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Snoring is a typical and intuitive symptom of the obstructive sleep apnea hypopnea syndrome (OSAHS),
which is a kind of sleep-related respiratory disorder having adverse effects on people’s lives. Detecting snoring
sounds from the whole night recorded sounds is the first but the most important step for the snoring analysis of
OSAHS. An automatic snoring detection system based on the wavelet packet transform (WPT) with an eXtreme
Gradient Boosting (XGBoost) classifier is proposed in the paper, which recognizes snoring sounds from the
enhanced episodes by the generalization subspace noise reduction algorithm. The feature selection technology
based on correlation analysis is applied to select the most discriminative WPT features. The selected features
yield a high sensitivity of 97.27% and a precision of 96.48% on the test set. The recognition performance
demonstrates that WPT is effective in the analysis of snoring and non-snoring sounds, and the difference is
exhibited much more comprehensively by sub-bands with smaller frequency ranges. The distribution of snoring
sound is mainly on the middle and low frequency parts, there is also evident difference between snoring and
non-snoring sounds on the high frequency part.
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1. Introduction

The obstructive sleep apnea hypopnea syndrome
(OSAHS) is a chronic sleep-related disease affecting
the general adult population ranging from 6% to 17%
(Senaratna et al., 2017), which is characterized by in-
termittently partial or complete collapse of the upper
airway, resulting in frequently sleep-disordered breath-
ing events (SDB). This kind of disease greatly affects
the quality of life and even is an independent risk factor
for diseases such as neurocognitive dysfunction, arte-
rial hypertension, metabolic disorders, and cerebrovas-
cular disease (Wang et al., 2017; Hui et al., 2015;
Dafna et al., 2013). The traditional and golden stan-
dard for clinically diagnosing OSAHS is Polysomnog-
raphy (PSG) (Jiang et al., 2020) with multiple sen-
sors that must be directly connected to the body to
monitor serious biological signals during sleep. How-
ever, the complex equipment, professional technicist,

time-consuming process, and expensive cost limiting
its wide application, makes OSA a significant but un-
derestimated threat to public health (Ayas, 2013).
An inexpensive and reliable technology to diagnose
OSAHS is urgently needed. Studies have indicated that
snoring is a typical and intuitive symptom of OSAHS
(Dafna et al., 2013; Hui et al., 2015; Jiang et al.,
2020; Ng et al., 2008; Senaratna et al., 2017; Wang
et al., 2017) reported in more than 80% of OSAHS pa-
tients (Kapur et al., 2002; Young et al., 1997), which
has been reported to be a potential method to monitor
OSAHS. It is a kind of sleep-related noise caused by
oscillations of the soft tissue structures in the upper
airways (Lechner et al., 2019) because of a reduction
of the muscle tone and slackening of soft tissue nar-
rowing down the upper airways.

Automatic extracting snoring episodes from recor-
ded sleep sounds throughout the night, including
breathing, speaking, and other noises, is the first but
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the most important step during the whole process of
analyzing snoring sounds, which has been studied by
many studies (Dafna et al., 2013; Hwang et al., 2015;
Lim et al., 2019; Ng et al., 2008; Nonaka et al., 2016;
Wang et al., 2017). Most of their studies focused on
differencing snoring sounds and non-snoring sounds
from acoustic features derived from the time domain,
frequency domain, and time-frequency domain. Speci-
fically, Jiang et al. (2020) designed a snoring sound
detection system based on a non-contact microphone
that extracted 127-dimensional time and spectral fea-
tures to obtain an accuracy of 98.2% in the validation
group. The work of Ng et al. (2008) achieved a high ac-
curacy in the classification of snoring and non-snoring
sounds using formant frequencies. Cavusoglu et al.
(2007) implemented the snoring and non-snoring clas-
sification by the sub-band energy of sound episodes
and robust linear regression with an accuracy of 90.2%
from the combined dataset of 18 simple snorers and 12
OSAHS patients. Nonaka et al. (2016) developed the
human auditory image model to extract snoring sounds
automatically. These studies mainly focused on the low
frequency part or some specific frequency bands rather
than analysis of all sub-band, which might ignore the
information on the high frequency part.

