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In this research, the convolution and backprojection method has been adapted for
the purposes of image reconstruction in ultrasound transmission tomography (UTT). In
particular, a complete computer algorithm enabling the use of different convolving and
interpolation functions has been developed. A technique of reducing and scaling the tomo-
graphic measuring data to minimize the reconstruction errors is proposed. The convolution
and backprojection method was optimized through a choice of a versatile convolving func-
tion and a simple interpolation function, and it was tested using simulated and actual
tomographic measuring data. After reconstruction, good-quality images were obtained. It
has been found that the number of measuring rays determines the resolution of an image,
the accuracy with which the size of structures is imaged and the accuracy with which
the image point values are reconstructed, whereas the number of measuring projections
determines the dynamics and distortion of an image. Because of computation time and
image blur, an optimum reconstruction grid size, according to the visualization quality
criterion, should be chosen. The convolution and backprojection algorithm optimized in
this research can be applied directly to the UTT visualization of the internal structure
of objects as a distribution of local sound velocities in this structure, reconstructed on
the basis of measurements of mean times of the passage of an ultrasonic wave through a
cross-section of an object immersed in water, in a parallel ray projection geometry.

1. Introduction

In ultrasound transmission tomography (UTT) measurements in a parallel ray pro-
jection geometry, ultrasonic transducers: the sending one and the receiving one, are po-
sitioned opposite each other with the investigated object inbetween (1st generation of
measuring data acquisition) [13]. A packet of measurements is obtained while moving the
two transducers over distance s and rotating them at the same time by angle ψ along and
around the object (Fig. 1). The measuring cycle ends after a rotation by an angle of 180◦.
Each shift of the transducers is called a ray and each rotation of them — a projection. A
result of the measurement is a set of mean values of a certain acoustic parameter in the
measured cross-section of an object for M rays and N projections. The values constitute
basic data for the image reconstruction.
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Fig. 1. Technique of measurement in UTT by means of parallel ray projection method.

An image reconstruction algorithm provides a mathematical basis for tomography.
To visualize the internal structures of objects one must be absolutely certain that image
reconstruction from the measuring data is correct. Therefore it is highly important that
a proper reconstruction algorithm is selected, adapted to the particular measuring data,
optimized and tested. These operations make it possible to detect and minimize any
calculation errors which, compounded by measuring errors included in the tomographic
data, could distort the reconstructed image even more.

In the present research, an image reconstruction algorithm was selected and made
suitable for entering of the measuring data in the form of ultrasonic wave propagation
mean velocities in a parallel ray projection geometry. Then the algorithm was optimized
to minimize the calculation errors, tested and implemented as a computer program.

2. Choice of algorithm

An important problem in UTT, requiring a thorough survey of the existing recon-
struction methods, is the choice of an image reconstruction algorithm. First, one must
choose from the two types of algorithms: the transform method [6] or the finite series-
expansion reconstruction method [1], considering their advantages and disadvantages.
The first computer-assisted X-ray tomograph, invented by Hounsfield and produced by
EMI, used the algebraic reconstruction technique (ART) [1] and the expansion- into-series
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concept, whereas the present commercially available tomographs for medical applications
do not use the series-expansion concept any longer. Series-expansion methods are iter-
ative algorithms characterized by slow convergence and thus they reconstruct images
much slower than the transform methods. However, the development of very fast and
efficient computers may make it possible to shorten the computation time, which will
give an advantage to series-expansion methods [1] because of:

— their wide application range regardless of the measurement geometry and the kind
of data,

— the possibility of reconstructing high-contrast images of the structure of objects
characterized by sudden changes in density, which is essential for the application of
tomography to industrial non-destructive testing,

— the possibility of reconstructing an image in the case of a small number of illumi-
nation angles or incomplete projections.

