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This study presents an analysis of the effect of the concentrated mass on the acoustic power and the resonant
frequencies of a vibrating thin circular plate. The fluid-structure interactions and the acoustic wave radiation
effect have been included. The eigenfunction expansion has been used to express the transverse displacement of
the plate. The appropriate number of modes is determined approximately to achieve physically correct results.
Then highly accurate results are obtained numerically. The radiated acoustic power has been used to determine
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1. Introduction

An accurate determination of the resonant fre-
quencies of vibrating structures is of the utmost im-
portance in diagnostics and design both in mechani-
cal engineering and physical systems. So far, a num-
ber of studies dealt with such problems. Some exam-
ples are the results proposed by Ostachowicz et al.
(2002) who used a diagnostic method for localization
of concentrated masses on a vibrating plate. They used
the method of analysing the shifts in the resonant
frequencies. Further, Cho et al. (2016) examined dy-
namic responses of stiffened panels with added masses
and openings. Jun and Eom (1995) presented analyti-
cal results to the acoustic scattering from a circular
aperture. They presented the acoustic pressure in the
half-space in terms of the inverse Hankel transform.
Rdzanek and Engel (2000) studied rigorously the
acoustic power radiated by a single axisymmetric mode
of a clamped annular plate. Zagrai and Donskoy
(2005) studied analytically the natural frequencies of
elastically supported circular plates. Rdzanek et al.
(2007) examined rigorously the sound radiation from
an elastically supported circular plate. They ignored
the fluid-structure interactions. Arenas (2009) inves-

tigated the sound radiation from a circular hatchway.
He used the model of an elastically supported circular
plate for this purpose. Arenas and Ugarte (2016)
analysed the behaviour of a circular panel sound ab-
sorber with an elastic boundary condition. Rdzanek
(2018) examined rigorously the sound radiation from
an elastically supported circular plate. He used the
Zernike circle polynomials for this purpose. Rdzanek
and Szemela (2019) applied the radial polynomials
and the method spectral mapping to examine thor-
oughly the sound radiation from a vibrating annu-
lar plate. Lovat et al. (2019) presented a rigorous
analysis of shielding capacity of a perfectly conducting
circular disk. Hasheminejad and Keshavarzpour
(2016) presented a robust active sound radiation con-
trol of a piezo-laminated composite circular plate.
They used an exact elasticity model for a plate of arbi-
trary thickness. Hasheminejad and Shakeri (2017)
studied a transient acoustic and structural response
of a cavity-coupled circular plate system. They pro-
posed a smart active control circuit. Wrona et al.
(2020; 2021a; 2021b) analysed the effect of the added
masses on shaping the dynamic responses of rectan-
gular planar panels, semi-active links in double-panel
noise barriers, and semi-active actuating for noise con-
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trol applications. Trojanowski and Wiciak (2012;
2020), Wiciak and Trojanowski (2015) examined
the effect of different piezo elements on vibration con-
trol of an elastic structure. They analysed the structure
responses and the effect on the mode shapes. Jandak
et al. (2017) presented the piezoelectric line moment
actuator for active radiation control from some light-
weight structures.

One of the methods of examining the frequency
responses of structures is using the electro-magnetic
exciters. The investigated structure is then excited
within the desired frequency range and the normal vi-
bration velocity is measured in selected points on the
structure. The exciter needs to have sufficient force
over the analysed frequency interval. Usually the mass
of the moving component of the exciter is significant
compared to mass of the structure. In such cases the
effect of the added mass of the exciter on the reso-
nant frequencies of the structures should not be ne-
glected. This paper focuses on this problem. The ex-
amined structure is a thin circular plate. The plate is
free at its circumferences and mounted at its centre to
the exciter. This selection motivated by the simplic-
ity of the structure and numerical analysis. The modal
expansion of the plates vibrations is used along with
the in-vacuo eigenfrequencies of the plate. Applying
this expansion requires careful determination of all the
necessary modes of the plate to achieve physically cor-
rect results. Therefore the non-dimensionalized added
mass incrementals are determined to estimate roughly
the resonant frequencies. Then some more modes will
be taken for calculations to achieve the desired numer-
ical accuracy. The proper and accurate determination
of the resonant frequencies of structures is an impor-
tant practical problem. Therefore some sample results
are presented herein. In addition, the radiated acous-
tic power is obtained. This enables studying the effect
of the added mass on the emitted noise. This study is
organised as follows. First, the problem is solved ana-
lytically. Next, the numerical results are presented and
discussed. The final conclusions are drawn. The appen-
dices present selected equations useful for numerical
calculations. Although the free vibrations have been
presented in the literature so far, they have been shown
here in appendixes for convenience. In addition, the
frequency equation and the eigenfunctions have been
presented in a more clear way than earlier by Rdzanek
(2018). Therefore, these data are useful for numerical
calculations presented in this study.

