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In this study, as a concrete example of the non-linear inverse problem in indoor sound
fields, a complex sound fluctuation leaked through an aperture gap in the partition door of
a coupled room under the actual sound environment has been discussed. A probability eval-
uation theory introducing a simple stochastic inverse system model has been proposed first
especially from an object-oriented viewpoint. More concretely, in order to evaluate the output
response probability distribution of the acoustic intensity in the sound receiving room, after
introducing time-averaged stochastic variables, we have identified functionally the leakage
property as some variability of a transmission factor. Then, we have predicted the output re-
sponse probability distribution for a new arbitrary stochastic input once after establishing a
prediction theory for the probability distribution of a multiplicative model. Finally, an effec-
tiveness of the proposed theory has been experimentally confirmed too by an application to
actual indoor sound field data.
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1. Introduction

For inverse problems in indoor sound fields, there are some representative examples
such as an estimation of the intensity of sound source using the acoustic intensity ob-
served at a sound receiving point, high faithful reproduction of the acoustic environment
and so on. In recent years, many research results have been reported in an equalization
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(deconvolution) problem reproducing the sound source signal by constructing function-
ally the inverse system of the transmission path [1]. Many of them tend to discuss the
artificial side of the methodology more richly rather than variety of the fluctuating phe-
nomenon and problem of the evaluation. For example, the well-known AR model and
ARMA model are essentially introduced by the assumption of the linearity of the sys-
tem in advance, and/or adopt the approximation of the more simple blind equalization
(blind deconvolution) problem using the least squares method under the assumption of
the minimum phase transition in advance. However, even in the evaluation purpose of
the equalization, it must be noticed that not only average behavior but also skirts infor-
mation of the fluctuation of the observed data should be sometimes utilized because the
fluctuation of the actual environmental phenomenon often shows non-Gaussian, nonlin-
ear and unsteady distribution shapes.

In this paper, as one specific example of the inverse problem in indoor sound fields,
an evaluation problem of fluctuation of complicated living environmental noises pene-
trating through an aperture gap of the partition door of a coupled room has been dis-
cussed. To begin with, it is nonlinear system, but an equalization system model which is
simplified as much as possible is introduced first. Then, a kind of a probability evalua-
tion theory introducing a practical inverse system model to the input is newly proposed
in order to predict the output response fluctuation distribution from the object-oriented
viewpoint. Concretely, in order to approximately overcome unavoidable causality in
the inverse problem from an output to the input and filtering function throughout each
point of time process, the leakage from the aperture gap is functionally equalized in the
form of inverse system model by using the acoustic intensity matched to the evaluation
purpose (acoustic intensity is the average taken throughout for the multipoint of time
process). Then, against to this leakage sound field in applying the new sound input,
the output response fluctuation distribution is predicted once after the establishment of
the distribution transition theory based on the Mellin transformation type characteristic
function of the multiplication model. Finally, by applying to some complicated indoor
sound fields under the actual environment, a part of the effectiveness of the theory is
also experimentally confirmed.

2. General theory

2.1. Stochastic inverse system model matched to prediction
of response fluctuation probability distribution

Now, let us pay our attention to the complicated real coupled room partitioned by the
sound insulation door. Let x be the acoustic intensity in the sound generating room and
y the acoustic intensity penetrating through an aperture gap of the partition door. In the
actual living environment, even if the acoustic intensity in the sound generating room is
fixed, the acoustic intensity y observed in the sound receiving room shows a complicated
fluctuation pattern caused by varieties of the transmission path and nonuniformity of
the sound field of sound receiving room itself. Here, under introducing a very simplified
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model that the transmission factor fluctuates functionally in appearance if taking the
skirts part of fluctuation pattern into consideration, let w be the transmission factor
functionally equalized to the output fluctuation form as random variable in the inverse
problem. And if the fact that the sound in the sound receiving room can not be observed
either when sound input is not applied or when w is zero is taken into consideration, the
acoustic intensity y observed in the sound receiving room is rationally given using the
very simplified multiplication model:

y = wx. (1)

If there is a purely physical sound insulation system under the ideal environment and if
only an averaged style on the intensity scale by neglecting the skirts part of fluctuation,
Eq. (1) can be called a linear model because w is considered to have a fixed value. Under
such an ideal situation, of course, w means the physical transmission factor only in an
average image. But w shows the random fluctuation in the actual environment because
the dependence to input x exists owing to the actual nonlinearity (e.g., closely related
to the skirts part of fluctuation). As a result, not only a linear correlation but also a
nonlinear correlation latently exists between input x and output y. Moreover, because
it is a main purpose of this inverse problem to predict the fluctuation distribution of
the output y with the arbitrary new input x, the transmission factor w in Eq. (1) must
be functionally identified using x and y taken as the past learning data in advance.
Consequently, it becomes a problem to solve the inverse system model for this nonlinear
system, as follows:

w =
y

x
. (2)

However, when Eq. (2) is solved, in the conventional approach which introduces a least
square norm from the methodology-first viewpoint into the evaluation, it is clear to be
very difficult from the purpose-first and/or phenomenon-first viewpoint. For the specific
problem solving under such a standpoint, the systematic technique seems not to be
established yet.