But at the moment, the long computation time required by series-expansion methods
makes it impossible to increase the number of iterations significantly (it is still not possible
to implement series-expansion methods on PCs) and so the images reconstructed by
these methods are often obscured by noise and distorted [2, 5]. The much bigger errors
occurring here than in the case of transform methods are due to the assumption of a
linear energy propagation path between the source and the detector, which for UTT is
a serious shortcoming because of refraction. Thus one can say that at the moment, the
transform algorithm is the most suitable for UTT.

Among transform algorithms one can distinguish two basic types: operating in the
space domain (the convolution and backprojection algorithm [6]) and operating in the
domain of spatial frequencies (the Fourier inversion and the filtered backprojection al-
gorithm [6]). Considering that the two types have a common origin, it is surprising that
they differ radically in their operation. The convolution and backprojection algorithm is
highly versatile. Being currently one of the most effective algorithms, it is used in the lat-
est models of computer X-ray tomographs. It has been superseding the Fourier versions.
The reason for its dominance is mainly the ease with which it can be implemented in both
the software and hardware applications and the fact that it makes it possible to obtain
sharp high-quality images from noise-free measuring data [6]. Algorithms based on the
Fourier transform are not so easy to implement because of two-dimensional interpolation
which lowers the quality of the image [6, 7]. Whereas calculation of the Fourier transforms
have this advantage that they require a potentially smaller number of computations to
reconstruct an image. Unfortunately, calculation of Fourier transforms, whose efficiency
makes this method attractive, are also a source of its shortcomings [2]. Fourier algorithms
require direct estimates of the complex amplitude of image harmonic components and
an error in one of the components degrades the whole image [6]. The cause of such er-
rors may be inaccurate interpolation. In the convolution and backprojection algorithm
inaccurate interpolation is harmless — it causes only smoothing of the image [6].

To take a final decision about the choice of an algorithm, the reconstruction of a
simple object by means of the Fourier inversion algorithm and the convolution and back-
projection algorithm was considered. Let the object be described by a function which
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assumes the value of 1 within a circle with radius a and 0 outside this circle. The Fourier
transform of such an object is an oscillating function with the oscillation becoming faster
as the object’s size increases or when the object is for away from the origin of the image
co-ordinates. Faster oscillations of the function result in a bigger error introduced by
simple interpolation between the function samples. In the convolution and backprojec-
tion method interpolation takes place for convolved data. For the sampled projections
of the considered object it can be stated that the sampled convolved data are close to
theoretical results. This means that, regardless of the size of an object or its position
relative to the origin of the image co-ordinates, a negligible interpolation error appears
in the reconstructed values within the circle.

To sum up, the convolution and backprojection algorithm, adapted and tested in this
research, is the most suitable one for UTT purposes.

3. Convolution and backprojection algorithm

The convolution and backprojection algorithm was brought out by Ramachandran
and Lakshminarayanan in 1971 [11] and later popularized by Shepp and Logan [12].
The reconstruction method here is similar to the filtered backprojection algorithm [5, 6],
except that filtration takes place in the space domain (as a convolution) and not in the
domain of spatial frequencies, which naturally eliminates the problems connected with
FFT. The initial convolution and backprojection algorithm formula has this form [6]:

fB(x, y) =

π∫

0

1∫

−1

p(s, ψ)q(x cosψ + y sinψ − s) ds dψ, (1)

where

q(s) =

1/2∆s∫

−1/2∆s

|R|W (R)ej2πRs dR, (2)

and p(s, ψ) = pψ(s) are the measuring data collected in a parallel ray projection geome-
try (Fig. 1), W (R) is a window function, fB — band-limited approximation of function
f(x, y), and s is normalized to area [−1, 1]. Formula (1) can be separated into two parts:

p̃(s′, ψ) =

1∫

−1

p(s, ψ)q(s′ − s) ds, (3)

fB(x, y) =

π∫

0

p̃(x cosψ + y sinψ,ψ) dψ. (4)

Formula (3) is an outcome of the convolution of projections at an angle of ψ and con-
volving function q(s) defined by general formula (2) (different convolving functions are
obtained for different window functions). Formula (4) is known as backprojection and
it has a simple geometric interpretation. The arguments of the function described by
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equation (3) are parameters of a ray passing through point (x, y) at angle ψ, which
means that function f(x, y) is created by integrating values of the convolved projection
accompanying all the rays passing through point (x, y).

