
ARCHIVES OF ACOUSTICS
29, 4, 607–632 (2004)

NONLINEAR REFLECTION AND TRANSMISSION
OF PLANE ACOUSTIC WAVES

J. WÓJCIK

Institute of Fundamental Technological Research, Polish Academy of Sciences
Department of Ultrasound
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In the present, paper the classical problem of reflection and transmission of a plane acoustic
wave is analyzed and solved for nonlinear propagation. Two adjacent media with a plane
boundary between them are assumed. The parameters characterizing the properties of the
media can be changed stepwise on the boundary. The wave incident on the boundary surface is
plane. It was assumed that the disturbance in the first medium is a superposition of the incident
and reflected waves, and in the second medium there is only the transmitted wave. On the base
of nonlinear acoustic equations, assuming continuity of the velocity and pressure fields, the re-
flection and transmission operators of velocities and pressures were determined. The operators
are nonlinear in relation to the incident wave field. It was found that near the boundary there
occurs “a reflecting-transmitting” layer which is decisive for the description of the nonlinear
phenomenon of the reflection and transmission. There arises a nonlinear feedback between
the reflecting and incident waves. This is the fundamental difference between the nonlinear
and the linear reflection. Equations of the incident reflected and transmitted waves are given.
In the case of classical viscous media, they are the Burger’s equations in asymptotic areas.
The operators and the experimental significance of the results obtained were additionally
discussed. An example of the effective application of the analysis performed is given in Sec. 6.
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1. Introduction

The reflection and transmission of acoustic disturbances is a fundamental problem
of the propagation theory in inhomogeneous media. Even in the linear propagation case
beyond the known classical solutions, the problems which we meet here are difficult and
the corresponding literature is extensive [1]. On the contrary, in the case of a nonlinear
description of this problem, the acoustic literature is very scant. A few theoretical and
experimental papers (Refs. [2–5]) are worthy of notice. They encouraged the author to
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perform this study. A solution of the fundamental nonlinear problem, i.e. how to deter-
mine the reflected and transmitted disturbances as a function of the incident disturbance
in the shape of the plane wave incident normally on the plane boundary between two
media has not found in the literature. In other words, to determine nonlinear quanti-
ties corresponding to the reflection and transmission coefficients known from the linear
propagation theory. Their shape results from the propagation equation and from the gen-
eral continuity conditions of the fields on the boundary. The proper number of equations
and unknown variables cause that they can not be a subject of definition or can not be
constructed in the way of generalization of ideas (for instance impedances) known from
linear theory. The phenomenon, which will be considered in this paper, is a part – often
a fundamental one – of many technologies. For example, in medical ultrasonic diagnos-
tic methods important information is obtained due to the detection of reflections from
boundaries between different tissues. Often equilibrium parameters (impedances) of tis-
sues differ from each other by a very small amount. It arises a question – which may be
important not only for medical diagnostics [4, 5] – how the nonlinear effects influence
the general picture of the reflection and transmission phenomenon? The nonlinearity
parameter B/A for different soft tissues can vary from 5.8 (cardiac muscle) to 11 (fatty
tissue) [6]. Can the media, which differ only by this parameter, be differentiated from
each other due to different reflections? What is the qualitative and quantitative effect
of this phenomenon? The aim of this paper is to find a response to the aforementioned
question in its simplest dimensional geometrical configuration without taking into con-
sideration any transverse disturbances, which may occur in relation to the beam axis.

2. Formulation of the problem

Two adjacent media with a plane interface between them are considered. Parameters
and material function characteristics of the first (left) medium and the second one will be
denoted by either top or bottom indices m = 1, 2, respectively (Fig. 1). In our analysis

Fig. 1. The incident Φ+, reflected Φ−, and transmitted Φ2 waves near the interface situated at
x = xRT = 0 between the media m = 1 and m = 2.
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a dimensionless system of variables and parameters will be used. The dimensionless
equilibrium density, g0m, and sound speed, cm0, are given by the relations

g0m = ρ0m/ρ0, cm0 = c0m/c0, (1)

where ρ0m, c0m are the equilibrium density and velocity of sound for the m-th medium;
ρ0, c0 are arbitrary quantities corresponding to the density and velocity of sound (of
course, it can be ρ0 = ρ01, c0 = c01).

It is supposed that the media are lossy and nonlinear with respect to disturbance.
The disturbance in the first medium will be described by the acoustical potential Φ1,
and in the second one by Φ2. The following representations of the fields in media will
be used:

Φ1(x, t) = Φ+

(
t− x

c10
, x

)
+ Φ−

(
t +

x

c10
,−x

)
, x ≤ xRT , m = 1, (2)

Φ2(x, t) = Φ2

(
t− x

c20
, x

)
, x ≥ xRT , m = 2, (3)

where Φ+ + Φ− denotes the composition of the incident and reflected waves; (x, t)
are the space and time coordinates; xRT denotes the space coordinate of the boundary
plane (Fig. 1). From the definition v ≡ ∇Φ (∇ – denotes here the gradient), this means
that the velocity field is linear with respect to the potential. Therefore, the following
decompositions of the velocity, corresponding to (2), (3), are valid

v1(x, t) = v+

(
t− x

c10
, x

)
+ v−

(
t +

x

c10
,−x

)
,

v1 = e · v1 = e · v+ + e · v−, v1 = e v1 , (4)

v2(x, t) = v2

(
t− x

c20
, x

)
,

v2 = e · v2 , v2 = e v2 , (5)

where e is the unit vector in the positive direction of the x-axis.
Similarly, the following decompositions of the acoustical pressure are applied

P1(x, t) = P+

(
t− x

c10
, x

)
+ P−

(
t +

x

c10
,−x

)
, (6)

P2(x, t) = P2

(
t− x

c20
, x

)
. (7)

Precisely speaking, the relation between the acoustical pressure and the potential fol-
lows from the definition v ≡ ∇Φ and from the general equations of motion of a contin-
uous medium, and is not linear:

P1 = P1 [Φ1] = P1

[
Φ+ + Φ−

] 6= P1

[
Φ+

]
+ P1

[
Φ−

]
= P+ + P−. (8)
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In Appendix A1, the definition of the nonlinear operator Pm [ · ], and the justification of
the very good approximation of Pm

∼= −g0m∂t (Eqs. (A10), (A12)) are given. Never-
theless, we would like to stress that the form of Pm [ · ] has no significant influence on
our considerations.

Firstly, we would like to determine the relations between v+, v−, v2 and P+, P−,
P2 on the interface at x = xRT = 0. Then we will research the boundary conditions for
v−, v2 and P−, P2 on the plane between the two different nonlinear and lossy media.
This problem can be solved if we find the functions R, T (operators) such that,

v− = R′v
[{m} ; v+

]
= Rv

[{m} ; v+
] ◦ v+, (9)

v2 = T′v
[{m} ; v+

]
= Tv

[{m} ; v+
] ◦ v+, x = xRT = 0, (10)

where Rv [ · ; · ], Tv [ · ; · ] are the reflection and transmission operators; in the general
case ◦ – denote operation characteristics for the operator. Generally, in almost all the
considered cases ◦ ≡ ⊗ is a convolution (in the time or Fourier frequency domain), but
sometimes, in special cases, ◦ ≡ · is an ordinary multiplication; {m} denotes a set of
material parameters which characterize the media.

