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The paper proposes the use of triangular parametric Bézier patches as a new and
effective way to generate three-dimensional boundaries in acoustics problems. The
boundary geometry composed of triangular Bézier patches has been directly linked
to the parametric integral equation system (PIES) to numerical solving exterior
Helmholtz problems. A primary advantage of the proposed approach is to avoid the
necessity of conventional domain or boundary discretization. The obtained numerical
solutions compared with literature exacts results are characterized by high accuracy
and convergence.
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1. Introduction

Solving acoustics problems often involves conducting a detailed analysis of
solutions in infinite (exterior) domains. Taking into consideration infinite do-
mains in the finite element method (FEM) is highly problematic. In practice,
this leads to discretization into finite-elements large but still finite domains [10].
The boundary element method (BEM), another widespread numerical method,
appears to be a more suitable approach for solving exterior problems than the
FEM. The BEM [1, 4, 5] is based on the boundary integral equation (BIE) in
which only the boundary of the domain is needed to be discretized into ele-
ments. In order to apply the BEM to exterior problems, only the interior bound-
ary is discretized. The BEM, in spite of decreased number of used elements in
comparison with the FEM, has also its disadvantages mainly because of the
lack in satisfying automatic continuity at joining nodes of boundary elements.
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It must be noted that any shape modification of the boundary, results in a re-
discretication of the existing element structure of the geometry. Additionally, the
BEM solutions are obtained at the declared nodes. Therefore, in order to im-
prove the accuracy and verify the convergence of solutions should be increased
the number of boundary elements, which leads to the declaration of additional
nodes.

In our own research a new approach for numerical solving of two and three
dimensional boundary problems was proposed. As a result of the analytical mod-
ification of the classical BIE a new parametrical integral equation system (PIES)
was obtained. The proposed approach has been successfully applied to a variety
of two-dimensional problems with different character (Laplace [6], Hemlholtz [7],
Navier–Lamé [8] equations). In the case of 3D problems only preliminary analysis
of the PIES application for Helmholtz problems has been conducted for the do-
mains with polygonal boundaries defined by flat rectangular Coons surfaces [9].
The primary objective of this paper is to apply triangular Bézier patches for mod-
elling boundary geometry in the PIES in the case of 3D Helmholtz problems. The
obtained numerical solutions were compared with literature exact results.

2. Triangular Bézier patches in creating three-dimensional
representation of the boundary

The rapid development of computer graphics has brought progress in a vi-
sual representation of complex 2D and 3D geometries. One of the main tools
widely used in computer graphics applications appear to be parametric curves
and surfaces. The parametric representation is well-known in the computer graph-
ics community, and has matured into a powerful tool designed for modelling and
visualization.

Triangular Bézier surfaces of order n is declared by a set of 0.5(n + 1)(n + 2)
control points Pijk for integer indices i, j, k and i + j + k = n. Figure 1 shows
sample patches of 3rd and 4th degree defined by 10 and 15 control points, re-
spectively.

The formula for the surface defined by these control points is written as a map-
ping of the triangle in the 2-D parameter space 0 ≤ v, w, u ≤ 1 and v +w+u ≤ 1
into the 3D space of the control points as presented below [2, 3]

Pn(v, w, u) =
∑

i,j,k≥0

Pi,j,kB
n
i,j,k(v, w, u), (1)

where

Bn
i,j,k(v, w, u) =

(
n

i, j, k

)
viwjuk =

n!
i! j! k!

viwjuk, (2)
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a) b)

Fig. 1. Triangular Bézier patches of 3rd (a) and 4th (b) degree with control points.

is a Bernstein polynomial. The complete expressions for the triangular Bézier
patches of 3rd and 4th degree shown in Fig. 1 are written as

P 3(u, v, w) = w3P003 +3vw2P012 +3v2wP021 + v3P030

+ 3uw2P102 +6uvwP111 +3uv2P120

+ 3u2wP201 +3u2vP210

+ u3P300, (3)

and

P 4(u, v, w) = w4P004 +4vw3P013 +6v2w2P022 +4v3wP031 + v4P040

+ 4uw3P103 +12uvw2P112 +12uv2wP121 +4uv3P130

+ 6u2w2P202 +12u2vwP211 +6u2v2P220

+ 4u3wP301 +4u3vP310

+ u4P400. (4)

After substitution u = 1 − v − w in (1) and additional restrictions imposed
on 0 ≤ v, w ≤ 1 and v + w ≤ 1 the surface of Bézier patch can be mapped by
two only parameters v, w. In this case, expressions (1), (2) may be reduced to