In practical reconstruction-from-projection applications, the measuring data corre-
spond to estimates p(s, ψ) for many discrete values s and ψ and the reconstructed image
is generated in the form of a two-dimensional table of numbers. The principles which
apply to the optimization of a reconstruction algorithm on the basis of discrete data
should be considered for a case when p is sampled cocurrently for s and ψ. If we have
a set of projections measured at N angles spaced at ∆ψ by means of M rays spaced at
∆s, then for each of N projections we can determine constant integers M+ and M−:

M+ = (M − 1)/2
M− = −(M − 1)/2

}
for odd M, (5)

M+ = (M/2)− 1
M− = −M/2

}
for even M. (6)

To make sure that set of rays {(m∆s, n∆ψ) : M− ≤ m ≤M+, 1 ≤ n ≤ N} covers a
unit circle (a normalized measuring area), one should choose ∆ψ = π/N and ∆s = 1/M+

from the whole range of directions. In this way one can refer to set p(m∆s, n∆ψ) as to
parallel-ray data. A Cartesian grid of image point values is defined as set {(k∆x, l∆y) :
K− ≤ k ≤ K+, L− ≤ l ≤ L+} where numbers K−, K+, L−, L+ are defined in the same
way as M− and M+ (formulas (5), (6)). A reconstruction algorithm should generate
estimates f(k∆x, l∆y) for K × L image points from M ×N measurements p(m∆s,ψn)
for ψn = n∆ψ. Thus an algorithm performing approximation fB(k∆x, l∆y) on the basis
of projection data p(m∆s,ψn) is needed. The simplest way in which backprojection
integrals (formula (4)) can be determined is to apply the trapezoid rule [6]:

fB(k∆x, l∆y) ∼= ∆ψ

N∑
n=1

p̃(k∆x cosψn + l∆y sinψn, ψn). (7)

Then for each angle ψn one should find convolved projection values p̃(s′, ψn) for set
K × L of values s′. A practical approach to this problem is to estimate p̃(s′, ψn) for
M− ≤ m ≤ M+ projections and then to apply reasonable interpolation to calculate
K×L values p̃ on the basis of only M calculated convolved values. Thus the convolution
(formula (3)) should be expressed in two stages: a discrete convolution whose result is
written as p̃C , followed by interpolation p̃I . These operations are represented by a pair
of equations [6]:

p̃C(m′∆s,ψn) = ∆s

M+∑

m=M−
p(m∆s,ψn)q((m′ −m)∆s) for M− ≤ m′ ≤M+, (8)

p̃I(s′, ψn) = ∆s
∑

m′
p̃C(m′∆s,ψn)I(s′ −m′∆s), (9)
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where s′ = k∆x · cosψn + l∆y · sinψn and I(s) is an interpolation function. If linear
interpolation of convolved values is assumed, function I(s) can be written as:

IL(s) =





1
∆s

(1− |s|/∆s), |s| ≤ ∆s,

0, |s| ≥ ∆s.
(10)

There are many convolving functions which can be used in a convolution and backpro-
jection algorithm. One of the most often used is the following function [6]:

q(m∆s) =





3− 2E
12(∆s)2

for m = 0,

− E

π2(m∆s)2
for even m,

− 1− E

π2(m∆s)2
for odd m,

(11)

where 0 ≤ E ≤ 1 is a convolving function parameter. A special case of this convolving
function is the Ram-Lak (Ramachandran and Lakshminarayanan) function [4]:

qRL(m∆s) =





1
4∆s2

for m = 0,

− sin2(πm/2)
π2m2∆s2

for m 6= 0,
(12)

obtained from formula (11) for parameter E = 0. Another frequently used function is
the Shepp-Logan function [4]:

qSL(m∆s) =
2

π2∆s2(1− 4m2)
. (13)

The convolution and backprojection algorithm is simple to implement, quite accurate
and fast. It is currently used in the latest models of computer X-ray tomographs as one
of the most effective algorithms.