2. Governing equations

2.1. Statement of the problem

The problem of sound radiation by a circular plate
is embedded in the flat rigid screen at the plane z = 0
(cf. Fig. 1). The thickness and the density of the plate

are then h and %, respectively. The plate is driven by an
electromagnetic exciter (or by a system of L exciters).
The entire space around the plate is filled with air of
ambient density %0 [kg ⋅m−3]. The speed of sound in air
is c [m ⋅ s−1]. The plate vibrates and radiates acoustic
waves into both half spaces, the upper and the lower.
The cylindrical coordinates (r, φ, z) are used. Conse-
quently, the position vector is r = (r, φ, z). The plate is
excited for steady time harmonic vibrations. The time
dependence e−iωt has been suppressed throughout the
entire analysis, where i2 = −1, ω = kc is the angular fre-
quency [rad ⋅ s−1], k = 2π/Λ [rad ⋅m−1] is the wavenum-
ber in air, while Λ is the corresponding wavelength,
and t stands for time [s].
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Fig. 1. Geometry of the problem of a vibrating circular
plate elastically supported at its circumference. The plate
is embedded into a flat rigid baffle. In addition, a concen-
trated mass is attached to the plate at the polar coordinates

(r′, φ′).

The considered system is governed by the system
of the three coupled differential equations. They are
the following two Helmholtz equations and the equa-
tion of motion of the excited plate (e.g. (Rao, 2007),
Eq. (14.200), and (Ostachowicz, 2002)):

(∇2 + k2)p1(r, φ, z) = 0,

(∇2 + k2)p2(r, φ, z) = 0,

D∇4W (r, φ) − %hω2W (r, φ)

−ω2
L

∑
`=1

me,`
δ(r − r′`)

r
δ(φ − φ′`)W (r, φ)

+2p(r, φ,0) = P (r, φ),

(1)

where kD [rad/m] is the complex bending wavenum-
ber, k4D = ω2%h/D, DE = Eh3/[12(1 − ν2)], η is
the plate’s damping coefficient, D = DE(1 + iη)
is the complex bending stiffness (cf. Appendix A),
me,` is the mass of the moving component of the
`-th exciter concentrated on the plate at (r′`, φ

′
`),

δ(r − r′`) [m−1], and δ(φ − φ′`) [rad−1] are the Dirac
deltas, P (r, φ) [Pa] is the external excitation (force
per surface area), p1(r, φ, z) is the acoustic pressure
in the lower half-space, p2(r, φ, z) is the acoustic pres-
sure in the upper half-space, 2p(r, φ, z) = p1(r, φ, z) −
p2(r, φ,−z) (also p(r, φ, z) = p1(r, φ, z) = −p2(r, φ,−z)
due to inverse symmetry of the acoustic field with re-
spect to the plane z = 0), the Laplace’s operator is
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∇2 = 1
r
∂
∂r

(r ∂
∂r

)+ 1
r2

∂2

∂φ2 + ∂2

∂z2
, and the biharmonic oper-

ator is ∇4 = ∇2∇2. The concentrated masses me,` have
been introduced to include the effect of the masses of
the moving components of the exciters on the vibra-
tions of the plate (cf. (Ostachowicz, 2002) Eq. (2)).
Consequently, the third term in Eq. (1)3 represents
the inertial forces. In addition, the following Neumann
boundary condition has to be satisfied:

1

iω%0

∂pµ

∂z
∣
z=0

=
⎧⎪⎪⎨⎪⎪⎩

v(r, φ); 0 ⩽ r ⩽ a,
0; otherwise,

(2)

for µ = 1,2.

2.2. Solving the Helmholtz equation

The acoustic pressure and the normal vibration ve-
locity can be predicted in the following form (cf. (Jun,
Eom, 1995), Eqs (1)–(3)):

p(r, φ, z) =∑
m

eimφ
∞

∫
0

fm(τ)J∣m∣(τr)eiK∣z∣
τ dτ
K

,

v(r, φ) = −iωW (r, φ),

W (r, φ) =∑
m

eimφ∑
s

cms W
∣m∣
s (r),

δ(r − r′`)
r

δ(φ − φ′`) =
1

Sa
∑
m

eim(φ−φ
′
`)

⋅∑
s

W ∣m∣
s (r)W ∣m∣

s (r′`),

(3)

for ∣m∣, n, s = 0,1,2, . . ., where r = (r, φ, z) is the field
point vector, k is the wavenumber, K2 = k2 − τ2,
v(r, φ) is the normal component of the plate’s vi-
bration velocity, W (r, φ) is the plate’s transverse de-
flection, and W

∣m∣
s (r)eimφ is the plate’s eigenfunc-

tion (cf. Appendix A). The acoustic pressures p2 in
Eq. (3)1 radiated into the upper half-space are ex-
pressed as the Rayleigh first integral (cf. (Rayleigh,
1896) Sec. 278; (Williams, 1999) Eq. (2.75); (Pierce,
1994) Eq. (5–2.1)). It also satisfies the radiation condi-
tion (cf. (Sommerfeld, 1964), Sec. 28, p. 189, Eq. (2))
limR→∞R( ∂p

∂R
− ikp) = 0, where R = ∣r∣ = (r2 + z2)1/2.