Pn(v, w) =
∑

i,j,k≥0

Pi,j,kB
n
i,j,k(v, w, 1− v − w) (5)

and

Bn
i,j,k(v, w, 1− v − w) =(

n
i, j, k

)
viwj (1− v − w)k =

n!
i! j! k!

viwj (1− v − w)k . (6)

The above formulas for Bézier patches will be used in the rest of the paper.
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3. The PIES for Helmholtz equation in domain bounded
by triangular Bézier surfaces

The boundary in this paper is shaped by means of discussed in previous
section triangular Bézier patches. We can easy join individual patches together
to form smooth closed surface. The boundary, being thus described, is explicitly
taken into consideration in presented below mathematical formula of the PIES [9]

0.5ul(v1, w1) =
n∑

j=1

vj∫

vj−1

wj∫

wj−1

{
U
∗
lj(v1, w1, v, w)pj(v, w)

−P
∗
lj(v1, w1, v, w)uj(v, w)

}
Jj(v, w) dv dw (7)

and vj−1 < v1, v < vj ; wj−1 < w1, w < wj ; l = 1, 2, 3...n, exactly in functions
U
∗
lj and P

∗
lj

U
∗
lj =

[
Re{U∗

lj} −Im{U∗
lj}

Im{U∗
lj} Re{U∗

lj}

]
, (8)

where
U∗

lj =
1

4πη
eikη =

1
4πη

{cos kη + i sin kη}

and

P
∗
lj =

[
Re{P ∗

lj} −Im{P ∗
lj}

Im{P ∗
lj} Re{P ∗

lj}

]
, (9)

where

P ∗
lj =

∂U∗
lj

∂n

=
1

4πη3
{(cos kη + kη sin kη) + i (sin kη − kη cos kη)} {η1n1 + η2n2 + η3n3} .

This formula of the PIES is similar to the previously presented one, where the
PIES approach was studied for interior polygonal domains bounded by rectangu-
lar Coons patches [9]. The difference lies in the adaptation of the PIES formula
for considerably more complicated than previously used flat Coons surfaces – new
smooth Bézier patches in

η1 = Pl{x1}(v1, w1)− Pj{x1}(v, w),

η2 = Pl{x2}(v1, w1)− Pj{x2}(v, w),

η3 = Pl{x3}(v1, w1)− Pj{x3}(v, w),

η(v, w) = [η2
1 + η2

2 + η2
3]

0.5.

(10)
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It is possible to insert into (10) Bézier patches of any degree expressed by (5).
In the paper the patches of 4th degree will be used. The smooth character of
Bézier surfaces requires new attitudes about computing the Jacobian Jj(v, w)
in (7) and normal derivatives n1(v, w), n2(v, w), n3(v, w) in (9). In the case of
previously used flat Coons patches the Jacobian and normal derivatives were
constant on the whole surface area regardless of the actual values for parameters
v, w. Currently, these parameters change at any point of the patch, depending
on changes of v, w. A new formula for the Jacobian and normal derivatives can
be determined analytically from expressions (5) and (6) that define triangular
surfaces as follows

nm(v, w) =
Am(v, w)
Jj(v, w)

, m = 1, 2, 3, (11)

where

A1(v, w) =
∂Pj{x2}(v, w)∂Pj{x3}(v, w)

∂w∂v
− ∂Pj{x2}(v, w)∂Pj{x3}(v, w)

∂v∂w
,

A2(v, w) =
∂Pj{x3}(v, w)∂Pj{x1}(v, w)

∂w∂v
− ∂Pj{x3}(v, w)∂Pj{x1}(v, w)

∂v∂w
,

A3(v, w) =
∂Pj{x1}(v, w)∂Pj{x2}(v, w)

∂w∂v
− ∂Pj{x1}(v, w)∂Pj{x2}(v, w)

∂v∂w
,

(12)

and

Jj(v, w) = [A2
1(v, w) + A2

2(v, w) + A2
3(v, w)]0.5. (13)

The appropriate (outward or inward) direction of normal derivatives n1(v, w),
n2(v, w), n3(v, w) is determined by the appropriate clockwise or anticlockwise
numeration of control points of Bézier patches. In the case of solving exterior
boundary value problems and to obtain outward direction of normal derivatives,
each controls points will be numbered in clock directions.