In this study, as mentioned above, some new analysis method not using the physical
transmission factor w but using an apparently functional transmission factor w consid-
ering the fluctuation has been introduced. Concretely, from the input x and the output y
observed simultaneously on intensity scales, the transmission factor w in Eq. (2) should
be firstly learned functionally as the fluctuation distribution. Then, according to the in-
verse model of the Eq. (1), the fluctuation probability distribution of y under another
kind of input x can be predicted.

2.2. Prediction of fluctuation probability distribution of transmission sound y
for arbitrary sound input x

Especially, the Mellin transformation type characteristic function is noticed in order
to treat the probability distribution function (abbr. PDF) of non-negative random vari-
able matched to the multiplication model. The Mellin transformation type characteristic
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function of the transmission sound y in Eq. (1) is given, as follows:

My(r) ≡
∞
∫

0

yr−1Py(y) dy

=

∞
∫

0

∞
∫

0

(w · x)r−1Pw·x(w, x) dwdx. (3)

Here, for the PDF Py(y) of y, the series expansion type expression based on the PDF of
random variable w and/or x has been already proposed [2]. The case based on the PDF
Px(x) of x is shown, as follows:

Py(y) =

∞
∑

n=0

(−1)n

n!

(

d

dx
x·
)n

〈(lnw)n|x〉Px(x)

∣

∣

∣

∣

∣

x→y

. (4)

Here, of course the first expansion term (n = 0) of Py(y) agrees with the Px(x) adopted
as the basic distribution. Then, by increasing the number of expansion terms, the com-
pensation is made hierarchically by the higher order moments of the random variable
w. Therefore, there is the simplicity that only moment information may be used af-
ter the second expansion term. However, a large number of expansion terms must be
adopted for the convergence of estimated distribution, when the basic distribution is not
so dominant.

Now, first of all, if the special case when w and x are statistically independent of
each other is assumed in the basis of the analysis and each follows gamma distribu-
tion (matched to the non-negative random variable), Pw(w) and Px(x) can be defined,
respectively as follows:

Pw(w) =
wmw−1e−w/Sw

Γ (mw)Smw
w

, (5)

Px(x) =
xmx−1e−x/Sx

Γ (mx)Smx
x

, (6)

where, mw, Sw and mx, Sx denote the parameters of the gamma distribution of w and
x, respectively. And, the Mellin transformation type characteristic function [3] of w and
x is given, respectively as follows:

Mw(r) =
Γ (mw + r − 1)Sr−1

w

Γ (mw)
, (7)

Mx(r) =
Γ (mx + r − 1)Sr−1

x

Γ (mx)
. (8)
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Therefore, from Eqs. (3), (7) and (8), the Mellin transformation type characteristic func-
tion of y can be expressed, as follows:

My(r) =
Γ (mw + r − 1)Γ (mx + r − 1)

Γ (mw)Γ (mx)
(SwSx)r−1. (9)

Next, let us apply the following formula [4]:
∞
∫

0

ξµKν(aξ) dξ = 2µ−1a−µ−1Γ

(

1 + µ + ν

2

)

Γ

(

1 + µ − ν

2

)

, (10)

where, Kν(·) is a Kelvin function (:the second kind) as one of modified Bessel func-
tions. Equation (10) can be rewritten using specific parameters: µ = 2(r − 1) + mw +
mx − 1, a = 2/

√
SwSx and ν = mw − mx, as follows:

∞
∫

0

ξ2(r−1)+mw+mx−1Kmw−mx

(

2√
SwSx

ξ

)

dξ

= 22(r−1)+mw+mx−2

(

2√
SwSx

)−{2(r−1)+mw+mx}

·Γ
(

2(r − 1) + 2mw

2

)

Γ

(

2(r − 1) + 2mx

2

)

= 2−2(SwSx)
(mw+mx)/2Γ (mw + r − 1)Γ (mx + r − 1)(SwSx)

r−1. (11)

Therefore, from Eqs. (9) and (11), My(r) can be expressed as follows:

My(r) =
4

Γ (mw)Γ (mx)(SwSx)(mw+mx)/2

∞
∫

0

ξ2(r−1)+mw+mx−1Kmw−mx

(

2√
SwSx

ξ

)

dξ. (12)

In the right-hand side of the Eq. (12), when the measure preserving transformation of
the probability is performed as y = ξ2, the following expansion can be obtained:

My(r) =

∞
∫

0

yr−1

2y(mw+mx)/2−1Kmw−mx

(

2

√

y

SwSx

)

Γ (mw)Γ (mx)(SwSx)(mw+mx)/2
dy. (13)

Because Eq. (13) holds true at every values of r, by the collation of Eq. (3) with Eq. (13),
Py(y) is given, as follows:

Py(y) =

2y(mw+mx)/2−1Kmw−mx

(

2

√

y

SwSx

)