The wavelet transform (WT) is another way to di-
vide the signal into sub-bands with different frequency
ranges, which has been demonstrated to be effective in
the speech signal and electroencephalogram process-
ing (Li, Zhou, 2016; Wu et al., 2008; Wang et al.,
2020). Wang et al. (2020) proposed a novel method
of speaker-independent emotion recognition based on
the wavelet packet analysis, which performed better
than frequency features. Li and Zhou (2016) imple-
mented the classification of electrocardiograms using
the wavelet packet entropy and random forests. Wu
et al. (2008) extracted features of electroencephalo-
gram signals such as the energy of special sub-bands
and corresponding coefficients of the wavelet packet
decomposition, which had maximal separability ac-
cording to the Fisher distance criterion. Qian et al.
(2016; 2017) adopted energy features derived from the
wavelet packet transform (WPT) to discriminate snor-
ing sounds from different snoring sites with much bet-
ter performance than features derived from time and
frequency domains. These works indicate that wavelet
transform works effectively in the analysis of biological
signals.

Table 1. Information (gender, age, apnea/hypopnea (AHI), and body mass index (BMI)) of the subject.

Simple Mild Moderate Severe
Gender (M/F) 4/0 3/2 5/3 5/2
Age (years) 25± 5 35± 5.05 46.6± 11.58 49.9± 9.36

AHI 3.8± 0.73 10.8± 4.13 21.69± 3.46 36.77± 3.83
BMI 27.5± 4.57 30.24± 0.87 35.09± 1.05 39± 1.48

To explore the relationship between snoring and
non-snoring sounds on different frequency bands, an
automatic snoring detection system based on WPT
features with an XGBoost (Chen, Guestri, 2016)
classifier was proposed in this study. The system in-
cludes three major steps. Firstly, the recorded sleep-
related sounds were enhanced and segmented by a ge-
neralization subspace noise reduction algorithm, and
signal presence probability based on energy, respec-
tively. Then, WPT features from different wavelet
functions and decomposition layers were extracted
from segmented sound episodes and selected based on
a series of correlation analyses. Finally, snoring sounds
were detected from the trained XGBoost classifier. The
contribution of the work incorporates: 1) it used WPT
to extract sub-band features and yielded comparable
accuracy in recognizing snoring sounds compared with
existing related studies (Adesuyi et al., 2022; Arse-
nali et al., 2018; Jiang et al., 2020; Sun et al., 2022);
2) it discovered that signal would be exhibited much
more comprehensively by sub-bands with smaller fre-
quency ranges. And the difference between snoring and
non-snoring sounds is getting more evident with the
frequency range getting smaller, which is more bene-
ficial for classifying; 3) it demonstrated that although
the distribution of snoring sound is mainly on the low
frequency part, the information on the high frequency
part also cannot be ignored, where there is also evident
difference between snoring and non-snoring sounds.

2. Material and methods

2.1. Data acquired

In this study, 24 subjects composed of simple snor-
ers and OSAHS patients were selected from the First
Affiliated Hospital of Guangzhou Medical University.
All subjects have been informed and agreed with the
monitoring process during the whole night. The de-
tailed information about these subjects was described
in Table 1. During sleeping, a microphone (RODE,
NTG-3, Sydney, Australia) and a digital audio recorder
(Rowland, Edirol R-44, Japan) were placed approx-
imately 45 cm above the patient’s mouth and nose
to record the original sleep sound signals for approxi-
mately seven hours, with a sampling rate of 44.1 kHz
and 16-bit resolution. PSG equipment (Alice-5, Pitts-
burgh, Pennsylvania, USA) was simultaneously used
to monitor the subject’s PSG signals.