4. Measuring data fitting

For the convolution and backprojection algorithm four basic assumptions, which must
be satisfied to obtain a correctly reconstructed image, hold good:

1) parameter values measured in projections (entered into the algorithm) constitute
an integral of local values over the ultrasonic beam’s path,

2) the path between the source and the detector is a straight line,
3) values measured outside the measuring area are zero,
4) measuring data entered into the algorithm operating on a measuring circle having a

radius of 1, placed in the centre of the co-ordinate system must be re-scaled appropriately.
For the measurement of the time tp in which an ultrasonic wave passes through the

object, the local values are the inverses of sound velocity 1/c(x, y) (condition 1)):

tp =
∫

L

dtp =
∫

L

dtp
dl

dl =
∫

L

1
c(x, y)

dl. (14)
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Condition 2) can be satisfied only approximately by assuming that for the measured
objects, the elongation (as a result of refractions) of the ultrasonic wave propagation path
from the transmitter to the receiver is negligible. Measurement of the circle diameter dp
in a parallel ray projection geometry is determined either by the tracking range or by
sending transducer-receiving transducer distance lo:

dp =

{
(M − 1)∆s for (M − 1)∆s < lo ,

lo for (M − 1)∆s ≥ lo ,
(15)

where M stands for a number of measuring rays spaced at ∆s. According to condition 3),
measurement values outside a circle of diameter dp should be zero. This condition can be
fulfilled in the simplest way by entering reduced time Td, i.e. difference tp− tmed, instead
of the measured transition time values tp, into the algorithm, where time tmed is the time
in which an ultrasonic wave passes through a measuring medium (water) at distance
lo (assuming that tmed

∼= const). To satisfy condition 4), let us consider scaling two
different parameters entered into the convolution and backprojection algorithm, specified
as method A: Td and method B: −cmed · Td, when for the two parameters assumptions
1) – 3) hold good. If the reduced time measured over path lo is Td, the reduced time over
path 2 is:

T̂d = t̂p − t̂med =
2tp
lo
− 2tmed

lo
=

2
cp
− 2
cmed

, (16)

where cp stands for mean ultrasonic wave propagation values measured in a parallel
ray projection geometry at distance lo, and cmed is a mean ultrasonic wave propagation
velocity in a measuring medium, measured at distance lo. It is easy to prove that

T̂d =
2
cp
− 2
cmed

=

1∫

−1

(
dt̂p − dt̂med

)
=

1∫

−1

(
dt̂p
dl

− dt̂med

dl

)
dl

=

1∫

−1

(
1

c(x, y)
− 1
cmed

)
dl =

1∫

−1

f (A)(x, y) dl. (17)

In the case of method A, to reproduce, after reconstruction, the local ultrasonic
wave propagation velocities, values 2/cp− 2/cmed should be entered into the convolution
and backprojection algorithm and the following recalculation should be done for each
reconstructed value f (A)(x, y):

c(x, y) =
1

f (A)(x, y) +
1

cmed

. (18)

In method B the difference lies in the fact that after re-scaling as above, we enter values
2 · (1− cmed/cp) = 2 · (1− np) (where np is a mean value of the refraction index [5]) into
the algorithm and after reconstruction and recalculation we get:

c(x, y) =
cmed

−f (B)(x, y) + 1
. (19)
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The two above methods were verified by reconstructing an image on the basis of simulated
tomographic measurements of the mean velocity of the propagation of an ultrasonic wave
in a cross-section of a homogenous cylinder immersed in water (Fig. 2): identical results
were obtained.

Fig. 2. Image of assigned cylinder cross-section in: a) gray scale, b) pseudo-3D. The following parameters
were assigned: sound velocity in cylinder — 1500 m/s, sound velocity in water — 1483 m/s, cylinder’s

diameter — 50 mm, measuring circle’s diameter — dp = lo = 100 mm.