Secondly, we would like to find equations which describe the evolutions of the dis-
turbances Φ+, Φ− and Φ2.

In the linear case, we have the “classical” problem of reflection and transmission of
a plane wave. In the Fourier frequency domain

v̂− = R̂v [{m}] ◦ v̂+ = R̂v [{m}] · v̂+, (11)

v̂2 = T̂v [{m}] ◦ v+ = T̂v [{m}] · v̂+, (12)

R̂ [{m}], T̂ [{m}] are the reflection and transmission coefficients.

3. Basic equations

As the base of our description we assume Eq. (22) referred in [7]. It describes finite
amplitude potential disturbances in lossy media. In the Cartesian coordinate system and
for one-dimensional disturbances in the m-th medium, it takes the form

c2
m0∂xxΦm − ∂ttΦm − 2Am∂tΦm − qm∂t (∂tΦm)2 = 0 + O

(
(q + α)2

)
, (13)

qm ≡ q(γm + 1)
/
2c2

m0 = qβm

/
c2
m0, m = 1, 2, (14)

where γm is either the exponent of the adiabate or γm = (B/A)m + 1, (B/A)m is
the nonlinearity parameter; q ≡ P0

/
ρ0c

2
0; P0 is the characteristic pressure (i.e. the

pressure amplitude of the disturbance); O
(
(·)l

)
is a small quantity of the order of l.

Am is the convolution type operator of absorption. In this paper its representation in the
time domain is accepted in the following form:

AΦ ≡ A(t)⊗ Φ(x, t), (15)
A(t) = F−1 [a(ω)] , (16)
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where a(ω) is the small signal coefficient of absorption (eigenvalue ofA, corresponding
to a disturbance in the form of eigenfunction, a Fourier function with the frequency ω);
F [ · ] is the Fourier transformation. For the classical absorption (for the m-th medium)
am(ω) = αm

2 ω2, where αm
2 is the dimensionless hybrid viscosity, Am = −αm

2 ∂tt +
O(α(q + α)). For the details of normalization and the descriptions of Eq. (13) and the
absorption operator A see Ref. [7].

We introduce

τ+(t, x) = t− x

c10
, τ−(t, x) = t +

x

c10
, x ≤ 0, (17)

τ2(t, x) = t− x

c20
, x ≥ 0. (18)

It should be stressed that we may also apply the following arguments for Φ+, Φ− and Φ2:

τ+(t, x) = t− |x− xb|
c10

= t− x− xb

c10
, xb ≤ x ≤ 0, (19)

τ−(t, x) = t− |x|
c10

= t +
x

c10
, x ≤ 0, (20)

τ2(t, x) = t− x

c20
, x ≥ 0, (21)

where xb is an arbitrary value or coordinate of the plane in which time profile of Φ+

is given: Φ+(t, x)
∣∣∣
x=xb

= Φ+
b (t). The arguments in the form of (19), (20), (21) (after

the first sign of equality) are evidently retarded in time and more adequate for the more
complex problem, i.e. for the boundary value problem at the plane x = xb for propaga-
tion to the reflected and transmitted plane at x = xRT = 0. Nevertheless, both forms
give the same results in our problem. We search a solutions of Eq. (13) in the form (2)
in the first medium m = 1, and in the form (3) in the second one m = 2.

After substitution Φ2 = Φ2(t− x/c20, x) = Φ2(τ2, x) in Eq. (13), we have

c2
20

[
∂xxΦ2(τ2, x)− 2

c20
∂x∂τ2Φ2(τ2, x)

]
= 2∂τ2A2Φ2(τ2, x)

+ q2∂τ2 (∂τ2Φ2(τ2, x))2 , (22)

(∂t − ∂τ2)Φ2 = 0, (23)

where the differentiation with respect to x concerns now only the second argument
in Φ2. Formally, the fully variable transformation includes the transformation x → ξ =
x. However, in order to limit the number of symbols, we will use the old ones. The
functions τ±,2(t, x) = (t ∓ x/c1,20) are a pair of characteristics of the d’Alambertian
operator 2 ≡ c2

m0∂xx − ∂tt. On the characteristics, the solutions Φ(t ∓ x/cm0) of the
equation 2Φ = 0 are constants. This means physically a mutual compensation of the
fast space changes (in the λ0 ≡ 2π/k0 scale) with changes in time of the disturbances
(in the scale T0 ≡ 2π/ω0, ω0 = cm0k0). In characteristic coordinates ∂x(Φ(τ±,2)) = 0.
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In the solutions of the equations disturbed by absorption or a nonlinear term of the
O(q + α), an additional dependence on the coordinate (in our case x) occurs in the
characteristic space scale λα,q ≡ min( 1/α, 1/q). The relation ∂x(∂x Φ2, ∂τ2Φ2) =
O(q +α) follows from (22). However, ∂xxΦ2 = O((q +α)2). The proof of this relation
is given in the Appendix A2. The terms of O

(
(q + α)2

)
were already neglected in (13).

We neglect them also in (22). We have

∂x∂tΦ2(τ2, x) = − 1
c20
A2∂tΦ2(τ2, x)− q2

2c20
∂t (∂tΦ2(τ2, x))2 , ∂τ2 = ∂t . (24)

Supposing zero initial conditions in the neighborhood of x = xRT = 0 and integrating
(24) over the time, we have

∂xΦ2(τ2, x) = − 1
c20
A2∂τ2Φ2(τ2, x)− q2

2c20
(∂τ2Φ2(τ2, x))2 , (25)

where Am ≡ ∫ Am,
t∫
0

Am∂t′Φdt′ = AmΦ = Am∂tΦ. On the basis of (15) and (16),

we have Am∂tΦ = Am(t) ⊗ (∂tΦ), Am(t) =
t∫
0

Am(t′)dt′, F
[
Am

]
= am(ω) =

am(ω)/(−iω). For a classically absorbing medium Am = −αm
2 ∂t.

Applying the aforementioned operations to the Φ1 = Φ+ + Φ−, we obtain

∂t∂x

(
Φ+(τ+, x)− Φ−(τ−,−x)

)
= − 1

c10
A1∂t

(
Φ+(τ+, x) + Φ−(τ−,−x)

)

− q1

2c10
∂t

(
∂tΦ

+(τ+, x) + ∂tΦ
−(τ−,−x)

)2
, (26)

and

∂x

(
Φ+(τ+, x)− Φ−(τ−,−x)

)
= − 1

c10
A1

(
∂τ+Φ+(τ+, x) + ∂τ−Φ−(τ−,−x)

)

− q1

2c10

(
∂τ+Φ+(τ+, x) + ∂τ−Φ−(τ−,−x)

)2
, (27)

(∂τ+ − ∂t) Φ+ = 0, (∂τ− − ∂t) Φ− = 0. (28)

Equations (24), (25) and (26), (27) are equivalent to (13) in the medium m = 2 and
m = 1, respectively, with accuracy to the terms of O(α(q + α)). This means that if Φ2

satisfies (24), and Φ+ and Φ− satisfy (26), then Φ1 = Φ+ + Φ− and Φ2 satisfy (13).
With zero initial conditions for the potentials and their first derivatives, Eqs. (24), (26)
with respect to time are equivalent to (25), (27). However, if the functions Φ2, Φ+, Φ−
satisfy (25), (27) then they also satisfy (24) and (26).
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For assumed shapes of the solutions Φ+, Φ−, Φ2, the adequate acoustical pressures
and velocities take the form,