L. Ding et al. – Sleep Snoring Sound Recognition Based on Wavelet Packet Transform 5

2.2. Pre-processing

During the process of recording sleep-related sounds,
the noncontact nature of signal acquisition is often
susceptible to external noise distortion. The additive
background noise is inevitably superposed to a snor-
ing sound, which will affect the fidelity of signals. Most
studies (Dafna et al., 2013; Jiang et al., 2020; Lim
et al., 2019;Wang et al., 2017) conducted the noise re-
duction process before its further analysis effectively.
In the work of Karunajeewa et al. (2008), differ-
ent enhancement algorithms were implemented to yield
different snoring recognition results. Different from
common noise suppression methods, generalized sub-
space snoring signal enhancement based on the noise
covariance matrix estimation was implemented (Ding
et al., 2021). It was verified by our previous work that
this algorithm could well update noise in real-time by
recursive averaging its past values adjusted by a time-
varying smoothing parameter controlled by the snor-
ing signal presence probability during the noise sup-
pression process. Objective quality measurements and
the spectrum analysis demonstrated that this method
could reduce most background noise with less signal
distortion. Moreover, the enhanced snoring signal was
detected and segmented by the signal presence prob-
ability, which is determined by the ratio between the
local energy of the noisy signal and its minimum within
a specified time window to detect the sound episode.

Figure 1 shows the process of pre-processing in-
cluding noise reduction and episode segmentation. The

a)

b)

c)

d)

Fig. 1. Example of sound enhancement and detection:
a) the original recorded noisy sound; b) the enhanced sound
by subspace noise reduction algorithm; c) the signal pre-
sence probability of enhanced recorded signal; d) the de-

tection result of sound episodes.

segmented episodes were further labeled as snoring
sounds and non-snoring sounds based on PSG signals
by ear-nose-throat (ENT) experts. 26561 labeled sound
episodes including 17704 snoring sounds and 8857 non-
snoring sounds were obtained from all 24 subjects. All
labeled sounds were randomly divided into the train-
ing and test sets with proportions of 70% and 30%,
respectively.

2.3. Feature extraction

The wavelet packet decomposition was applied to
divide the signal into sub-bands with different fre-
quency bands. Acoustic features including wavelet
packet coefficients, log energy, Shannon entropy, wave-
let transform cepstral coefficient, and sound pressure
level based on sub-band signals were extracted for fur-
ther analysis. All signals were framed by the hamming
window function with 20 ms frame length and 50%
overlap. Amplitude normalization was conducted to
eliminate the influence of sound intensities. The statis-
tic functions including the mean and variance of all
frames in each signal were calculated to represent each
signal. Table 2 shows the detailed information on the
features.

Table 2. Information of the extracted features.

Feature Description
Dimension

(layer 4/layer 5/
bark sub-band)

Coefficient Mean,
variance value

32/64/34

Log-energy Mean,
variance value

32/64/34

Shannon entropy Mean,
variance value

32/64/34

Sound pressure
level

Mean,
variance value

32/64/34

Wavelet transform
cepstral coefficient

Mean,
variance value

26/26/26

Mel-frequency
cepstral coefficient

Mean,
variance value

26/26/26

2.3.1. Wavelet packet model

The WT (Sharma et al., 2020) is a typical method
to transform the time-domain audio signal into a time-
frequency domain consisting of the continuous wavelet
transform and discrete wavelet transform. The WT of
the signal x at the time y and scale z is defined by the
inner product with a wavelet function:

Wf(y, z) = ⟨x,uy,z⟩ =
1

√
y

∞

∫
−∞

f(t)u∗ (
(t − z)

y
) dt, (1)

where u(t)∗ represents the complex conjugate of the
wavelet function u(t). WPT applies the transform
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step on all frequency bands. It is calculated through
time-domain filtering with a sub-signal representation
obtained from frequency components with each sub-
band. Figure 2 shows an integrated wavelet packet tree
of a signal. The original signal is first decomposed into
two sub-bands in the first decomposition layer: the low
frequency part-1 (1, 0) and the high frequency part-2
(1, 1). Then the low frequency part-1 and part-2 will
be further decomposed with increasing decomposition
layers to obtain sub-bands with much finer frequency
bandwidth. The frequency bandwidth of the k-th sub-
band in the j-th decomposition layer is fs

2j+1
Hz; fs is

the sampling rate with a value of 44.1 kHz in this
work. With the increase of the decomposition layer,
the finer the frequency is decomposed with much more
sub-bands. There are Nj = 2j sub-bands in the j-th
layer. There are 16 sub-bands in layer 4 with a band-
width of 1378 Hz and 32 sub-bands in layer 5 with
a bandwidth of 689 Hz. Moreover, we constructed bark
sub-bands from decomposition layers 4 and 5 of WPT
with a dimension of 17, which is based on auditory
characteristics of humans. The detailed composition of
bark sub-bands is shown in the last layer of Fig. 2.

