowness
curves when they are real-valued; they are complex-valued above cut-off wave-numbers of bulk
waves (the lowest one, rc, is marked in the figure); b) Resonant behavior of the surface im-
pedance Z(r) in small domain around rc; the approximated values evaluated using the method

of [4] remain in perfect agreement within this important domain of wave-number r.

The approximation discussed below is developed for the case of interface waves
which propagate at the contact plane of two piezoelectric half-spaces, z < 0 and
z > 0. They are attached to each other with perfect mechanical contact (equal
surface stress and displacement vectors on both sides of the interface). Certain
charge distribution Q may exist at the contact plane causing the jump of the
normal induction D3 across the contact; the electric tangential field and poten-
tial (E1 = −ϕ,x) are naturally continuous and equal at both sides of the plane
z = 0. The wave-field in both half-spaces must satisfy the radiation conditions at
z → ±∞. This requires the wave-fields in the domain z < 0 to be represented by
the first subset of the eigenvalue-eigenvector pairs {qi,F(i)}, i = 1, · · · , 4 men-
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tioned above, and the wave-fields in the other domain, z > 0, to be represented
by the other subset including eigenvalues q∗i and the corresponding wave-vectors
denoted here by F(−i).

3. Case of defective Stroh matrix

As discussed above, the matrix H(r) has eight eigenvalue-eigenvector pairs
(qi,Fi):

HF = Fq. (4)

In the small domain at the cut-off wave-number rc (see example in Fig. 1), most
of them do not vary much and can be considered constant except the number of
pairs where two or more eigenvectors melt into real one Fc. This indicates that
the matrix H is defective and that there are generalized eigenvectors F′,F′′, . . . ,
orthogonal to Fc [3]. These generalized eigenvectors help us to evaluate the eigen-
vectors in a narrow domain around rc by the matrix perturbation with respect
to small variation of r around rc (Ḣ = ∂H/∂r at r = rc), taking into account the
normalization condition F · F = 1 which requires that Fc · F′ = 0, for instance.
In the case of second-order defective matrix, we have:

ε = r − rc = aδ2, q = qc + δ,

F = Fc + δF′ + δ2F̈ + · · · ,

H = Hc + εḢ, HcFc = qcFc,

(Hc − qcI)F′ = Fc, Fc · F′ = 0,

(Hc − qoI)F̈ + aḢFc = F′.

(5)

It can be easily shown that in the above considered case of defective matrix,

E = Ec + δE′, a = (EcF′)/(EcḢFc), EcFc = 0

(a is the slowness curvature). The detailed discussion presented below concerns
the higher defective matrix, having three generalized eigenvalues.

In this case, the slowness curvature vanishes (EcF′ = 0) at the cut-off wave-
number rc, making its parabolic approximation, Eqs. (5), invalid. Instead, the
approximation is [2–4]:

ε = r − rc = aδ4,

q = qc + δ, δn = (ε/a)1/4e−jnπ/2,

F = Fc + δF′ + δ2F′′ + δ3F′′′,

a = EcF′′′/(EcḢFc),

(6)
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for this matrix defectiveness, where four eigenvectors melt into one (Fc) at rc. For
r 6= rc, the approximate eigenvectors and four real eigenvectors F(±i) describing
bulk waves span the eight-dimensional space of H.

4. Interface waves

Here, we analyze the boundary-value problem for piezoelectric interface waves
guided along the perfectly conducting or impedance plane embedded in a piezo-
electric body at z = 0 [5, 6]; the wave-field decays on both sides of the plane. The
eigenvectors of different subsets contribute to the wave-field on different sides of
the plane, chosen to satisfy the radiation conditions at z → ±∞ (corresponding
eigenvalues are: δ and δ1, or −δ,−δ1). For typical convex slownesses, a < 0, the
eigenvectors satisfying Eq. (4) are:

F± = [Fc ± δF′ + δ2F′′ ± δ3F′′′, Fc ∓ jδF′ − δ2F′′ ∓ jδ3F′′′, F(±i)], (7)

where the eigenvectors F(±i), i = 3, 4, are considered constant over the small
domain of r = rc + aδ4, where δ takes values

δ = (ε/a)1/4 for ε/a > 0, or δ = exp(−jπ/4)|ε/a|1/4 for ε/a < 0, (8)

or −jδ as defined above (resulting from the fourth-root dependence of δ on ε),
which case yields the second column of F± in Eq. (7).