Γ (mw)Γ (mx)(SwSx)(mw+mx)/2
. (14)
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Furthermore, in order to apply this theory to the case when various kinds of linear
and nonlinear correlation exist between w and x and/or the case when each distribution
of w and x deviated from gamma distribution, Py(y) is derived basing on the statistical
Laguerre series expansion type probability expression [5]:

Py(y) =

∞
∑

m=0

∞
∑

n=0

Cmn

(

∂

∂Sw

)m( ∂

∂Sx

)n

·
2y(mw+mx)/2−1Kmw−mx

(

2

√

y

SwSx

)

Γ (mw)Γ (mx)(SwSx)(mw+mx)/2
, (15)

where, Cmn denotes the expansion coefficients reflecting not only lower but also higher
order correlations between w and x, as follows:

Cmn = (−1)m+n Γ (mw)Γ (mx)Sm
w Sn

x

Γ (mw + m)Γ (mx + n)
〈

L(mw−1)
m

(

w

Sw

)

L(mx−1)
n

(

x

Sx

)〉

. (16)

3. Experiment

In order to confirm a part of the practical effectiveness of the proposed theory men-
tioned above, some principle experiment on the complicated living sound environment
penetrating through an aperture gap of the partition door of the coupled room was car-
ried out.

3.1. Measurement situation

Two reverberation chambers partitioned by the sound insulation door were used as
a coupled room. The door was opened during the experiment at an aperture gap of
30 mm. A white noise of the 1/3 octave band with a center frequency of 200 Hz was
applied through the loudspeaker in the sound generating room. In the sound generating
room and sound receiving room, the observed sound waves were recorded on a level
recorder through each microphone, respectively. Input-output data were converted into
digital data from analog at a sampling period of 1 second and a quantization level of
12 bit. The 1,000 data was simultaneously sampled, respectively.

3.2. Distribution estimation of functionally equalized transmission factor w

Basing on the former 500 data points, the stochastic inverse system model of Eq. (2)
was functionally solved. The fluctuation distribution of the functionally equalized trans-
mission factor w is shown in Fig. 1. From this figure, it is clear that it is very difficult
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in such a complicated case of this study to grasp the fluctuation of the phenomenon
only in the form of an averaged transmission factor of physical quantity (constant pa-
rameter), as is generally adopted in the standard sound-insulating wall under the ideal
sound environment. Furthermore, it can be found that the fluctuation distribution of the
functionally equalized transmission factor is approximated by the gamma distribution
(owing to its non-negative property).

Fig. 1. Comparison between theoretically fitted curve and actually observed values for fluctuation proba-
bility distribution of functionally equalized transmission factor w.

3.3. Prediction of response probability distribution
for arbitrarily fluctuating sound input

Next, basing on the latter 500 data points, as a case of applying another kind of sound
input wave x in the sound generating room, the fluctuation probability distribution of
observed sound wave y in the sound receiving room was predicted. That is to say, by
using fluctuation distribution information of w in the former section and correlation
information from the lower order to the higher orders between x and w, the distribution
of y was predicted basing on the latter data of (different kind of) x with the theoretical
Eq. (15). A comparison of the theoretical distribution with the experimentally observed
distribution is shown in Fig. 2. In this figure, though the theoretical curve only in the
first expansion term (m + n = 0) can not explain except for near the average, it can be
found that the theoretical curve explains the observation data well especially in the skirt
part of the distribution, if the higher order correlation information between x and w is
taken into consideration more and more by increasing the expansion term.
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Fig. 2. Comparison between theoretically predicted curve and true values for the specific output response
probability distribution.

4. Conclusions

In this paper, a specific example of the nonlinear inverse problem in indoor sound
field under the actual environment was noticed. That is to say, focusing on the com-
plicated living sound environment penetrating through an aperture gap of the partition
door of the coupled room, once after introducing the practically simplified inverse sys-
tem model matched to a prediction of the response fluctuation distribution especially
from the object-oriented viewpoint, a probability evaluation theory which took the var-
ious types of input dependence of the system into consideration was newly proposed.
Concretely, in order to overcome practically unavoidable causality in the inverse prob-
lem from an output to the input and filtering function throughout each point of time
process, the leakage from the aperture gap was functionally equalized as the inverse
system model by using the acoustic intensity matched to the evaluation purpose. Then,
for this actual leakage sound field with some new sound stochastic input, the output
response fluctuation distribution was predicted under establishment of probability dis-
tribution transition theory especially based on the Mellin transformation type character-
istic function of the multiplication model. Finally, by applying to a complicated indoor
sound field under the actual environment, a part of the effectiveness of the theory was
also experimentally confirmed.

Since this study is at an initial stage of the research, there still remain many future
problems ought to be piled up in addition to this basic research. For example, i) an ap-
plication to nonlinear system under the other actual environment, ii) a simplification
of the theory aiming at the practicability, iii) an expansion of the theory for the actual
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case when background noise exists, iv) an establishment of the systematic technique
reflecting the existence way of the fluctuation without viewing inverse system deter-
ministically and so on.
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