Fig. 2. Decomposition process of WPT and the construc-
tion of wavelet bark.

In the work of Monson et al. (2014) “high frequen-
cy” referred to a frequency above about 5 kHz which
has traditionally been neglected in speech research.
The “middle and low frequency” is defined below 5 kHz
in this paper. As Fig. 2 shows, the bark sub-band is
constructed by sub-bands in layer 4 and layer 5 which
is considered a common division method for audio
signal processing that accurately matches the human
ear’s auditory perception chrematistics (Korniienko,
Machusky, 2018). The bark and layer 5 decomposi-
tion structure have the same sub-band distributions in
the middle and low frequency part (0–5.5 kHz) com-
posed by (5,0)–(5,7), while layer 5 has much finer sub-
bands in the high frequency. Studies have indicated
that the energy of snoring sounds is mainly concen-
trated below 2 kHz (Perez-Padilla et al., 1993). The
frequency range of the first sub-band at layer 4 is
0–1378 Hz that most snoring information locate in this
frequency band. To explore the influence of the fre-
quency bandwidth of the sub-band on the classification

result, and the difference between snoring and non-
snoring sounds in the middle and low frequency part
and high frequency part, acoustic features extracted
from layer 4, layer 5, and bark sub-bands are discussed
in the work.

2.3.2. Wavelet packet coefficients

The coefficients by WPT can reveal the local cha-
racteristics of signals. The mean values of the coeffi-
cients of the k-th sub-band in the j-th layer are de-
scribed as:

wj,k =
∑
n
vj,k,n

Nk
, n = 1,2, ...,Nk, k = 1,2, ...,2j , (2)

where Nk is the number of the coefficient component
in the k-th sub-band with the value of 882; vj,k,n re-
presents the n−th coefficient component of the k-th
sub-band in the j-th decomposition layer. There are
Nj = 2j coefficients in the j-th decomposition, which
are wj,1,wj,2, ...,wj,2j .

2.3.3. Log-energy

The log-energy of the k-th sub-band signal in the
j-th level can be calculated by:

logEj,k =
Nk

∑
n=1

v2
j,k,n. (3)

2.3.4. Shannon entropy

The probability of the n-th coefficient at its corre-
sponding node can be calculated by:

pj,k,n =
Ej,k,n

Ej,k
=

v2
j,k,n

Nk
∑
n=1

v2
j,k,n

, (4)

moreover, Shannon entropy (SE) is defined by the pro-
bability distribution of energy pj,k,n as Eq. (4), which
is a measure of uncertainty associated with random
variables in information theory:

SEj,k = −
Nk

∑
n=1

pj,k,n ⋅ log (pj,k,n). (5)

2.3.5. Wavelet transform cepstral coefficient

WPT can be treated as a filter to divide the fre-
quency to some sub-bands with the equal bandwidth,
just like Mel-filter. Then the cepstral coefficient of the
signal after the WPT filter can be calculated using
discrete cosine transform (DCT), which is called the
wavelet transform cepstral coefficient (WTCC):

WTCCm =

√
2

Nj

Nj

∑
j=0

log (Ej,k) cos(
πm (2j − 1)

2Nj
),

(6)
where Nj is the number of sub-bands in the j-th layer;
m indicates the m-th DCT spectral line, which was set
as 13 in the work.
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2.3.6. Mel-frequency cepstral coefficients

The study (Jiang et al., 2020) has indicated that
there are obvious differences between snoring and
non-snoring sounds via Mel-frequency cepstral coeffi-
cients (MFCC). The MFCC of the original signal with
13-dimension is also extracted for snoring sound recog-
nition.