In the further research method B was used for reconstruction calculations because of
shorter computation time.
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5. Optimization

The convolution and backprojection algorithm was subjected to optimization through
the selection of a convolving function. Two functions: q(m∆s) [6] for several values of
parameter E and Shepp-Logan function qSL(m∆s) (formulas (11), (13)) were tested. The
considered convolving functions are shown in Fig. 3 for discrete values m ·∆s. In the case
of function q(m∆s), calculation were done for seven values of parameter E = 0, 0.2, 0.4,
0.5, 0.6, 0.8, 1.

Images of an assigned cylinder cross-section (Fig. 2) were reconstructed by means
of the convolution and backprojection algorithm using each of the convolving functions
shown in Fig. 3. The obtained images in pseudo-3D are shown in Fig. 4.

If one compares the shapes of the convolving functions (Fig. 3), one can notice that
the Shepp-Logan function is very similar to function q with parameter E = 0.2, 0.4. The
similarity is also visible in the case of the reconstructed images of the cylinder cross-
section (Fig. 4). This means that convolving function q(m ·∆s), presented in a paper by
R.M. Lewitt [6] (formula (11)), is a highly versatile function. Thus there is no need to
use many different convolving functions in the convolution and backprojection algorithm
since the effects which they produce can be brought about by changing the value of
parameter 0 ≤ E ≤ 1 of function q. Being able to change the value of parameter E, one
can reconstruct images differing in contrast.

For low values of parameter E ≤ 0.4 one can obtain very sharp images with clearly vis-
ible edges at structural boundaries (Fig. 4 a – c), in which local sound velocities are metic-
ulously reconstructed in comparison with the object (Fig. 4a). A drawback of this kind
of reconstruction are oscillations of the reconstructed values close to the measuring-area
boundary (Fig. 4a – c) and interference in the imaging of any discontinuities manifesting
itself in overstated reconstructed values at boundaries (Fig. 4 a – c).

For high values of parameter E ≥ 0.6 images are less contrasty, which manifests it-
self in blurring of the boundaries of any discontinuities in the reconstructed structure
(Fig. 4 e – g). Thus the reconstructed values close to such boundaries contain significant
errors. This kind of reconstruction has, however, an advantage: no oscillation in image
values close to the measuring area boundary and no interference in the imaging of dis-
continuities (Fig. 4 e – g). For parameter E = 0.5 the above effects for low and high values
are balanced (Fig. 4d).

Reconstruction errors along image line y = 0 for parameter E = 0 and E = 1
at M = 101 rays and N = 160 projections are given in Fig. 5. As regards the image
sharpness, it is more advantageous to use low values of E but if the aim is to minimize
the offset of reconstructed image point values relative to the assigned values, it is better
to use high values of E.

A nonlinear interpolation function can be used to improve the quality of imaging since
if linear interpolation is adopted (formula (10)) in the convolution and backprojection
algorithm, two kinds of interference occur [6]:

— the reconstructed function is a locally smooth version of the original object func-
tion,
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Fig. 5. Reconstruction errors along image line y = 0: a) for parameter E = 0, b) for parameter E = 1,
at M = 101 rays and N = 160 projections (standard deviations have been marked).

— the reconstructed function is characterized by rapid variation of values and their
derivatives.

Nevertheless, the smoothing effect is relatively harmless since it is equivalent, in prin-
ciple, to the modification of convolving function q by increasing the value of parameter
E. Thus it can be eliminated by lowering the value of E. The oscillation effect in the
reconstructed image manifests itself as streaks radiating from sharp edges (Fig. 4 a – f, h).
This interference is not serious enough to justify the introduction of a complicated non-
linear interpolation function since this would extend the reconstruction computation time
considerably.