P+ = −g01∂tΦ
+ = −g01∂τ+Φ+, (29)

P− = −g01∂tΦ
− = −g01∂τ−Φ−, (30)

P2 = −g02∂tΦ2 = −g02∂τ2Φ2, (31)

v+ = − 1
c10

∂tΦ
+ + ∂xΦ+ = − 1

c10
∂τ+Φ+ + ∂xΦ+ =

P+

z01
+ ∂xΦ+, (32)

v− =
1

c10
∂tΦ

− + ∂xΦ− =
1

c10
∂τ−Φ− + ∂xΦ− = −P−

z01
+ ∂xΦ−, (33)

v2 = − 1
c20

∂tΦ2 + ∂xΦ2 = − 1
c20

∂τ2Φ2 + ∂xΦ2 =
P2

z02
+ ∂xΦ2 , (34)

where z0m ≡ g0mcm0, are the equilibrium impedances. From Eqs. (32)–(34) we obtain

P+ = z01(v+ − ∂xΦ+), (35)

P− = −z01(v− − ∂xΦ−), (36)

P2 = z02(v2 − ∂xΦ2). (37)

The functions ∂xΦ+, ∂xΦ−, ∂xΦ2 show the substantial differences between the impe-
dance relations for an ideal linear medium and for a lossy or nonlinear one.

Taking into account the above formulas, we see that Eq. (24) is the Burger’s equation
for P2 (which shall be called “generalized Burger’s” equations due to the generalization
of the description of absorption [7, 11, 12]). Equation (26) may by interpreted as the
nonlinear coupled by means of the term (q1/z01) ∂t (P+P−) of two Burger’s equations
for P+ and P−.

4. Continuity conditions and equations

In this and the next section, all the functions and relations on the interface are con-
sidered and analyzed. On this surface at x = xRT = 0 all the functions and relations
depend only on time t, and ∂t = ∂τ+ = ∂τ− = ∂τ2 . We also preserve the prevailing
arrangement of signs.

We assume continuity conditions in the conventional form

P1 = P2 , (38)
v1 = v2 , for x = xRT = 0. (39)

On the basis of Eq. (A12), we can use in (38) the decomposition shown in (6) and (7).
Then we apply (35)–(37) to reduce P+, P−, P2 from (38). The decompositions (4), (5)
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are inserted to (39). After the aforementioned operations, Eqs. (38) and (39) take the
form

z01

(
(v+ − v−)− ∂x(Φ+ − Φ−)

)
= z02 (v2 − ∂xΦ2) , (40)

v+ + v− = v2 . (41)

The needed terms ∂x(Φ+ − Φ−), ∂xΦ2 were obtained from (25), (27) in the limiting
transition process x → (

x≤RT , x≥RT

)
, x = xRT ,

(
∂xΦ+ − ∂xΦ−

)
=

1
z01
A1

(
P+ + P−)− q1c10

2z2
01

(
P+ + P−)2 + O((q + α)2), (42)

∂xΦ2 =
1

z02
A2P2 − q2c20

2z2
02

P 2
2 + O((q + α)2). (43)

On the basis of Eqs. (35)–(37), we obtain with the same accuracy
(
∂xΦ+ − ∂xΦ−

)
= A1

(
v+ − v−

)− q1c10

2
(
v+ − v−

)2 + O((q + α)2), (44)

∂xΦ2 = A2v2 − q2c20

2
v2
2 + O((q + α)2). (45)

Each of the Eqs. (26), (27), (42), (44) will be called “couple equation”.
Substituting (44), (45) into (40) and using (41) we obtain

[
z1 + z2 + w · v+

]
v− =

[
z1 − z2 +

1
2
u · v+

]
v+ +

1
2
u · (v−)2, (46)

where z1, z2 are operators of the linear impedance

zm ≡ z0m

(
1−Am

)
, m = 1, 2, (47)

w ≡ z01c10q1 + z02c20q2 , (48)

u ≡ z01c10q1 − z02c20q2 . (49)

Generally, Eq. (46) (due to absorption) may be an integral-differential nonlinear equa-
tion in the time domain, or a nonlinear convolution equation in the Fourier frequency
domain). The simplest case with regard to the absorption is obtained when the classical
absorption Am = −αm

2 ∂t is assumed for both the media. In this case (46) is the Riccati
equation.

5. Reflection and transmissions operators

The abstract (symbolical) solution of Eq. (46) can be presented as follows

v−(t) = Rv

[{m}; v+
]
v+(t), (50)

Rv

[{m}; v+
] ≡ 1

2w ◦ R0v+

[
1−

√
1− 4w ◦ R0 v+

]
R0 , (51)



NONLINEAR REFLECTION AND TRANSMISSION 615

where w = w [{m}; v+], R0 = R0 [{m}; v+] are nonlinear operators with respect to v+,

w
[{m}; v+

] ≡
1
2
u·

z1 + z2 + w · v+
, (52)

R0

[{m}; v+
] ≡

z1 − z2 +
1
2
uv+

z1 + z2 + wv+
. (53)

The sign + before the square root in definition (51) was neglected since it gives an exotic
solution, which does not have any known linear asymptotic form (when qm → 0).
Because w ≤ O(q), then the square root in (51) may be written in the form of power
series from which we obtain

Rv

[{m}; v+
]

=
[
1 + w ◦ (R0v

+) ·+...
]
R0 , (54)

Tv

[{m}; v+
]

= 1 + Rv

[{m}; v+
]
. (55)

The expansion (54) can be also obtained by applying the successive approximation
method to (46). The example of factorization of the operators w[ · ] and R0[ · ] is pre-
sented in the Appendix A3. Assuming the absence of absorption zm = z0m (or the
negligibility of it), the simplest case of the factorization is obtained. In this case w[ · ]
and R0[ · ] factorize themselves in ordinary functions, and the formulas of (50), (51),
(54) give the factorized solution, ◦ = · in the time domain

v−(t) =





1 +

1
2
u

(
z01 − z02 +

1
2
uv+(t)

)

(z01 + z02 + wv+(t))2
v+(t) + ...




·
z01 − z02 +

1
2
uv+(t)

z01 + z02 + wv+(t)


 v+(t). (56)

Expanding the above formula or the formulas w[ · ] and R0[ · ] under conditions zm = z0m

with respect to q and remaining only the terms of O(1) and O(q), we obtain

v−(t) =
(

z01 − z02

z01 + z02
+

2z01z02q

(z01 + z02)
3

(
z02

c10
β1 − z01

c20
β2

)
v+(t)

)
v+(t) + O(q2), (57)

v2(t) =
(

2z01

z01 + z02
+

2z01z02q

(z01 + z02)
3

(
z02

c10
β1 − z01

c20
β2

)
v+(t)

)
v+(t) + O(q2). (58)

We rewrite the above formulas in the form

v− = Rvv
+ =

(
Rv + rvv

+
)
v+, (59)
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Rv ≡ z01 − z02

z01 + z02
, rv ≡ q2z01z02

(z01 + z02)
3

(
z02

c10
β1 − z01

c20
β2

)
,

v2 = Tvv
+ =

(
Tv + rvv

+
)
v+, (60)

Tv = 1 + Rv , Tv = 1 + Rv =
2z01

z01 + z02
.