2.4. Wavelet function

As described in Eq. (1), the WPT is based on
the wavelet function. Different wavelet functions may
result in different WPT features. There are many
wavelet function families such as BiorSplines, Coiflets,
Daubechies, Symlets, and so on. The Daubechies
wavelet family (DB1, DB2, DB3, DB4, DB5, DB6,
DB7, DB8, DB9, DB10) has been widely used in the
processing of speech and other biological signals. Also,
the work of Qian et al. (2017) indicated that the
Daubechies function (DB3, DB10) performed better
on recognition of a snoring site. In this paper, we ex-
plore their performance in differentiating snoring and
non-snoring sounds.

3. Classification and result

3.1. Classification model

In the study, XGBoost classifier was adopted in this
study. XGBoost is an improved algorithm with good
performance and high efficiency based on the gradient
boosting decision that can construct boosted trees ef-
ficiently and operate in parallel. The core of the algo-
rithm is the optimization of the value of the objective
function (Torlay et al., 2017). The parameter of the
XGBoost classifier is essential for classification per-
formance. Based on a 10-fold cross-validation of the
training set, the optimal parameter was obtained.
The number of base trees was set as 400, the max depth
of trees was 6, and the learning rate was 0.3. Other pa-
rameters were set as the default value of XGBoost in
Scikit-learn (Pedregosa et al., 2011).

3.2. Feature selection

Feature selection is a vitally important step dur-
ing the classification task because it can reduce the
redundancy of features to improve the robustness of
the model and reduce the computation complexity. In
this paper, feature selection based on the correlation
analysis is conducted to select distinguishing features.
Two Pearson correlation coefficients were calculated in-
cluding correlation coefficients between features and
their related labels with a value of P1 and correla-
tion coefficients among features with a value of P2.
Features with high correlation with labels and low cor-
relation with other features were selected by thres-

holds a and b, respectively. There were two steps for
feature selection. Firstly, features were reserved if P1
was higher than a. Then, the reserved features were
dropped out if P2 was higher than b to obtain rela-
tively independent features. To fully make use of the
limited dataset, the 10-fold cross-validation was used
in the training set to optimize the model and select
features. The threshold a and b were obtained by ex-
periment to set as 0.8 and 0.7, respectively. Moreover,
the effect of the decomposition levels and wavelet func-
tions on the classification of snoring and non-snoring
sound is explored.

3.3. Model evaluation

To evaluate the performance of the proposed recog-
nition system of snoring sound, evaluating indexes such
as sensitivity, accuracy, precision, and F1 score are ex-
pressed as follows:

Accuracy =
(TP +TN)

(TP + FP +TN + FN)
, (7)

Sensitivity =
TP

(TP + FN)
, (8)

Precision =
TP

(TP + FP)
, (9)

F1 =
2Precision ⋅ Sensitivity
(Precision + Sensitivity)

, (10)

where TP represents the number of snoring sounds
classified as snoring sounds (true positive), TN is the
number of non-snoring sounds truly detected as non-
snoring sounds (true negative), FP represents the num-
ber of non-snoring sounds falsely recognized as snoring
sounds (false positive), and FN is the number of events
corresponding to the false detection of snoring sound
as non-snoring sound (false negative).

3.4. Classification results

Figure 3 shows the distribution of coefficient 1 and
WTCC13 which have the first and second highest co-
efficients with labels selected by correlation analysis.
5000 samples were randomly selected from 24 subjects
in the training set. It shows that the distribution of co-
efficient 1 and WTCC13 of snoring sounds is different
from non-snoring sounds, which could distinguish snor-
ing sounds to a certain extent. Figure 4 shows the over-
all accuracy of snoring and non-snoring sounds with
different wavelet functions under different decompo-
sition layers. The WPT features extracted from dif-
ferent decomposition layers and different Daubechies
wavelet functions could work well with accuracies more
than 94%.