Inserting Eq. (3)1 to the boundary condition in
Eq. (2) leads to (cf. Eqs (27)2 and (29)):

fm(τ) = −iω2%0∑
s

cms D̂
∣m∣
s (τ). (4)

Then, applying Eq. (4) back to Eq. (3)1 gives:

p(r, φ, z) = ω2%0∑
m

eimφ∑
s

cms p̂
∣m∣
s (r, z), (5)

where

p̂ ∣m∣s (r, z) = −i

∞

∫
0

D̂∣m∣s (τ)J∣m∣(τr)eiK∣z∣
τ dτ
K

. (6)

2.3. Excited vibrations of the plate

The external excitation can be expressed as follows:

P (r, φ) =∑
m

eimφ∑
s

P̂ms W
∣m∣
s (r), (7)

where the expansion coefficients are (Eq. (29)1):

P̂ms = 1

Sa

+π

∫
−π

a

∫
0

P (r, φ)W ∣m∣
s (r)e−imφr dr dφ. (8)

Different excitations have described in detail earlier by
Rdzanek and Szmela (2019) (cf. their Sec. II.D and
App. D). The two most useful excitations are the point
excitation and the uniform excitation on a circle. They
can be formulated as follows:

Ppoi.(r, φ) = Sa
L

∑
`=1

P0,`
δ(r − r′`)

r
δ(φ − φ′`); 0 ⩽ r′` < a,

(9)

Pcirc.(r, φ) =
L

∑
`=1

P0,`
Sa
S0,`

⎧⎪⎪⎨⎪⎪⎩

1; 0 ⩽ r0,` ⩽ a0,`,
0; otherwise,

where P0,` is the excitation amplitude, Sa = πa2, S0,` =
πa20,`, (r′`, φ′`) are the polar coordinates of the excita-
tion centre of the `-th exciter, (r0,`, φ0,`) are the local
polar coordinates. Equation (9)1 represents the point
excitation and Eq. (9)2 represents the circular excita-
tion. The modal excitation coefficients can be obtained
by substituting the above equations into Eq. (8):

P̂mpoi.,s =
L

∑
`=1

P0,`W
∣m∣
s (r′`)e−imφ

′
` ; 0 < r′` < a,

(10)
P̂mcirc.,s =

L

∑
`=1

P0,`Ŵ
∣m∣
s (r′`, a0,`)e−imφ

′
` ;

0 ⩽ r′` < a − a0,`,

where

Ŵ ∣m∣
s (r′`, a0,`) = N̂ ∣m∣s {J∣m∣(k∣m∣s r′`)

2J1(k∣m∣s a0,`)
k
∣m∣
s a0,`

+B∣m∣s I∣m∣(k∣m∣s r′`)
2I1(k∣m∣s a0,`)
k
∣m∣
s a0,`

}, (11)

and lima0,`→0 Ŵ
∣m∣
s (r′`, a0,`) =W

∣m∣
s (r′`).

Further, substituting Eqs (3)1–(3)3, (5)–(7), into
the equation of motion of the plate in Eq. (1)3 provides
(cf. Eqs (23), (25), and (29)1):

cm
′

s′ (
(k∣m

′
∣

s′ )4

k4D
− 1) − 2i

%0
%kh
∑
s

cm
′

s ζ̂
∣m′∣
ss′

−∑
m
∑
s

cms ξ̂
mm′
ss′,` = P̂m

′
s′

ω2%h
, (12)
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where the modal radiation impedance and the concen-
trated mass coefficients are (cf. (Rdzanek, Szmela,
2019) Eq. (14a)):

ζ̂
∣m∣
ss′ = 2k

a2

∞

∫
0

D̂∣m∣s (τ)D̂∣m∣s′ (τ)τ dτ
K

,

ξ̂ mm
′

ss′,` =
L

∑
`=1

me,`

mp
W ∣m∣
s (r′`)W

∣m′∣
s′ (r′`)ei(m−m′)φ′` ,

(13)

and mp = %hSa is the mass of the plate. Although
the integral in Eq. (13)1 presupposes troublesome nu-
merical calculations, it can be accurately and effi-
ciently evaluated using the circle Zernike polynomials
(cf. (Rdzanek, 2019) Eqs (14a)–(14c)).

2.4. Acoustic power

The total time averaged reference acoustic power
from the vibrating plate is

Πref = %0cSa⟨∣v(r, φ)∣2⟩, (14)

where ∣v(r, φ)∣2 = v(r, φ)v∗(r, φ), Sa = πa2 is the sur-
face of the plate, the mean square velocity on the plate
is (cf. Eqs (3)1, (25), and (29)1):

⟨∣v(r, φ)∣2⟩= 1

Sa

+π

∫
−π

a

∫
0

∣v(r, φ)∣2r dr dφ=ω2∑
m
∑
s

∣cms ∣2,

(15)
where ∣cms ∣2 = cms cm∗

s . The time averaged acoustic pow-
ers radiated is (cf. Eqs (3)1–(3)3, (27)2, and (29)1):