In the further research only the convolution and backprojection algorithm in conjunc-
tion with convolving function q(m ·∆s) (formula (11)) and linear interpolation function
IL(s) (formula (10)) is used. Such a value of the convolving function parameter was cho-
sen which ensured images of the best possible quality (in most cases: E = 0 and E = 1).
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6. Testing

To determine a minimum number of measuring data (rays and projections) and to
choose an optimum reconstruction grid size — the parameters which determine the qual-
ity of an image — the convolution and backprojection algorithm was tested by simulated
tomographic measurements of a cylinder cross-section (Fig. 2). For the convolution and
backprojection algorithm it is possible to derive a formula for the interrelationship be-
tween the number of rays M and the number of projections N , which is necessary in
order to minimize the reconstructed image distortions introduced by the algorithm [6]:

N − 1 >
πM

2
. (20)

This criterion provides many useful guidelines for many applications, considering that
the effects of sampling in domain s and in domain ψ interact in a complicated way.

Figure 6 shows image distortions due to an insufficient number of projections relative
to the number of rays (Fig. 6 a – c). It is enough to satisfy condition (20) to obtain good-
quality images (Fig. 6f). By further increasing the number of projections only slight
smoothing of image point value oscillations is obtained (Figs. 6 g, h). It is surprising that
a quite clear image can be obtained already for the number of projections smaller by half
than the number of rays (Fig. 6d). It should be noted, however, that the tested object
is homogenous and large. In the case of objects with complex internal structure, it may
become necessary to use the maximum number of projections determined by condition
(20) in order to obtain a good-quality image [8 – 10].

Figures 7 and 8 show how the reconstructed image of the object’s cross-section
changes depending on the number of measuring rays if condition (20) is fulfilled. In
the case of the tested object, a highly accurate image can be obtained already for 101
rays (Figs. 7 e, 8 e) and an undisturbed shape of the object’s cross-section — for about
30 rays (Figs. 7 c, d and 8 c, d). By further increasing the number of rays only the in-
terference at structural boundaries is minimized (Figs. 7 f – h and 8 f – h). Thus the cross-
section of each homogenous structure can be visualized with high accuracy by means
of the convolution and backprojection algorithm, assuming M ≥ 51 rays for its largest
dimension and N ≥ 81 projections, if we have error-free measurements of the mean val-
ues of the acoustic parameter being determined, obtained in a parallel ray projection
geometry.

The convolution and backprojection algorithm reconstructs an image as set K ×L of
values. This set is called a Cartesian image reconstruction grid. Grid size can be chosen
depending on needs. Normally, an equal number of points K in the horizontal plane and
points L in the vertical plane is assumed to obtain an area of the image without any
differentiation of its resolution along axis X or Y . If the reconstructed image is presented
in the gray scale, its resolution is determined by the monitor’s or the printer’s resolution.
Grid size also depends on number M of measuring rays. If grid size K = L is larger than
number M of the rays, then the reconstructed image becomes blurred (Fig. 9 b–d) due to
the considerable influence of the interpolation of the convolved values. For grid size equal
to the number of measuring rays, each pixel of the reconstructed image is a square with
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side ∆s (Fig. 9 a) where ∆s stands for a transducer tracking jump. The larger the grid
size (small size of pixels), the longer the reconstruction computation time. Therefore a
reasonable grid size should be chosen, adopting the quality of image as the basic criterion
(a compromise between resolution and image blur), which is particularly important in
the case of a small number M of rays (Fig. 9).