It can be seen from Fig. 4a that the overall ac-
curacies of WPT features extracted from layer 5 are
slightly 0.5 percentage points higher than accuracies
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Fig. 3. The distribution of coefficient 1 and WTCC13 of
decomposition layer 5 randomly selected from the training
set of 5000 samples. The coefficient 1 and WTCC13 are the
coefficient and WTCC of the first sub-band and thirteenth
sub-band components. Snoring and non-snoring segments
are denoted by red circle and blue circle symbols, respec-

tively.
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Fig. 4. The snoring recognition result of two kinds of feature
sets under decomposition layer 4, 5, and bark and wavelet
function DB1 to DB10 in Daubechies family: a) WPT fea-

ture set; b) MFCC and WPT combined feature sets.

of layer 4 under most wavelet functions. With the in-
crease of the decomposition level, the frequency of the
signal is divided into smaller bandwidths to obtain
much more detailed information about signals, which
is beneficial for distinguishing snoring and non-snoring
sounds, and yield much better performance. Compar-
ing the recognition rate of layer 5 and bark sub-bands,
there is little difference between these two decomposi-
tion structures. However, layer 5 and the bark sub-
band have the same decomposition construction on
low frequencies (0–5.5 kHz), and layer 5 has much
finer division than the bark sub-band on high frequen-
cies (5.5–44.1 kHz). In other words, the bark sub-band
puts much more emphasis on low frequency. The result
shows that the energy of snoring sound and the diffe-
rence between snoring and non-snoring are mainly on
low frequencies. The information on the high frequen-
cies part also cannot be ignored.

It also can be observed from Fig. 4a that the wa-
velet function also influences the final classification
result. The overall accuracies are different between
wavelet functions in the same decomposition layer.
DB7, DB9, and DB10 in level 5, and DB7 in bark yield
much higher recognition for WPT features among all
test Daubechies wavelet functions, which are 95.2% ap-
proximately, indicating that the wavelet function plays
an important role in the decomposition of the signal.
Comparing Fig. 4, the WPT and MFCC combined fea-
tures yielded accuracy with an average value of 95.5%,
much better than simple WPT features in terms of
overall accuracies under all test wavelet functions and
decomposition levels. The difference in recognition re-
sults of the MFCC and WPT combined features be-
tween decomposition levels and wavelet functions is
not as obvious as simple WPT features. The first three
recognition rates are DB7 in level 5, DB8 in level 5,
and DB9 in L4 which are 95.68%, 95.67%, and 95.65%
respectively under all test conditions.

Table 3 shows detailed results for snoring and non-
snoring recognition of different feature sets including
MFCC, WTCC, WPT features, and WPT+MFCC
combined features under the selected DB7, DB8,
DB9, and DB10 wavelet functions in decomposition
layer 5 and bark sub-bands. It can be known from Ta-
ble 3 that for WPT features, the accuracy of the three
kinds of selected feature sets is comparable, which is
around 95.2%. However, the features extracted from
DB7-Level 5 yield much higher sensitivity with 96.94%,
indicating a higher probability of real snoring sound
being recalled. For WPT−MFCC combined feature
sets, the features extracted from level 5 with the
wavelet function DB7 achieved the best performance
during all test conditions considering sensitivity, pre-
cision, and F1-score, which are 97.27%, 96.48%, and
96.88%, respectively. Compared with MFCC, simple
WPT features, the WPT−MFCC features performed
best, and there is an average improvement of 1 percent-
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Table 3. Detailed classification results and dimensions of selected features of different feature sets including Cepstral
coefficients features, WPT features, and WPT+MFCC combined features under the selected wavelet functions and de-

composition layers selected from Fig. 4.

Feature-set Number of features (total) Accuracy [%] Sensitivity [%] Precision [%] F1 [%] AUC
Cepstral coefficients

MFCC 26 94.76 96.58 95.83 96.20 0.98
WTCC 26 93.57 96.17 94.58 95.37 0.98

WPT
DB7-L5 69 (256) 95.15 96.94 96.21 96.50 0.99
DB9-L5 82 (256) 95.15 96.81 96.18 96.49 0.99
DB10-L5 81 (256) 95.20 96.81 96.23 96.52 0.99

WPT+MFCC
DB7-L5 98 (282) 95.68 97.27 96.48 96.88 0.99
DB8-L5 96 (282) 95.67 97.44 96.30 96.87 0.99
DB9-L4 99 (162) 95.65 97.27 96.27 96.77 0.99

age points and 0.5 percentage points for WPT−MFCC
combined features in terms of overall accuracy, recall,
precision, and F1-score mentioned in the work. The
dimensions of selected features based on the 10-fold
cross-validation are also displayed in Table 3. Fea-
tures with little contribution to the classification are
dropped by the selection technology based on corre-
lation coefficients. Based on the aforementioned dis-
cussion, the features extracted from the wavelet func-
tion DB7 in level 5 decomposition performed better
considering simple WPT features and WPT−MFCC
combined features with dimensions of 69 and 98, re-
spectively.