The numerical method for solving the PIES with the boundary represented
by triangular patches is identical to the previously used in the case of rectangular
Coons surfaces [9]. Boundary functions uj(v, w), pj(v, w) from integral Eq. (7)
are defined on each Bézier patch j by means of the following series

uj(v, w) =
N∑

p=0

M∑

r=0

{
r
(pr)
j + is

(pr)
j

}
T

(p)
j (v)T (r)

j (w), (14)

pj(v, w) =
N∑

p=0

M∑

r=0

{
u

(pr)
j + iv

(pr)
j

}
T

(p)
j (v)T (r)

j (w), (15)
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where n = N ×M – the number of coefficients on each Bézier surface, T
(p)
j (v),

T
(r)
j (w) – the global base functions – Chebyshev polynomials, u

(pr)
j , v

(pr)
j , r

(pr)
j ,

s
(pr)
j – the unknown coefficients, whose values are obtained by pseudospectral
collocation method [9].

4. Solution in the exterior domain

After obtaining a complete representation of boundary functions uj(v, w),
pj(v, w) on each j Bézier patch, we can find a solution at any point x ≡ {x1, x2, x3}
of the domain based on the following integral identity [9]

u(x) =
n∑

j=1

vj∫

vj−1

wj∫

wj−1

{
Û
∗
j (x, v, w)pj(v, w)

− P̂
∗
j (x, v, w)uj(v, w)

}
Jj(v, w) dv dw, (16)

together with the kernels

Û
∗
j (x, v, w) =

[
Re{Û∗

j } −Im{Û∗
j }

Im{Û∗
j } Re{Û∗

j }

]
, (17)

where
Û∗

j =
1

4πr
eikr =

1
4πr

{cos kr + i sin kr} ,

and

P̂
∗
j (x, v, w) =

[
Re{P̂ ∗

j } −Im{P̂ ∗
j }

Im{P̂ ∗
j } Re{P̂ ∗

j }

]
, (18)

where

P̂ ∗
j =

∂Û∗
j

∂n

=
1

4πr3
{(cos kr + kr sin kr) + i (sin kr − kr cos kr)}{↔

r 1n1 + ↔
r 2n2 + ↔

r 3n3

}
.

The above formulas, just like (7)–(9) are similar to previously described in [9],
where we dealt with the boundary modeled with the help of Coons patches. The
difference lies in the fact that in

↔
r 1 = x1 − Pj{x1}(v, w), ↔

r 2 = x2 − Pj{x2}(v, w),

↔
r 3 = x3 − Pj{x3}(v, w), r =

[
↔
r

2
1 + ↔

r
2
2 + ↔

r
2
3

]0.5
,

(19)
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we must substitute the formula (5) which represents the proposed triangular
Bézier surfaces. Analogous adaptations must also be carried out for the Jacobian
Jj(v, w) and the normal derivatives n1 = n1(v, w), n2 = n2(v, w), n3 = n3(v, w)
currently given by (11)–(13).

5. Numerical examples

The practical aspects and the effectiveness of the proposed approach was
tested on presented numerical examples. Figure 2 shows a closed spherical shell
considered by the PIES as the boundary geometry in the two examples below.

Fig. 2. A sphere approximated with 8 symmetrical triangular Bézier patches.

The sphere is approximated by eight symmetrical Bézier patches of 4th de-
gree. However, this does not limit the shapes available in the algorithm. Every
triangular patch used to approximate exactly 1/8 of the sphere is defined by
15 control points. The coordinates of control points Pijk {x1, x2, x3} for Bézier
patch placed in the first quadrant of the Cartesian coordinate system are shown
below [11]

P004 {0, 1, 0} P013 {α, 1, 0} P022 {β, β, 0} P031 {1, α, 0} P040 {1, 0, 0}
P103 {0, 1, α} P112 {γ, 1, γ} P121 {1, γ, γ} P130 {1, 0, α}
P202 {0, β, β} P211 {γ, γ, 1} P220 {β, 0, β}
P301 {0, α, 1} P310 {α, 0, 1}
P400 {0, 0, 1}

(20)
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where

α =

(√
3− 1

)
√

3
, β =

(√
3 + 1

)

2
√

3
,

γ = 1−
(
5−√2

) (
7−√3

)

46
.

The outer edges of formed patches are joined together to form a closed sphere
with satisfied the geometric continuity of the zeroth derivative along joining lines
and with continuous curvature across the patches. As the result only 56 control
points have been introduced to define the sphere.

5.1. Example 1

The first example focuses on the problem of propagation of sound waves in
external infinite domain to a unit sphere with center at the origin. Dirichlet
boundary conditions on a spherical surface are posed, given as a function from
the following true solution [4]

u1 (r) =
eikr

r
, where r =

√
x2

1 + x2
2 + x2

3. (21)

We assume that the acoustic medium is the air with a temperature of 20◦C and
the speed of sound is roughly 344 m/s. For these parameters and the frequency
of 100 Hz, parameter k takes the value 1.8265 [4].