The knowledge of ∂x (Φ+ + Φ−) as a function of P+, P− is required to determine
the reflection and transmission operators for pressure on the basis of the continuity con-
ditions (38), (39). Below we present a particular method, which allows the determination
of the quantities mentioned. The general method will be presented in the next section.

To determine the reflection – Rp, and transmission – Tp operators for pressure we
suppose that:

a)
P− = RpP

+, P2 = TpP
+, (61)

where

Rp = Rp − rpP
+ = − (

Rv + rpP
+
)
, (62)

Tp = 1 + Rp = Tp − rpP
+ = Tv

z02

z01
− rpP

+; (63)

b) the principle of conservation of energy on the boundary surface x = xTR = 0 is
intact in the form

Ĩ+ + Ĩ− = Ĩ2 , (64)

where Ĩ+, Ĩ−, Ĩ2 are the energy current density vectors [7] (the instantaneous value of
the power intensity vector)

Ĩ+ ≡ e Ĩ+ = P+v+ = eP+v+, (65)

Ĩ− ≡ −e Ĩ− = P−v− = eP−v−

= eRvRpP
+v+ = − (

Rv + rvv
+
)(

Rv + rpP
+
)
Ĩ+, (66)

Ĩ2 ≡ e Ĩ2 = P2v2 = eP2v2

= eTvTpP
+v+ =

(
Tv + rvv

+
)(

Tv
z02

z01
− rpP

+

)
Ĩ+. (67)

The quantities defined above satisfy Eq. (64) under the following condition
(
v+rv − P+rp

)
= 0 + O(q3). (68)

We shall return to this equation later. Now, we would like to notice that from the con-
tinuity equations (38), (39) we obtain a general form of the conservation law of the
energy current density vector (64), namely

Ĩ1 = Ĩ2 ⇔ Ĩ1 = Ĩ2 , (69)
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P+v+ + P−v− + (v+P− + P+v−) = P2v2 . (70)

This means that the decomposition Ĩ1 = Ĩ+ + Ĩ−, although it seems to be natural, is
nevertheless true under the condition

(v+P− + P+v−) = 0. (71)

If we suppose (71), then the condition (68) is satisfied. This is easy to see after the
substitution of P− and v− with the right-hand sides of (59) and (61). But (71) has a
more primary meaning; which will be demonstrated below.

Replacing P− and v− in (71) by the right-hand sides of (59) and (61), and using the
impedance relations (35) or (32), we obtain

(v+Rvv
+ + v+Rpv

+)− (∂xΦ+Rvv
+ + v+Rp∂xΦ+) = 0 (72)

or
(P+RvP

+ + P+RpP
+) + z01(∂xΦ+RpP

+ + P+Rv∂xΦ+) = 0. (73)

We suppose that
Rp = −Rv . (74)

From (72), (73) we have the following “commutation” relations

∂xΦ+ ·
(

Rv or p

(
v+

P+

))
−

(
v+

P+

)
· (Rv or p∂xΦ+

)
= 0. (75)

On the other hand, replacing P−, P+ (or v−, v+) in (71) by the impedance relations
(33) and (34), using the relation (59) (or (61)), and applying (75), we obtain

∂xΦ− = Rv∂xΦ+, (76)

∂xΦ− = −Rp∂xΦ+. (77)

Of course, these relations can be received also from (72), (73), particularly if we have
(68). Equations (74), (75) permit to perform a separation process on the “couple equa-
tion” (42) or (44). After substitution the right hand sides of (61) and (77) into (42), we
have

∂xΦ+ = T−1
p

(
1

z01
A1TpP

+ − q1c10

2z2
01

(
TpP

+
)2

)
+ O

(
(q + α)2

)
. (78)

However, consequently in our order of approximation, we can replace Tp by Tp in (78)

Tp = (1 + Rp) = Tp + O(α + q) = 1 + Rp + O(α + q), (79)

∂xΦ+ =
1

z01
A1P

+ − q1c10

2z2
01

Tp

(
P+

)2 + O
(
(q + α)2

)

and in the described approximation (Am = 0)

∂xΦ+ = −q1c10

2z2
01

Tp

(
P+

)2 + O
(
(q + α)2

)
. (80)
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Nevertheless, if we have the velocity reflection operator Rv[ · : v+] and want to deter-
mine the pressure reflection operator Rp as a function of P+, using (32) and (74), we
obtain

Rp

[ · ;P+
]

= −Rv

[
· ; P+

z01
+ ∂xΦ+

]
, (81)

where ∂xΦ+ is given by (78). In our case this relation reduces to (68). Applying (80)
we obtain

[(
1− q1c10

2z01
TpP

+

)
rv

z01
− rp

]
P+ = 0 + O(q3), Tp =

2z02

z01 + z02
. (82)

In our range of the approximation of Rv[ · : v+], rv is a constant with respect to v+ and
is of O(q). To be consistent, we must neglect the second term in the internal parenthesis,
which leads to

rp = (rv/z01) + O(q2), (83)

and

P−(t) = −
[
z01 − z02

z01 + z02

+
2z02q

(z01 + z02)
3

(
z02

c10
β1 − z01

c20
β2

)
P+(t)

]
P+(t) + O(q2), (84)

P2(t) =
[

2z02

z01 + z02

− 2z02q

(z01 + z02)
3

(
z02

c10
β1 − z01

c20
β2

)
P+(t)

]
P+(t) + O(q2). (85)

In the Fourier frequency domain

R̂v =
[
z01 − z02

z01 + z02
+

2z02z01q

(z01 + z02)
3

(
z02

c10
β1 − z01

c20
β2

)
v̂+(ω)⊗

]
+ O(q2), (86)

R̂p = −
[
z01 − z02

z01 + z02
+

2z02q

(z01 + z02)
3

(
z02

c10
β1 − z01

c20
β2

)
P̂+(ω)⊗

]
+ O(q2). (87)

The following term

r̂A ≡ 2z01z02

(z01 + z02)2
(a2(ω)− a1(ω))

−iω
, (88)

should be added to the right-hand side of (86) in order to take into account the absorp-
tion.
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6. Separation of propagation equations

The operators of reflection and transmission were derived in the case of a boundary
between two different adjacent media. This is a basic problem, however, its solution
does not close the description of the reflection and transmission phenomenon in the
case of nonlinear propagation (contrary to the linear one). Figure 2 shows a time-space
diagram corresponding to Fig. 1, which makes it possible to explain exactly the phe-
nomenon and the notion of the nonlinear reflection and transmission.

Fig. 2. Time-space diagram of reflection and transmission. “+”, “−”, “2” – time-space ribbons of incident,
reflected and transmitted beams, respectively; d is the spatial length of the pulse; d/2 is the maximum

thickness of the interaction boundary layer near to interface.