Π =
+π

∫
−π

a

∫
0

Re{p(r, φ,0)v∗(r, φ)}r dr dφ

= %0cω2Sa∑
m
∑
s
∑
s′
Re(cms ζ̂

∣m∣
ss′ c

m∗
s′ ), (16)

where it has been accepted that uz(r, φ,0) = v(r, φ)
on the basis on the Huygens principle (in the case of
the non-homogeneous Neumann boundary condition).
Note that the expression in Eq. (16) represents the
acoustic power radiated by both sides of the plate. The
radiation efficiency is

σ = Π

Πref
. (17)

2.5. Acoustic pressure on the plate

The acoustic pressure modal coefficient in Eq. (6)
on the plate can be rearranged using the following ex-
pansion (cf. Eqs (25) and (27)2):

J∣m∣(τr) =
2

a2
∑
s

D̂∣m∣s (τ)W ∣m∣
s (r), (18)

for z = 0 and r ⩽ a. Now, applying Eq. (18) to Eq. (6)
yields (cf. Eq. (13)1):

p̂ ∣m∣s (r,0) = − i

k
∑
s′
ζ̂
∣m∣
ss′ W

∣m∣
s′ (r). (19)

2.6. Added mass incremental factors

Now, taking only the dominant mode (∣m∣, s) in
Eq. (12) gives the following equations with the added
mass and the fluid loading and without it, respectively:

cm1,s(D(k∣m∣s )4−ω2
1%h − 2ω2

1%h
%0
%h

Re(iζ̂ ∣m∣ss /k1)

−ω2
1%h

L

∑
`=1

me,`

mp
[W ∣m∣

s (r′`)]2) = P̂ms , (20)

cm2,s(D(k∣m∣s )4 − ω2
2%h) = P̂ms ,

where ω1 = k1c is the resonant frequency for me,` ≠ 0
and ω2 is the resonant frequency for me,` = 0. Then,
accepting the approximation than c1,s ≃ c2,s and com-
paring these two equations side by side leads to:

ω1 ≃
ω2√

1 + β ∣m∣f,s + β
∣m∣
e,s

, (21)

since Re(iζ̂ ∣m∣ss /k1) = −Im(ζ̂ ∣m∣ss /k1), where the added
virtual mass incremental (AVMI) factors are:

β
∣m∣
f,s = −2

%0
%h

Im (ζ̂ ∣m∣ss /k1),

β ∣m∣e,s = ξ̂ mmss,` =
L

∑
`=1

me,`

mp
[W ∣m∣

s (r′`)]2,
(22)

and β
∣m∣
f,s , β

∣m∣
e,s ⩾ 0. The first of the two factors occurs

due to the fluid-structure interactions, while the second
one due to the attached concentrated massesme,`. Any
of the two factors can be neglected, when it is much
smaller than unity. Although, the resonant wavenum-
ber k1 is not known a priori, the calculations for β ∣m∣f,s

can be iterated as many times as the sufficient accuracy
is achieved (note also that ζ̂ ∣m∣ss = ζ̂ ∣m∣ss′ (k1)).

3. Numerical analysis

The numerical analysis has been performed by as-
suming the arbitrary parameter values such as: the
speed of sound in air c = 343 m ⋅ s−1, the density of air
%0 = 1.2 kg ⋅m−3, the radius of the plate a = 150 mm,
the radius of the excitation a0 = 6.5 mm, the thickness
of the plate h = 1 mm, the Young’s modulus E = 210 ⋅
109 Pa, the damping coefficient η = 10−2, the density of
steel % = 7850 kg ⋅m−3, the Poisson ratio ν = 0.30, the
external excitation amplitude Fe = 1 N (P0 = Fe/S0),
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the excitation radial coordinate 0 ⩽ r′ < a, and the ex-
citation angular coordinate that has been selected ar-
bitrarily. More specifically, the following values have
been used for calculations r′/a = 0, 0.25, 0.5 and 0.75.
The majority of results is shown for r′/a = 0.75 because
they give a strongly asymmetric excitation and results
in strong maxima at the many resonant frequencies.
For r′/a = 0, we have simply the axisymmetric excita-
tion and the maxima occur only for the axisymmetric
resonant frequencies. The angular localization of the
excitation point does not effect the SWL and the ra-
diation efficiency when a single exciter is used. In the
case of many exciters, their angular localization should
be taken into account. All the analysis presented herein
has been performed for a single exciter, which does not
reduce the generality of the results presented. The nor-
malized boundary stiffness values are KW = 109 and
Kψ = 109. Such great values of the stiffnesses have been
selected to approximate the clamped edge boundary
conditions.

Figure 2a shows the sound Watt level (SWL) radi-
ated by a vibrating plate with an attached mass me.
This figure reveals that increasing the mass me causes
a significant decrease of the fundamental resonant fre-
quency. This is because the increasing AVMI factor is
associated with this mass according to Eq. (21). The
higher resonant frequencies show the same tendency.
In addiction, the SWL is also significantly decreased.
This is important for practical noise control applica-
tions. Figure 2b shows that an increase in the mass
has a negligibly small effect on the radiation efficiency.
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Fig. 2. a) Shows the SWL [dB, Ref. 1 pW] radiated from
a vibrating circular plate for different values of the mass
me attached to the plate, b) shows the radiation efficiency

σ for r′/a = 0.75 and different values of me.