Table 1 presents the percentage error of the PIES results to exact values (21)
obtained at selected points in the external domain.

Table 1. Comparison of the exact (21) and numerical solutions in the PIES obtained at se-
lected points of exterior domain.

Point
Exact solution (21) Relative error [%] of the PIES solutions

Re Im Re Im
1 2 3 4 5

(0,0,2) −0.4360 −0.2447 0.0329 0.1046
(0,0,4) 0.1302 0.2133 0.0771 0.0845
(0,0,8) −0.0572 0.1112 0.1742 0.0246
(0,0,−2) −0.4360 0.2447 0.0329 0.1046

As has already been noticed, the PIES results are in excellent agreement with
theoretically known values in both the near (0, 0, 2) and further away (0, 0, 8)
from the boundary.

5.2. Example 2

The purpose of the second example is to examine the convergence of numerical
solutions obtained in the algorithm. The tests were carried out by analysis of
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external problem to a sphere of radius r = 1 with Dirichlet boundary conditions,
obtained from more complicated comparing to the previous example two new
functions [5]

u2(x1, x2, x3) =
eikr

r2

(
1 +

i

kr

)
x3, (22)

u3(x1, x2, x3) =
eikr

r3

(
−1 +

3
k2r2

− 3i

kr

)
0.5

(
3x2

3 − r2
)
, (23)

where r =
√

x2
1 + x2

2 + x2
3.

Due to the fact that the PIES solutions on the boundary are approximated
on each Bézier surface by series (14) and (15), the accuracy of the calculations
significantly depends on the degree of Chebyshev polynomials [9] (and hence on
the number n = N ×M of terms in the expressions (14), (15)). The number of
terms n = N ×M may be varied on each Bézier patches, that form the boundary
geometry. As we see in Tables 2, 3 the number of used Chebyshev polynomials
has direct impact on the accuracy of solutions in the domain.

Table 2. Convergence of the PIES solutions in selected points in exterior domain for function
u2, k = 2.

Point
Exact solution (22)

Relative error [%] of the PIES solutions
288 equations 480 equations

Re Im Re Im Re Im
1 2 3 4 5 6 7

(10,11,12) 0.0282 0.0168 0.1423 0.1381 0.0275 0.0306
(5,6,7) −0.0361 0.0523 0.0986 0.1659 0.0270 0.0280
(1,2,3) 0.0506 0.2098 0.5805 0.1016 0.1282 0.0011

Table 3. Convergence of the PIES solutions in selected points in exterior domain for function
u3, k = 2.

Point
Exact solution (23)

Relative error [%] of the PIES solutions
288 equations 480 equations

Re Im Re Im Re Im
1 2 3 4 5 6 7

(10,11,12) −0.0039 −0.0026 0.7242 3.7394 0.2596 0.3904
(5,6,7) 0.0103 −0.0123 1.6450 0.4877 0.1210 0.2499
(1,2,3) 0.0038 −0.1274 9.4040 0.2181 2.7842 0.1195

Columns 4, 5 in both these tables contain the solutions obtained for n = 9
terms in each of the 8 triangular Bézier patches. In this case, a total set of 288 alge-
braic equations must be solved. The obtained results are in good agreement with
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the theoretical values for both functions u2, u3 at selected measurement points
(columns 2, 3). To examine the convergence of solutions, the same problem was
solved again by introducing more terms of approximation series for n = 15, with
total number of 480 algebraic equations to be solved. The obtained solutions can
be found 6, 7 in both tables with a much smaller error lever. Improving the ac-
curacy of the solutions by increasing the number of approximate series is very
effective, because it is carried out without any modification of represented by
8 Bézier patches boundary geometry.

6. Conclusions

Presented algorithm for numerical solving 3D Helmholtz equation by the PIES
not only simplifies the way of modelling the boundary geometry but also allows to
obtain solutions with high accuracy and provides an effective mechanizm to study
the convergence of solutions. Triangular Bézier patches can not be identified with
boundary element, known from the BEM. Firstly, the patches are directly linked
in mathematical formalism of the PIES. Moreover, it is required to use a much
smaller number of such patches, compared with boundary elements. Despite the
fact that the boundary elements have parametric representation, the direct BEM
solution is obtained at nodal points only, associated with declared boundary
elements. Therefore, in order to obtain solutions to a greater number of points,
we must divide the boundary under consideration for a larger number of boundary
elements. The number of such nodes is also much higher in comparison with the
declared in the case of 56 control points of 8 Bézier patches. The numerical
examples show that the presented approach is characterized by high accuracy of
solutions.
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