According to the previous assumptions (Sec. 3), the point xb is the point of the
boundary condition (excitement point) for the incident pulse or the point where the
pulse leaves time traces with the duration of TTr. So the length of the pulse equals
d = TTrc10. The ribbons signs by “+”, “−” and “2” represented the time-space traces
of the incident, reflected and transmitted pulses, respectively. The triangular area of the
time-space is the area of interaction of the reflected part of the pulse with a part of the
incident pulse. The “couple equation” (27) or (42), which were utilized previously only
on the boundary x = xRT = 0, is now written below as to be valid in the whole area
x ≤ xRT = 0,

(
∂xΦ+ − ∂xΦ−

)
=

1
z01
A1

(
P+ + P−)−q1c10

2z2
01

(
P+ + P−)2+O

(
(q + α)2

)
, (89)

This interaction is described by the term proportional to P+P−. In the linear descrip-
tion, only the linear superposition of disturbances arises in this area. A specific feedback
occurs in the nonlinear case, where the reflected part of the pulse can cause changes in
the amplitude of the incident pulse (and changes in the amplitudes of the component
disturbances in the boundary conditions at xRT = 0). Taking into account this point
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of view, one can say that the whole interaction boundary layer witha thickness chang-
ing in time (the maximum thickness equals d/2) reflects and transmits the incident
pulse. It arises the question how to determine Φ+, especially on the interface and Φ−
for x ≤ xRT = 0 – and which equations are responsible for the evolution of these fields?
Let us notice, that the determination of the reflection and transmission operators for the
velocity does not cause any additional conditions for (27) or its boundary (limiting) val-
ues expressed by (42) and (44). This means that the partition of (26), (27) or (89) into
equations describing the evolutions of Φ+ and Φ− is partially arbitrary. However, taking
into account the physical interpretation (see end of Sec. 3) of the nonlinear terms in (89),
in the asymptotic area outside of the interaction layer, where qP+P− = 0 + O(qα),
every of the equations should be the Burger’s equation or should give the Burger’s equa-
tion after application of −g0m∂t to both the sides of them.

Let us consider the following system of equations,

∂xΦ+ =
1

z01
A1P

+ − q1c10

2z2
01

(
P+ + εP−)

P+ + O
(
(q + α)2

)
,

(90)
P+ = −g01∂tΦ

+ = −g01∂τ+Φ+,

−∂xΦ− =
1

z01
A1P

− − q1c10

2z2
01

(
P− + (2− ε)P+

)
P− + O

(
(q + α)2

)
,

(91)
P− = −g01∂tΦ

− = −g01∂τ−Φ−,

where ε is an arbitrary parameter (however, we suppose that the limitation for ε is
εq ≤ O(q)). The sum of the sides of (90), (91) gives (89). Applying −g01∂t to both the
sides of (90) and (91), we obtain in the asymptotic area the Burger’s equations for P+

and P−, respectively. That means that Eqs. (90), (91) fulfil the above assumption. Gen-
erally speaking, if Φ+ and Φ− are solutions of the above system of equations, then they
also fulfil Eqs. (89) and (13). This will be discussed more extensively latter. Because
2P+P− = εP+P− + (2− ε)P+P−, the parameter ε, introduced by us in the descrip-
tion of propagation given by (90) and (91), shows the partition of interaction between
P+ and P− (Φ+ and Φ−). Of course, the partition of (89) expressed by Eqs. (90), (91) is
a result of the same partition of (13) and of applying the conditions given in Secs. 2, 3.

Expressing the velocities in the condition of (39) by means of the corresponding
pressures given by the impedance relations (32), (34), and applying the interface values
of ∂xΦ−, ∂xΦ+ and ∂xΦ2 resulting from Eqs. (90), (91) and (43), we obtain for Rε

p the
formulas

Rε
p

[{m};P+
] ≡ 1

2wp ◦ Rε
0pP

+

[
1−

√
1− 4wp ◦ Rε

0pP
+

]
Rε

0p, (92)

Rε
0p

[{m};P+
] ≡

zp2 − zp1 − 1
2
qz01z02

((
β1

/
c10z

2
01

)− (
β2

/
c20z

2
02

))
P+

zp1 + zp2 − wεP+
, (93)
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wp

[{m};P+
] ≡

1
2
qz01z02

((
β1

/
c10z

2
01

)
+

(
β2

/
c20z

2
02

)) ·
zp1 + zp2 − wε · P+

, (94)

wε ≡ qz01z02

(
(1− ε)

(
β1

/
c10z

2
01

)
+

(
β2

/
c20z

2
02

))
,

zp1 ≡ z01 (1 +A2) , (95)

zp2 ≡ z02 (1 +A1) .

With the hitherto existing accuracy (under the assumption A1 = 0 = A2), we obtain

Rε
p = −

{
z01 − z02

z01 + z02
+

q2z02z01

(z01 + z02)
3

[(
z02

z01
+

ε− 1
2

((
z02

z01

)2

− 1

))
β1

c10

− β2

c20

]
P+(t)

}
+ O(q2). (96)

By the term “particular description” we will denote here the situation in which the value
of ε is fixed. From the above is evident that the number of “particular descriptions” can
be arbitrarily large. It may also cause the justified impression that different values of
the transmitted, reflected and incident fields in the layer for the same disturbance inci-
dent on the layer correspond to every particular description. Especially the change of ε
causes changes of the boundary condition expressed by pressure for Φ2 (exactly for P2)
for the same disturbance incident on the layer. This means that the “descriptions” are
not synonymous. The unsolved case of the equivalence of the descriptions of pressures
for various ε means that the problem is not closed and means also a lack of the energy
current description.

The problem is not trivial because even the assumption of the existence and unique-
ness of the solutions of the boundary problems (at xb) for all the equations presented
(especially if depending on ε) does not solve automatically the problem of equivalence
of the “particular descriptions”.

We remind here that we have three “modes” and only one of them is “fixed” by
means of the boundary condition at x = xb in the asymptotic area.

One should show that the value of P+ + P− does not depend on ε. This means,
especially for x = xRT , that there is no additional nonlinear effect depending on ε, i.e.
such an effect that the boundary condition P+ + P− = P2 is always fulfilled, however
on other levels of amplitudes depending on ε. This means that P2 does not depend on
ε either, in spite of the fact that the boundary relation P+ and P− expressed by Rε

p

depends evidently on ε.
Assuming the existence and uniqueness of the solutions of the boundary problems

for the differential equations, especially for the Eqs. (13), (90) and (91) applied in this
paper; it can be shown that:
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If for an arbitrary given ε Φ+ and Φ− are uniquely solutions of the Eqs. (90), (91)
for xb ≤ x ≤ xRT and Φ2 for x ≥ xRT , the unique solution of the equation

∂xΦ2 =
1

z02
A2P2 − q2c20

2z2
02

(P2)
2 + O

(
(q + α)2

)
,

(97)
P2 = −g02∂tΦ2 = −g02∂τ2Φ2 ,

where Φ+ fulfills the boundary condition for x = xb

Φ+
∣∣
xb

= Φ+
b (t), (98)

Φ− and Φ2 fulfill the boundary condition at x = xRT

P− = Rε
pP

+ = Rε
pP

+(τ+(xRT , t), xRT ), (99)

P2 = (P+ + P−) = Tε
pP

+, (100)

then:

1. The functions Φ+, Φ− and Φ2 fulfill (89) and (97) for xb ≤ x ≤ xRT and
x ≥ xRT , respectively, so they fulfill also (24) and (26). This means that

Φ1(x, t) = Φ+(τ+(x, t), x) + Φ−(τ−(x, t),−x), (101)

is the solution of (13) (with the accuracy O((q + α)2) having at x = xb the values

Φ1(xb, t) = Φ+(τ+(xb, t), xb) + Φ−(τ−(xb, t),−xb)
= Φ+

b (t) + Φ−b (t) for 0 ≤ t < ∞, (102)

2. For 0 ≤ t < ∞, Φ1 = Φ+ + Φ− Φ2, and also P1 = P+ + P− and P2 do not
depend on ε.

Φ−b (t) is the non evident (being searched) component of the boundary condition. In
our problem we consider it as a “time trace” which leaves the reflected disturbance in
x = xb. This component must be formally included in the correctly formulated mathe-
matical description of the boundary problem if it is analyzed for 0 ≤ t < ∞.