Finding the values of the coefficients c∣m∣s in Eq. (3)3
requires solving numerically the system of algebraic
equations in Eq. (12). First, the number of necessary
modes should be determined. It is required that the
modes of eigenfrequencies smaller than the driving fre-

quency should be included to assure physically cor-
rect results. This means that the summation limits
in Eq. (3)3 are ∣m∣ = 0, ...,M − 1 and s = 0, ..., S − 1,
where M and S are the maximal modal numbers.
Nevertheless, achieving a desired accuracy requires in-
creasing those maximal numbers by an incremental
∆S, which leads to the actual maximal modal num-
bers M + ∆S and S + ∆S being used in numerical
calculations. While M and S are determined by the
driving frequency f , the incremental ∆S can be in-
creased arbitrarily to achieve better accuracy. Figu-
re 3a shows the effect of the incremental ∆S on the
SWL. All the curves are essentially the same regard-
less the value of ∆S. Figure 3b shows the relative dif-
ference δΠ = 100∣Π −ΠRef ∣/∣ΠRef ∣ (%) of the acoustic
power Π, where the reference value ΠRef has been ob-
tained for ∆S = 50. The greater is ∆S, the better the
accuracy. The difference does not exceed 10% for fre-
quencies smaller than 250 Hz and ∆S ⩾ 10, except for
the resonant frequencies where the growth in the dif-
ference can be noticed. This growth will be examined
more closely later on. The relative difference for the ra-
diation efficiency and the reference values is presented
in Fig. 3c. It does not exceed 1% for frequencies smaller
than 500 Hz and ∆S ⩾ 10.
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Fig. 3. a) Shows the SWL [dB, Ref. 1 pW] radiated from
a vibrating circular plate, b) shows the relative differen-
ce δΠ [%] between the results obtained for different val-
ues of ∆S and the reference obtained for ∆S = 50, and
c) shows the relative difference δσ [%] for me = 0.5 kg

and r′/a = 0.75.

Figure 4 illustrates the effect of the mass of the mo-
ving component of the exciter. By increasing the mass
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Fig. 4. SWL [dB, Ref. 1 pW] radiated from a vibrating
circular plate for different values of the mass me attached
to the plate for me = 0.5 kg and r′/a = 0.75. The dotted
curves illustrate the case when the fluid loading is neglected

in calculations.

from 0 up to 0.7 kg, the fundamental resonant fre-
quency has been caused to decrease from about 112 Hz
to about 88 Hz. The decrease is then about 24 Hz. The
dotted lines show the acoustic power with the fluid
loading effect neglected. The resonant maxima are
slightly higher than those with the fluid loading in-
cluded. The greater is the mass of the exciter, the
smaller is the shift due to fluid loading.

Figure 5a shows the effect of the incremental ∆S on
the fundamental resonant frequency for me = 0.5 kg.
The maxima nearly overlap for ∆S ⩾ 20, while for
∆S = 10 the frequency is higher by about 1 Hz. The
SWL values are nearly identical for all analysed values
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Fig. 5. a) Shows the SWL [dB, Ref. 1 pW] radiated from
a vibrating circular plate, b) shows the relative differen-
ce δΠ [%] between the results obtained for different val-
ues of ∆S and the reference obtained for ∆S = 50, and
c) shows the relative difference δσ [%] for me = 0.5 kg

and r′/a = 0.75.

of ∆S. This means that if accuracy of ±1 Hz is accept-
able, then ∆S = 10 is sufficient. If a greater accuracy is
required, then ∆S should be at least 20. This shift in
frequency causes the growth in the relative error, which
is shown in Fig. 5b. This does not significantly affect
the SWL value at the resonant maximum. Figure 5c
shows that the relative difference for the radiation effi-
ciency is negligibly small around the fundamental res-
onant frequency.

Figure 6 shows the relative difference as a func-
tion of ∆S. The difference decreases rapidly with the
growth in ∆S. This means that the quantity converges
to the reference value.
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Fig. 6. Relative difference δΠ [%] as a function of ∆S for
different frequencies f . The reference values have been ob-

tained for ∆S = 50 for me = 0.5 kg and r′/a = 0.75.