The field (displacement, stress and electric potential) continuity at z = 0
requires that [

F+ 0
0 −F−

] [
c+

c−

]
=

[
0
Q

]
, (9)

where c± are unknown constants, from which electric potential ϕ can be eval-
uated for a given surface electric charge distribution Q on the plane z = 0
(0 is the zero column matrix). Here, we are interested in evaluation of the in-
terface electric impedance Z = ϕ/(jωQ) dependent on r or, equivalently, on δ
defined in Eqs. (8). The left-hand side of the above system of equations is (zeros
omitted):

[
Fc,F′, F′′, F′′′, F(3), F(−3), F(4), F(−4)

]




1 −1 1 −1

δ δ −jδ −jδ

δ2 −δ2 −δ2 δ2

δ3 δ3 jδ3 jδ3

1

−1

1

−1







c+
1

c−1
c+
2

c−2
c+
3

c−3
c+
4

c−4




. (10)
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The upper left-hand cell of the second matrix can be written in the Smith canon-
ical form

diag{[1, δ, δ2, δ3]}




1 −1 1 −1

1 1 −j −j

1 −1 −1 1

1 1 j j




. (11)

Multiplying matrix (10) by left eigenvectors and exploiting the known or-
thogonality relations for generalized eigenvectors which can be obtained from
equations analogous to Eqs. (8) [2]: EcFc = 0, EcF′ = 0, EcF′′ = E′F′ = 0,
EcF′′′ = E′F′′ = E′′F′, E′F′′′ = E′′F′′, helps us to solve Eq. (5). Note here that
E[0, 0, 0, 0, 0, 0, 0, Q]T = F4Q due to the left eigenvector shape, Eq. (5) (F4 is the
fourth element of the vector F). The resulting left matrix of Eq. (10):




d

E(±3)F(±3)

E(±4)F(±4)


, d =




EcF′′′

EcF′′′ E′F′′′

EcF′′′ E′F′′′ E′′F′′′

EcF′′′ E′F′′′ E′′F′′′ E′′′F′′′




(12)

can be easily inverted, as well as the second one, including the Smith matrix
presented earlier, in order to evaluate c±, then ϕ, and finally Z:

2rωZ =




Fc

F′

F′′

F′′′

F(±i)




T

4




0 jδ−1 0 δ−3

δ 0 jδ−1 0

0 δ 0 jδ−1

jδ3 0 δ 0

1




×




d−1

1 + j ±1
E(±i)F(±i)







Fc

F′

F′′

F′′′

F(±i)




4

, (13)

where F(±i) are unperturbed eigenvectors (i = 3, 4; note the above shortened
notation), and subscript 4 of column matrices points to fourth elements of the
corresponding vectors F; 1 is the fourth-order unitary matrix.
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5. The impedance approximation

The resulting polynomial of δ has zeros at δn, n = 1, 2, · · · , 6:

2rδ3ωZ = p6δ
6 + p5δ

5 + · · ·+ p0, (14)

which can be rewritten in the form

Z =
p6p0

2rωδ3

(1− δ/δ1)(1− δ/δ2)(1− δ/δ3)
(1 + δ/δ4)(1 + δ/δ5)(1 + δ/δ6)

≈ p0p6

2rωδ3

1− δ/δ1

1 + δ/δ4
, (15)

where we have exploited the approximation (1− δ/δn) = (1 + δ/δn)−1 for small
δ in order to obtain the expected functional dependence of Z on finite, albeit
small δ. It is assumed in the above approximation that the values of δn other
than δ1, δ4 are much larger, what was the case of our former computations.
There is no rule however, how to order roots δn in order to obtain results which
may be compared with direct calculation of Z(r). Naturally, only the smallest δn,
say, δ1 and δ4 are most important, possibly yielding the resonant behavior of 1/Z
on small variation of r depending on δ. If the interface wave exists then zero
of 1/Z would yield ko, determined by the first zero of Z. The first pole, if it
exists for small δ, would determine the wave-number of the wave propagating
under condition of Q = 0. It would mean unperturbed crystal in the considered
case, without any conducting plane embedded in it; no such interface wave can
exist in this case. In the example of Fig. 2, the evaluated and approximated Z
satisfactorily agree and indeed, only zero of Z exists for small δ.
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Fig. 2. The evaluated and approximated impedance for the 4-order defective Stroh matrix
characterizing the rotated lithium niobate (the given Euler angles in radians determine the
rotation). The applied multiplying function of r makes drawings of Z easier for comparison.

This confirms the fact that the interface impedance was evaluated with suffi-
cient accuracy by perturbation analysis in the case of 4th-order defective Stroh
matrix. Here, the trick in obtaining the valid approximation relies on the last care-
ful factorization of the polynomial resulting from the perturbation analysis [4, 7].
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In the theory of distributed SAW transducers mentioned in the Introduction,
the generated surface waves are evaluated by Cauchy integral residual at the
wave-number ko > rc. Its correct evaluation presented in Fig. 2 is thus the most
important fact for the obtained approximation.

6. Conclusions

The analysis presented above shows how the to approximately characterize
the arbitrarily anisotropic piezoelectric substrate in a quite complicated case of
fourth-order defective Stroh matrix. In typical cases, the slowness curve can be
approximated by a second-order curve what simplifies the analysis, as presented
in [2, 4] and illustrated in Fig. 1. This paper shows that the approximation can
be effectively derived even in more complicated cases.
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