Apart from above assumptions the thesis 2. results also from the following equations

(P+ + P−) = z01

(
v+ − v− −A1

(
v+ − v−

)
+

q1c10

2
(
v+ − v−

)2
)

, (103)

which were used previously in Sec. 4 to determine Rv. The right hand side of Eq. (103)
does not depend on ε. P+

ε , and P−
ε depend on the ε (here we evidently denote this fact

by subscript ε), however P1(x, t) = P+
ε + P−

ε and P2(x, t) do not depend on ε. If P+
ε

and P−
ε are solutions of the Eqs. (90), (91) for the same boundary conditions at x = xb

but for different values ε1 6= ε2, then P+
ε1 + P−

ε1 = P1 = P+
ε2 + P−

ε2. Especially at
x = xRT

P1 =
(
1 + Rε1

p

)
P+

ε1 = Tε1
p P+

ε1 =
(
1 + Rε2

p

)
P+

ε2 = Tε2
p P+

ε2 = P2 . (104)
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For ε = 1 we obtain (87) as a particular case of the asymptotic formula (96). In this
case the system of equations (90) and (91) shows the symmetry in the description of the
interaction in relation to other possibilities, i.e. when ε 6= 1. On the surface x = xRT ,
the energy current density vector Ĩ1 = P1 v1 takes the form (64) and the Eq. (90) gives
(78) with the hitherto existing accuracy. The case ε = 0 will be discussed in the next
section. For ε = εL ≡ 1 + Tp((β21/c210z021)− 1)/(z021 − 1), where z021 ≡ z02/z01,
c210 ≡ c20/c10, β21 ≡ β2/β1, the formulas (92) and (96) are reduced to RεL

p = Rp.
Hence, one can conclude that choosing of ε = εL the “linearization” of the bound-

ary relations between P−, P2 and P+ can be performed. Nevertheless, from (104) we
have Tε

pP
+
ε = TpP

+
εL

for every ε. In this case the local and nonlinear description of the
influence of the boundary on the transmission and reflection for pressure was “trans-
lated” into the interior of the layer. This is an interesting example showing the function
of the interaction boundary layer in the phenomenon of reflection and transmission and
in its description.

7. Discussion and conclusions

The determined operators of reflection and transmission for pressure and velocity
preserve the asymptotic properties of the linear operators for (z01; z02) → (0 or ∞),
except the situations z01 → 0; z02 → ∞, when the limit of the Rε

p is a function of
ε (however Rε=1

p → 1). It follows from (104) that the transmission of energy to the
medium m = 2, Ĩ2 ≡ P2v2 = eTvv

+Tε
pP

+ does not depend on ε. Additionally,
the transmission of energy to the medium m = 2 vanishes in all the asymptotic cases
because either Tv → 0 or Tε

p → 0. The transmission of energy to the medium m = 2
is complete under the conditions R0 = 0, Rε

0p = 0 (see (51), (53) and (92), (93)). These
conditions also do not depend on ε and are fulfilled if the relations z01 = z02,A1 = A2,
(β1/c10) = (β2/c20) are kept.

Let us notice that the lack of differences between the nonlinear parameters in both
the media (β1 = β2) is not a sufficient condition for the vanishing of the nonlinear
component of the reflected component of the wave with respect to the incident wave.
This condition can be written in the form

z02c20β1 = z01c10β2 . (105)

However, then Rv = −Rε=1
p , where

Rv =
z01 − z02

z01 + z02
=

β1c20 − β2c10

β1c20 + β2c10
. (106)

In the case β1 6= β2 this means that, in spite of a linear dependence between the re-
flected and incident disturbances, the phenomenon of the interaction with the interface
preserves its nonlinear character as before.
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Hence, in the case of nonlinear propagation it results that the basic nonlinear effect
of reflection and transmission depends in the same degree on all the parameters of the
media in the equilibrium state (for small signals) and on the parameters characteristic
for the nonlinear properties of the media (nonlinearity of the state equations). However,
it is possible to assume that the pure nonlinear reflection and transmission occurs only
when β1 6= β2. In such a case we obtain

P−(t) = − q

4z01c10
(β1 − β2)P+(t)2 + O(q2), (107)

v−(t) =
q

4c10
(β1 − β2)v+(t)2 + O(q2), (108)

P̂−(ω) = − q

4z01c10
(β1 − β2)P̂+(ω)⊗ P̂+(ω) + O(q2), (109)

v̂−(ω) =
q

4c10
(β1 − β2)v̂+(ω)⊗ v̂+(ω) + O(q2). (110)

In general (taking into account the remark according to (106)) the reflected (or trans-
mitted) disturbance can be written in the form

v− = v−L + v−NL, P− = P−
L + P−

NL, (111)

where

v−L (t) ≡ Rvv
+(t), P−

L (t) ≡ RpP
+(t), (112)

v−NL(t) ≡ rvv
+(t) · v+(t), P−

NL(t) ≡ −rpP
+(t) · P+(t), (113)

and the index L denotes to the linear component with respect to the disturbance but not
to the linear one with respect to the description of the phenomenon. It follows that in
the Fourier frequency domain

v̂−L (ω) ≡ Rvv̂
+(ω), P̂−

L (ω) ≡ RpP̂
+(ω), (114)

v̂−NL(ω) ≡ rvv̂
+(ω)⊗ v̂+(ω), P̂−

NL(ω) ≡ −rpP̂
+(ω)⊗ P̂+(ω). (115)

From the obtained results, especially from (115), it can be concluded that the reflection
and transmission for nonlinear propagation is not a local phenomenon in the frequency
domain. The reflection and transmission of every of the Fourier components of the inci-
dent wave depends on all the remaining components as it follows from the properties of
the auto convolution. In the nonlinear description of the interaction with the boundary
surface the reflection and transmission of the single Fourier component is not indepen-
dent of the remaining spectral components.