Figure 7 illustrates the effect of the localization of
the exciter on the SWL and the radiation efficiency.
This effect is significant. Figure 7a shows that increas-
ing the radial variable r′ of the localization results
in shifting the fundamental frequency of the vibrat-
ing system towards higher frequencies. The SWL is in-
creased or decreased depending on the frequency of
excitation. In the case of the radiation efficiency pre-
sented in Fig. 7b, there is nearly no effect for frequen-
cies smaller than 100 Hz. However, significant differ-
ences can be observed for higher frequencies.
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Fig. 7. a) Shows the SWL [dB, Ref. 1 pW] radiated from
a vibrating circular plate, b) shows the radiation efficiency

σ for me = 0.5 kg and different values of r′/a.
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4. Concluding remarks

It has been shown that the concentrated mass at-
tached to a vibrating circular plate significantly re-
duces its fundamental resonant frequency. At the same
time, the sound Watt level at the resonant maximum
is only weakly altered. The higher resonant frequen-
cies behave similarly. The localization of the mass of
the exciter is also important in this respect. The radia-
tion efficiency is not significantly affected by adding the
mass. The problem has been solved analytically using
the modal based approach. The real modes of the cou-
pled plate-mass system have been expressed by a series
of the in-vacuo eigenfunctions of the plate. This leads
to approximated results. If an insufficient number of
modes is applied, then the resonant frequencies can
be determined with a weaker accuracy. The frequen-
cies can be read either from the mean square vibra-
tion velocity or from the active acoustic power plots.
The discrepancy is about 1 Hz. If a higher accuracy
is required, the number of modes applied should be
increased. It is useful for numerical modelling to add
a concentrated mass to a vibrating circular plate, as
the mass can represent the moving component of the
exciter. In addition, it can be significant compared to
the mass of the plate. Although, it was to be expected
based on the literature data, a purely analytical ap-
proach has been presented herein for a circular plate.
The numerical results obtained this way can be helpful
for designing a real system containing such vibrating
plates.
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Appendix A.
Free vibrations of the plate

The free vibrations of the plate are governed by
the following biharmonic equation (cf. (Rao, 2007)
Eq. (14.203)):

∇4W ∣m∣
s (r)eimφ = (k∣m∣s )4W ∣m∣

s (r)eimφ, (23)

for ∣m∣, s = 0,1,2, ..., where W
∣m∣
s (r)eimφ is the pla-

te’s eigenfunction. The radial component of the
plate’s eigenfunction can be expressed as follows (cf.
(McLachlan, 1995) p. 162 Eqs (78) and (79), p. 164
Eq. (108), and p. 166 Eq. (132)):

W ∣m∣
s (r) = N̂ ∣m∣s [J∣m∣(k∣m∣s r) +B∣m∣s I∣m∣(k∣m∣s r)], (24)

for 0 ⩽ r ⩽ a and zero otherwise, where the normaliza-
tion constant N̂ ∣m∣s is presented in Eq. (28), ∣m∣ enu-

merates the nodal diameters, n the nodal circles (cf.
(Rao, 2007) p. 493), the prime sign denotes differenti-
ation over the entire argument, I∣m∣(λ) is the modified
Bessel function, N̂ ∣m∣s and B̂∣m∣s are the unknown con-
stants; k∣m∣s [rad/m] is the bending wavenumber of the
mode (∣m∣, s); (k∣m∣s )4 = (ω∣m∣s )2%h/DE ; ω

∣m∣
s is the an-

gular eigenfrequency; DE = Eh3/[12(1 − ν2)] is the
plate’s stiffnesses; % and h are the density and thick-
ness; and E and ν are the Young modulus and the
Poisson ratio. The radial components of the eigenfunc-
tions satisfy the following orthogonality relation:

a

∫
0

W ∣m∣
s (r)W ∣m∣

s′ (r)r dr = Sa
2π
δss′ , (25)

where δss′ is the Kronecker delta, and Sa = πa2.
The plate’s eigenfunction W ≡ W ∣m∣

s (r)eimφ satis-
fies the following boundary conditions (cf. Fig. 4 and
(Rao, 2007) Eqs (14.191) and (14.192)):

KWW (a,φ) −DE[ ∂
∂r

(∇2W )

+ 1 − ν
r

∂

∂r
(1

r

∂2W

∂φ2
)]
r=a

= 0,

Kψ
∂W

∂r
∣
r=a

+DE[∂
2W

∂r2

+ ν(1

r

∂W

∂r
+ 1

r2
∂2W

∂φ2
)]
r=a

= 0,

(26)

It is convenient to present the radial component
in Eq. (24) as equal to zero for any value of r except
for 0 ⩽ r ⩽ a, because it enables us to express the
transverse deflection of the plate as well as its spectral
density in terms of the Hankel transforms:

W ∣m∣
s (r) =

∞

∫
0

D̂∣m∣s (τ)J∣m∣(τr)τ dτ,

D̂∣m∣s (τ) =
a

∫
0

W ∣m∣
s (r)J∣m∣(τr)r dr.

(27)

The normalization constant can be obtained directly
from Eq. (25) by substituting s = s′ (cf. (Rdzanek,
Engel, 2000)):

(N̂ ∣m∣s )−2 = 2

a2

a

∫
0

[J∣m∣(k∣m∣s r) +B∣m∣s I∣m∣(k∣m∣s r)]
2

r dr.

(28)
The following integral relations are also useful:

1

2π

+π

∫
−π

ei(m−m′)φ dφ = δmm′ ,

∞

∫
0

J∣m∣(τr)J∣m∣(τ ′r)r dr =
δ(τ − τ ′)

τ ′
.