7. Experimental verification

To verify the reconstruction performance of the convolution and backprojection al-
gorithm optimized in this research, actual measurements were made using a UTT ex-
perimental setup [3]. To measure transition time, a computer flaw detector card with
a resolution of 14 ns (this resolution is determined by card’s sampling rate — 72 MHz)
and a pair of ultrasonic transducers: a sending one and a receiving one, operating at
frequency of 2.5 MHz, were used. A quasi-homogenous cylinder 50 mm in diameter and
70 mm high, formed from agar gel and immersed in water, was measured. The sound
velocity in the cylinder was about 1505 m/s and in water — 1491 m/s. A measuring
area whose diameter was equal to the sending transducer–receiving transducer distance
lo = 100 mm was assumed. A set of measuring data — mean times of passage through
the circular cross-section of the cylinder — in a parallel ray projection geometry was
obtained (Fig. 1) for M = 101 rays and N = 100 projections. The obtained data were
recalculated to mean noise velocities for the distance of 100 mm and, after reduction and
re-scaling according to method B (Sec. 4), they were entered into the convolution and
backprojection algorithm in order to reconstruct an image of the distribution of local
sound velocities in the investigated cylinder cross-section. During reconstruction 6 differ-
ent values of parameter E for applied convolving function q (formula (11)): 0, 0.2, 0.4,
0.6, 0.8, 1 were assumed in turn. The data obtained immediately after reconstruction
were recalculated to sound velocity using formula (19) and imaged in a 16-degree gray
scale (Fig. 10) and in pseudo-3D (Fig. 11).

The cylinder cross-section images reconstructed on the basis of the actual measure-
ments (Figs. 10 and 11) are very similar to images reconstructed from simulations (Fig. 4).
This shows that the optimized convolution and backprojection algorithm operation is cor-
rect. The oscillations of sound velocities in the images (Figs. 10, 11) are caused by the
agar gel heterogeneity.

For low values of parameter E of convolving function q (formula (11)) one can obtain
sharp images with clearly visible edges along discontinuities (Figs. 10 a, b, c and 11 a,
b, c). A shortcoming of this kind of reconstruction are oscillations of the reconstructed
values close to all, even small, discontinuities.

For high values of parameter E reconstructed images are less contrasty — the bound-
aries of non-homogenous structures are blurred and the small discontinuities are not
visible (Figs. 10 d, e, f and 11 d, e, f). But the advantage of such reconstructions is that
there are no oscillations or interference which in the case of the visualization of slightly
heterogeneous structures may falsify the image.
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8. Conclusions

After appropriate optimization, the convolution and backprojection algorithm is per-
fectly suitable for UTT purposes because of its application versatility and the compromise
between the imaging accuracy and the computation time. The use of convolving function
q(m · ∆s) (formula (11)), presented in paper [6] by R.M. Lewitt, in this algorithm
ensures that in UTT it is possible to reconstruct the object internal structure images of
different contrast by controlling the value of parameter E within range [0, 1] without the
necessity of introducing other convolving functions.

The convolution and backprojection algorithm presented and optimized in this re-
search can be applied directly to the UTT visualization of an object’s internal structure
as the distribution of local sound velocities in it, reconstructed on the basis of the mean
times of passage of an ultrasonic wave through the object immersed in water, in a parallel
ray projection geometry.

The method of fitting proposed here, scaling and correcting transition time measuring
data before they are entered into the reconstruction algorithm, makes it possible to
obtain accurate local sound velocities after the reconstruction. This method has been
verified by simulation calculations and actual measurements, which have shown that
quite an accurate tomographic image can be obtained already for half the number of
rays which follows from the number-of-projections-to-number-of-rays criterion (formula
(20)). As regards the reconstruction process itself, it is enough to satisfy this criterion
to obtain good-quality tomographic images. It has been found that a cross-section of
homogenous structure can be visualized by UTT with high accuracy using the convolution
and backprojection algorithm, if M ≥ 51 rays per cross-section’s largest dimension and
N ≥ 81 projections are assumed and if we have error-free mean transition measurements
obtained in a parallel ray projection geometry.

Number of rays M determines the resolution of an image, the accuracy with which the
size of structures is imaged and the accuracy of the reconstruction of image point values.
Number of projections N determines the image’s dynamics and distortions: if it is too
low, distortions in the form of streaks and glow, which extend the scale of reconstructed
values downwards, appear.

Because of computation time and image blur, an optimum size of reconstruction grid
K × L — according to the visualization criterion — should be chosen.
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