When the incident wave is generated by a pulse transmitter with the carrier fre-
quency of ωca in the neighborhood of the interface, then the even for the relatively high
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values of q, the spectrum of the incident wave (v+(ω), P+(ω)) will be a distinctly vis-
ible a single spectral line concentrated around ωca as before around ωca. As it results
from (114) and (115) in the spectrum of the reflected (or transmitted) wave, beside the
spectral line with the same central frequency there will arise an additional spectral line
distinctly separated (for the adequately pulse length) that corresponds to (v−NL, P−

NL)
and is concentrated around 2ωca. However, this is rather an exceptional situation. In
general, the spectra v+, P+ of the disturbance reaching the reflecting interface during
nonlinear propagation are already complex. With the exception of hypothetical situ-
ations and in the situation described above, the spectra (v−NL, P−

NL) carry much lower
energy than (v−L , P−

L ) (even if z01 ≈ z02) and are practically overlapped by them (in the
lower spectral range). Hence it results a practical significance of the values (v−NL, P−

NL)
in the analysis of different properties of the both the media (for example the determi-
nation of β for one of the medium when the other ones are known) depends on the
application of special techniques of excitation and detection of the reflected or transmit-
ted waves. In this context it should be stessed that the change of the sign of v+, P+ does
not cause a change of the sign in (v−NL, P−

NL). Examples of quantitative comparisons
of (v−NL, P−

NL) with (v−L , P−
L ), which are decisive for the standard detection technique

used in ultrasonography are given in the Appendix A4.
An interesting and curious property of the nonlinear reflection and transmission

is the fact that at the point of discontinuity of the media parameters, i.e. on zero of
the dimensional manifold, there arises the effect of finite nonlinear change of pressure
(velocity). It is of the same order of magnitude as the nonlinear change of pressure
resulting from nonlinear propagation on the finite distance of δx, that means on one-
dimensionally manifold with non zero measure, in the first or second component of the
medium. Details of the reasoning, which makes possible the estimation of the effect, are
here omitted

δx(ω) = const(z021, β21)
c10

ω
. (116)

Equation (116) has a qualitative meaning characterizing the comparison effect. For the
derivation of the reflection and transmission operators no additional assumptions were
necessary apart from those formulated at the beginning of this paper. To obtain ana-
logical operators for pressure the additional partition of (26) and (27) was necessary.
However, this did not allow us to close the description of the phenomenon on the base
of the hitherto existing assumptions. The assumption of the partition of the energy cur-
rent, though characteristic due to the symmetry of interaction, is a consequence of one
of the possible particular descriptions of interaction in the layer. In the general case and
because of the evidently occurring additional component in Rε

p that depends on the de-
scription of the interaction, the additional discussion in Sec. 6 was necessary. Hence it
follows:

1. The relative significance of the individual components, which form the repre-
sentation of the nonlinear disturbance, in contrast to the full representation (which is
equivalent to exact solution of the problem). In the linear case such a differentiation has
no meaning. In our case, there exist a comprehensive set of functions {P+

ε , P−
ε } “num-
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bered” by ε and realizing the same P1 for every ε. Because ε can be changed arbitrarily,
then the functions P+

ε and P−
ε separately considered have no physical meaning in the

area of interaction where P+
ε P−

ε 6= 0. On the contrary to this, P1 = P+
ε + P−

ε is a
measurable quantity equivalent to the exact solution.

2. The independence of Φ1 = Φ+ + Φ− and Φ2, (or P1 = P+ + P− and P2) on
ε makes it possible to choose such a particular description for which the solution of
Eqs. (90), (91), (97) (and also (13)) is the simplest one (even from the numerical point
of view). For example, assuming a medium with a classical viscosity and ε = 0 we
conclude, that (90) and (97) are Burgers equations (integrated over the time – see the
remarks before and after (90), (91)). Boundary problems for those equations are exactly
integrable. Thus the factor 2P+ in the term describing interaction in Eq. (91) is defined
for every t. These equations can be written as follows

∂ξΦ
−(τ−, ξ) +

1
z01

α1
2∂tP

−(τ−, ξ) +
q1c10

2z2
01

[
P−(τ−, ξ)2

+2P+

(
τ− +

2ξ

c10
, ξ

)
P−(τ−, ξ)

]
= 0 + O((q + α)2). (117)

The following substitutions were applied here: −x = ξ, and τ+ = t − x/c10 =τ− +
2ς/c10. The same transformation (Cola–Hopf, Φ = const · ln(Ψ)), which transforms
(90) and (97) into linear equations, transforms (91) or (117) into quasi-linear equations
and, in the asymptotic area, into linear ones. The analysis in Sec. 6 is of additional
advantage and, in the case of a classical absorption of both the components, an exact
solution for Φ2(P2) can be obtained.

3. We would like to stress that the parameter of the description (scaling) of nonlin-
ear interaction can be the arbitrary function ε(x, t) (however, ε (x, t) q ≤ O(q)). This
allows us to see the problem of the choice of the description of interaction as the choice
of a special “functional system” of coordinates. Nevertheless, every choice maintains
the value Φ1, Φ2 (P1, P2).

It may by interesting that the author has obtained the same form of the reflection
and transmission operators (for v+ and −g01∂tΦ

+) presented in this paper on the base
of the Kuznetsov equation using a definition of acoustical pressure presented in formula
(A10) in Appendix A1 (in the Kuznetsov approximation −g01 (∂tΦ

+ + ∂tΦ
−) 6= P1).
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Appendix

A1
The pressure tensor Π has the form [8]

Π = Pth(g, s)1 + 2ALs, (A1)

where Pth is the thermodynamic pressure; g, s are density and entropy, respectively; 1 is
the unit tensor; ALs = a1+AS =

(
a + Tr(AS)

)
1+

(
AS − Tr(AS)1

)
is the viscosity

stress tensor. ALs is linear with respect to the components vj of v and symmetrical[
AS

]
l,j

= AS
l vj = AS

j vl, j, l = 1, 2, 3. Calculating its divergence and taking into
account that ∇ · (AS − Tr(AS)1

)
= 0 and v ≡ ∇Φ, we obtain the total force per unit

volume of the medium

∇ ·Π = ∇P̃ = ∇ (Pth(g, s) + 2ALsΦ) , (A2)
ALsΦ = a + Tr(As). (A3)

For classic the Navier–Stokes model: a = − ((ηb/2)− ηs/3)∇ · v, AS
l = −ηs∂/∂xl,

ALs = −α2Ls∆, α2Ls ≡ (4ηs/3+ηb)/2, where ηs, ηb are the shear and bulk viscosity,
respectively. For a nearly adiabatic conversion of the medium and in the first order with
respect to the entropy variations Pth(g, s) = P ∗ + 2AthΦ [9], where P ∗ describes the
pressure in the adiabatic conversion;Ath ≡ −α2th∆. In such a case, the pressure P̃ can
be written as

P̃ (g, Φ) = P ∗(g) + 2AΦ, A = Ath +ALs . (A4)

For classical viscous media A = −(α2th +α2Ls)∆ = −α2∆. Nevertheless, the full
operator

2AΦ = 2(Ath +ALs)Φ = P̃ (g, s; Φ)− P ∗(g) + O(s2) (A5)

may be reconstructed on the base of measurements of the small signal coefficient of
absorption a(ω) [7]. After substituting P̃ (g, Φ) = P ∗(g) + 2AΦ into the momentum
equation, where for m-th medium

P ∗(gm) =
g0mc2

m0

qγm

(
gm

g0m

)γm

(A6)

or for the empirical equations of state, γm ≡ 1 + (B/A)m

P ∗(gm) = Pm0+
g0mc2

m0

q

[(
gm

g0m
− 1

)
+

γm − 1
2

(
gm

g0m
− 1

)2

+ O(q3)

]
, (A7)

we have in both cases

gm(x, t) = g0m

[
1− q

c2
m0

(
∂tΦ +

q

2
(∇Φ)2

+
q(γm − 2)

2c2
m0

(∂tΦ)2 + 2AmΦ

)]
+ O(qα(q + α)), (A8)
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c2
m(x, t) = c2

m0

[
1− q(γm − 1)

c2
m0

(
∂tΦ +

q

2
(∇Φ)2

+
q(γm − 2)

2c2
m0

(∂tΦ)2 + 2AmΦ

)]
+ O(qα(q + α)). (A9)

From the mass continuity equation and formula (A8) we can obtain (in the first order
with respect to q and α) the Kuznetsov equations [10] and the (13) [7].