(29)
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Appendix B.
Eigenfunctions of the plate

B.1. The characteristic equation

The characteristic equation of a thin elastically
supported circular plate together with the constants
N̂
∣m∣
s and B̂∣m∣s has been presented earlier (cf. (Leissa,

1969) Sec. 2.1.4, (Zagrai, Donskoy, 2005) Eqs (7)–
(10), (Rdzanek, 2018) Eqs (25a) and (25b)). Never-
theless, they are reviewed below briefly and presented
in the form which is useful for numerical calculations.

Inserting Eq. (24) into (26) yields (cf. Eq. (27)1):

q∣m∣(λ)[J∣m∣(λ) +B∣m∣s I∣m∣(λ)]

+ [2 − u∣m∣(λ)]J ′∣m∣(λ) − u∣m∣(λ)B∣m∣s I ′∣m∣(λ) = 0,

p∣m∣(λ)[J ′∣m∣(λ) +B∣m∣s I ′∣m∣(λ)] − u∣m∣(λ)J∣m∣(λ)

+ [2 − u∣m∣(λ)]B∣m∣s I∣m∣(λ) = 0,

(30)

for λ = k∣m∣s a (here and in the entire appendix, unless
stated otherwise), where

q∣m∣(λ)= 1

λ3
[ +KW − (1 − ν)m2], KW =KWa

3

DE
,

p∣m∣(λ)= 1

λ
[ +Kψ − (1 − ν)], Kψ =

Kψa

DE
,

u∣m∣(λ)=1 − (1 − ν)m
2

λ2
.

(31)

The Bessel and the modified Bessel equations have
been used (cf. (Abramowicz, Stegun, 1972) Eqs (9.1.1)
and (9.6.1)):

[1

r

∂

∂r
(r ∂
∂r

) − m
2

r2
]
⎧⎪⎪⎨⎪⎪⎩

J∣m∣(k∣m∣s r)

I∣m∣(k∣m∣s r)

⎫⎪⎪⎬⎪⎪⎭

= ∓(k∣m∣s )2
⎧⎪⎪⎨⎪⎪⎩

J∣m∣(k∣m∣s r)

I∣m∣(k∣m∣s r)

⎫⎪⎪⎬⎪⎪⎭
,

∇2 = 1

r

∂

∂r
(r ∂
∂r

) + 1

r2
∂2

∂φ2
+ ∂2

∂z2

(32)

to obtain

∇2W ∣m∣
s (r)eimφ = −(k∣m∣s )2N̂ ∣m∣s

⋅ [J∣m∣(k∣m∣s r) −B∣m∣s I∣m∣(k∣m∣s r)]eimφ. (33)

The constant B∣m∣s can been determined from Eq. (30):

B∣m∣s = −
q∣m∣(λ)J∣m∣(λ) + [2 − u∣m∣(λ)]J ′∣m∣(λ)
q∣m∣(λ)I∣m∣(λ) − u∣m∣(λ)I ′∣m∣(λ)

= −
p∣m∣(λ)J ′

∣m∣(λ) − u∣m∣(λ)J∣m∣(λ)
p∣m∣(λ)I ′

∣m∣
(λ) + [2 − u∣m∣(λ)]I∣m∣(λ)

(34)

for λ = k∣m∣s a and r = a. The characteristic equation can
be obtained by rearranging Eq. (34), which leads to:

{q∣m∣(λ)J∣m∣(λ) + [2 − u∣m∣(λ)]J ′∣m∣(λ)}

⋅ {p∣m∣(λ)I ′∣m∣(λ) + [2 − u∣m∣(λ)]I∣m∣(λ)}

− {p∣m∣(λ)J ′∣m∣(λ) − u∣m∣(λ)J∣m∣(λ)}

⋅ {q∣m∣(λ)I∣m∣(λ) − u∣m∣(λ)I ′∣m∣(λ)} = 0.

(35)

B.2. The normalization constant

The following integrals are necessary to calculate
the normalisation constant (cf. (McLachlan, 1955)
Eqs (5.79) on p. 162, (6.107) on p. 164, and (7.131) on
p. 166):

2

a2

a

∫
0

J2
∣m∣(k∣m∣s r)r dr=J ′2∣m∣(λ)+(1−m

2

λ2
)J2
∣m∣(λ),

2

a2

a

∫
0

I2∣m∣(k∣m∣s r)r dr=−I ′2∣m∣(λ)+(1+m
2

λ2
)I2∣m∣(λ),

(36)

and (cf. (McLachlan, 1955) Eqs (6.108) on p. 164,
(7.132), and (7.133) on p. 166):

2

a2

a

∫
0

I∣m∣(k∣m∣s r)J∣m∣(k∣m∣s r)r dr

= 1

λ
[I ′∣m∣(λ)J∣m∣(λ) − I∣m∣(λ)J ′∣m∣(λ)]. (37)

Based on Eq. (30), it can be shown that:

B∣m∣s I∣m∣(λ) = 2L∣m∣(λ) − J∣m∣(λ),

B∣m∣s I ′∣m∣(λ) = 2H ∣m∣(λ) − J ′∣m∣(λ),
(38)

where

L∣m∣(λ) = [Q∣m∣(λ)]−1

⋅ [u∣m∣(λ)J∣m∣(λ) − p∣m∣(λ)J ′∣m∣(λ)], (39)1
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H ∣m∣(λ) = [Q∣m∣(λ)]−1

⋅ {q∣m∣(λ)J∣m∣(λ) + [2 − u∣m∣(λ)]J ′∣m∣(λ)}, (39)2

Q∣m∣(λ) = Q̂∣m∣(λ) + 2u∣m∣(λ),

Q̂∣m∣(λ) = q∣m∣(λ)p∣m∣(λ) − u2∣m∣(λ),
(39)3

Applying Eq. (38) to Eq. (28) gives the following re-
sult:

(N̂ ∣m∣s )−2 = (1 + m
2

λ2
)[2L∣m∣(λ) − J∣m∣(λ)]

2

+(1 − m
2

λ2
)J2
∣m∣(λ)

−4H ∣m∣(λ)[H ∣m∣(λ)−J ′∣m∣(λ)]

+ 4

λ
[H ∣m∣(λ)J∣m∣(λ)−L∣m∣(λ)J ′∣m∣(λ)], (40)

where for λ = k∣m∣s a (cf. Eq. (28)).

B.3. The spectral density of the eigenfunction

The spectral density of the plate’s eigenfunction
can be obtained in its explicit form by calculating the
integral in Eq. (27)2, which leads to (cf. Eq. (24)):

D̂∣m∣s (τ) = N̂ ∣m∣s [Î ∣m∣G,s (τ) +B
∣m∣
s Î

∣m∣
F,s (τ)], (41)

where

Î
∣m∣
G,s (τ) =

a

∫
0

J∣m∣(k∣m∣s r)J∣m∣(τr)r dr,

Î
∣m∣
F,s (τ) =

a

∫
0

I∣m∣(k∣m∣s r)J∣m∣(τr)r dr.

(42)

Now, the integral formulas for the cylindrical func-
tions, the modified Bessel function, and the MacDo-
nald function can be used directly (cf. (McLachlan,
1995) Eqs (5.72) on p. 162, (6.108) on p. 164, and
(7.132) on p. 166):

Î
∣m∣
G,s (τ) = a

(k∣m∣s )2 − τ2

⋅ [τJ∣m∣(λ)J ′∣m∣(τa) − k∣m∣s J ′∣m∣(λ)J∣m∣(τa)],

(43)
Î
∣m∣
F,s (τ) = a

(k∣m∣s )2 + τ2

⋅ [k∣m∣s I ′∣m∣(λ)J∣m∣(τa) − τI∣m∣(λ)J ′∣m∣(τa)]

for λ = k∣m∣s a. Finally, implementing Eqs (38) and (43),
in Eq. (42) gives the spectral density in the form of:

D̂∣m∣s (τ) = 2N̂
∣m∣
s

(k∣m∣s )2 + τ2

⋅ [ (k∣m∣s )2

(k∣m∣s )2 − τ2
ψ̂ ∣m∣s (k∣m∣s a, τa) + φ̂ ∣m∣a,s (k∣m∣s a, τa)], (44)

where

ψ̂ ∣m∣s (u, v) = −uJ ′∣m∣(u)J∣m∣(v) + vJ∣m∣(u)J ′∣m∣(v),

φ̂ ∣m∣r,s (u, v) = uH ∣m∣(u)J∣m∣(v) − vL∣m∣(u)J ′∣m∣(v).
(45)

It can also be shown that the spectral density in
Eq. (44) is singular for τ = k

∣m∣
s . Therefore, the fol-

lowing limit has been calculated from Eq. (27)2 (cf.
Eq. (24) and (42)):

lim
τ→k

∣m∣
s

D̂∣m∣s (τ) = D̂∣m∣s (k∣m∣s )

= N̂ ∣m∣s [Î ∣m∣G,s (k
∣m∣
s )+B∣m∣s Î

∣m∣
F,s (k

∣m∣
s )]. (46)

Now, the integrals can be expressed as follows (cf.
(McLachlan, 1995) Eqs (5.80) on p. 162, (6.108) on
p. 164, and (7.132) on p. 166):

Î
∣m∣
G,s (k

∣m∣
s ) = a

2

2

⋅[(1 − m2

(k∣m∣s a)2
)J∣m∣(k∣m∣s a)J∣m∣(k∣m∣s a)

+J ′∣m∣(k∣m∣s a)J ′∣m∣(k∣m∣s a)], (47)

B∣m∣s Î
∣m∣
F,s (k

∣m∣
s ) = a

k
∣m∣
s

⋅[H ∣m∣(k∣m∣s a)J∣m∣(k∣m∣s a) −L∣m∣(k∣m∣s a)J ′∣m∣(k∣m∣s a)].
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