The disturbance of the total pressure P̃ from the equilibrium pressure Pm0 takes the
form

Pm(x, t) = Pm [Φ] ≡ P̃ (gm [Φ] , Φ)− Pm0

= −g0m (∂tΦ + qLm [Φ]) + O(q(q + α)), (A10)

Lm[Φ] ≡ 1
2

[
(∇Φ)2 −

(
1

cm0
∂tΦ

)2
]

. (A11)

It follows from the afore-named relations that P̃ is a total and real dynamical fac-
tor in the momentum equation, contrary to P ∗ and Pth. This means that the defini-
tion equation (A10) is a correct definition of potential disturbances of the total pres-
sure in the medium. (A10) is used as the designation of the acoustic pressure Pm in a
medium which is characterized by the set of equilibrium (or small signal) parameters
{m} ≡ {cm0, g0m, am(ω), ...}. It was shown [7] that for the solutions of the Kuznetsov
equation (or (13) and (22) referred in [7]) the term Lm[Φ] is of a higher order with
respect to (∂tΦ)2. Therefore the operator Pm in (A10) can be reduced to

Pm = −g0m∂t + O(q(q + α)). (A12)

This approximation can be adequately applied for the solutions of Eq. (13) in order to
determine the acoustical pressure Pm with a proper accuracy.

A2.

Applying to (22) the generalized Fourier transform [7] with respect to x and the
Fourier transform with respect to the τ2 variables, we have

ς2Φ2 + ς
2

c20
ωΦ2 − i

ωΦ2

c2
20

[
2a2(ω)Φ2 + q2 ((ωΦ2)⊗ (ωΦ2))

]
= 0, (A13)

where ς is the complex wave number [7] (K = k exp(iϕ) = ekk exp(iϕ) = eKK =
ςek is the wave vector ek = k/k, K = (K ·K∗)1/2 = (k ·k)1/2 = k). We may rewrite
(A13) in the “nearly solution form” with respect to ςΦ2(ω, ς),

ςΦ2 = −ωΦ2

c20

[
1−

√
1 + i

(
2a2(ω)Φ2 + q2(ωΦ2)⊗ (ωΦ2)

ωΦ2

)]
, (A14)
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ςΦ2 = i(a2(ω)Φ2 + q2(ωΦ2)⊗ (ωΦ2))
/
c20 + O((q + α)2), (A15)

that means ς2Φ2 = 0 + O((q + α)2) and ∂xxΦ2(·, x) = 0 + O((q + α)2).

A3.
To perform the factorization of the operators

w
[{m}; v+

] ≡
1
2
u·

z1 + z2 + w · v+
, (A16)

R0

[{m}; v+
] ≡

z1 − z2 +
1
2
uv+

z1 + z2 + wv+
. (A17)

in the time domain we must solve the following inhomogeneous equation
[
z1 + z2 + w · v+

]
v− = Su

[
v+

]
. (A18)

This leads to

− (
z01A1 + z02A2

)
v− + (z01 + z02 + w · v+)v− = Su

[
v+

]
, (A19)

Su
[
v+

] ≡





1
2
u · (·) for w,

(
z1 − z2 +

1
2
uv+·

)
v+ for R0 .

(A20)

If v− may be represented (approximately) in the finite dimensionally base of the Fourier
functions, then Eq. (A18) is always solvable. In this case R0 and w are matrices, then for
multi components representations they have only a numerical value. Fortunately, in the
case of classical absorption (A19) is solvable in the continuos representation by means
of conventional methods. In this case

− (
z01A1 + z02A2

)
=

(
z01α

1
2 + z02α

2
2

)
∂t = αz∂t (A21)

and (A19) takes the form

∂tv
− +

(z01 + z02 + w · v+)
αz

v− =
Su [v+]

αz
. (A22)

This is the inhomogeneous linear Bernoulli equation. Its solution (for v−(t = 0) = 0)
has the form,

v−(t) =

t∫

0

1
αz

exp


− 1

αz


(z01 + z02)(t− t′)

+ w

t∫

t′

v+(t′′)dt′′





Su

[
v+(t′)

]
dt′. (A23)



630 J. WÓJCIK

As we see, the kernel w0 of the fundamental operator w takes the form

w0(t, t′; v+(t)) ≡ 1
αz

exp


− 1

αz


(z01 + z02)(t− t′)

+ w

t−t′∫

0

v+(t′ + τ)dτ





 , (A24)

and

w
[ · ; v+

] ◦ ( · ) =
u

2
w0 ◦ ( · ) =

u

2

t∫

0

w0(t, t′; v+(t′))( · )dt′, (A25)

R0

[ · ; v+
]
v+ =

t∫

0

w0(t, t′; v+(t))
[
z1 − z2 +

1
2
uv+(t′)

]
v+(t′)dt′. (A26)

If |∂tv
+/v+| ¿ 1/αz, then we have

R0 =
z1 − z2 +

1
2
uv+(t)

z01 + z02 + wv+(t)
+ O(α(α + q)) . (A27)

A4.
From (112) and (114) we obtain the ratio StNL,L of the nonlinear v−NL and linear

v−L velocity components (with respect to the disturbance)

StNL,L ≡ v−NL(t)
v−L (t)

=
P−

NL(t)
P−

L (t)
+ O(q(q + α))

=
rvv

+(t)
Rv

=
rpP

+(t)
Rp

+ O(q(q + ε)), (A28)

rv , rp = O(q), P+ = z01v
+ + O(q + α).

From (57) and (84) there follows the relation

StNL,L =


q

2z01z02

(
z02

c10
β1 − z01

c20
β2

)
v+(t)

(z01 − z02)(z01 + z02)2




= q

2z02

(
z02

c10
β1 − z01

c20
β2

)
P+(t)

(z01 − z02)(z01 + z02)2
+ O(q(q + α)). (A29)
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To determine the above ratio by means of dimensional values, q = 1 is assumed.
The pressure is given here in [Pa]. Let us calculate the ratio StNL,L for two pairs of the
media:

1) (blood – heart muscle);
2) (blood – fat tissue).

The acoustic impedances z... and speeds of sound c... for the above media are equal to:

blood:

z01 = 1060 [kg/m3] · 1567 [m/s] = 1.661 · 106,

c10 = 1567 [m/s], β1 = 1 + 0.5 · 6.05;

heart muscle:

z02 = 1058 [kg/m3] · 1542 [m/s] = 1.661 · 106,

c20 = 1542 [m/s], β2 = 1 + 0.5 · 5.8;

fat tissue:

z02 = 920 [kg/m3] · 1476 [m/s] = 1.352 · 106,

c10 = 1476 [m/s], β2 = 1 + 0.5 · 11.

In the first case (blood – heart muscle) we have |StNL,L| = 0.11 · 10−9[1/Pa] · P+,
hence for P+=107 [Pa] one obtains the value StNL,L = 0.0011. In the second case
(blood – fat tissue), |StNL,L| = (3.7−4.1) ·10−9[1/Pa] ·P+, hence for P+ = 107 [Pa]
one obtains the value StNL,L ≈ 0.037. In this way it was found that the reflection
caused by the nonlinearity parameter only is a small value. However it is more then 30
times higher in the second case (neglecting the reflection caused by differences in the
acoustic impedances).
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