We also compared two kinds of cepstral coefficients
MFCC and WTCC, which are derived from the Mel-
frequency filter and the wavelet packet transform fil-
ter respectively. The MFCC outperformed the WTCC
with an average improvement of 1 percentage points in
terms of evaluation standards mentioned in the work,
which means that the Mel-frequency could carry more
important information on the upper airway structure
variations than wavelet packet transform does.

4. Discussion

In this work, we proposed a novel system to au-
tomatically extract snoring sounds from the recorded
sounds during sleep based on WPT features. Based
on wavelet packet transform, the snoring sound was
decomposed into different sub-bands with the same
bandwidth and different frequency ranges. Results of
WPT features indicated that the information on snor-
ing sounds and the difference between snoring and non-
snoring sounds were mainly in the middle and low fre-
quency. With increasing decomposition layer, the sig-
nal was decomposed with much smaller sub-bands, and
the difference between snoring and non-snoring sounds

was much more obviously accompanied by a higher
classification accuracy. The snoring sound detection is
the first but vital step during the whole analysis system
of snoring sounds. Many studies have detected snoring
episodes from different kinds of domains.

In previous studies (Han et al., 2006; Karuna-
jeewa et al., 2011; Qian et al., 2015; Solà-Soler
et al., 2007; Sun et al., 2022), acoustic features ex-
tracted from frequency sub-band of the signal have
been demonstrated effectively and widely used in clas-
sifying snoring and non-snoring sounds. Qian et al.
(2015) used the 1000 Hz sub-band features, and power
ratio to detect snoring sound segments. Cavusoglu
et al. (2007) explored the sub-band energy distribu-
tion of snoring and non-snoring segments by divid-
ing the 0–7500 Hz frequency range into 500 Hz sub-
bands, which yielded 90.2% accuracy for simple snor-
ers. These works indicated that the information distri-
bution of snoring sounds is different among sub-bands,
which mainly focus on middle and low frequency parts.
Moreover, since the bark sub-bands focus on the low
frequency part and are sparse in the high frequen-
cy part. The WPT furtherly divided the high fre-
quency part based on bark sub-bands which makes
the difference in the high frequency much more obvi-
ously. And recognition accuracies of layer 5 are slightly
higher than bark sub-bands under most wavelet func-
tion test conditions. Although the distribution of snor-
ing is mainly concentrated in the middle and low fre-
quency parts, the information of snoring sounds in
high frequency part also cannot be ignored. And with
increasing of decomposition layer, the difference be-
tween snoring and non-snoring sounds is getting obvi-
ous, because the signal will be exhibited much more
comprehensively by sub-bands with smaller frequency
ranges.

The results of works (Cavusoglu et al., 2007;
Duckitt et al., 2006; Emoto et al., 2018; Jiang
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et al., 2020; Lim et al., 2019; Qian et al., 2015;
Sun et al., 2022) showed that MFCC and its related
features could yield relatively good performance on
recognizing snoring sounds. Jiang et al. (2020) ex-
tracted the Mel-spectrogram of signal and used a con-
volution neural network (CNN) to classify snoring
and non-snoring sounds with good performance. Sun
et al. (2022) also indicated that different components
of MFCC yielded different contributions to the classi-
fication result. The same result is also shown in this
study. The high effectivity of MFCC and WTCC may
be caused by dividing the signal into different sub-
bands with the same frequency range through Mel-
filter banks based on the mechanism of human hearing.

There are many studies to classify snoring and non-
snoring sounds from other parts shown in Table 4
(Adesuyi et al., 2022;Ankişhan, Tuncer, 2017;Ar-
senali et al., 2018; Jiang et al., 2020; Lim et al.,
2019; Nonaka et al., 2016; Sun et al., 2022) used
the processing way of images to analyze snoring and
non-snoring sound with the recognition accuracy of
95.1% in Mel-spectrogram. In the work of Nonaka
et al. (2016), the auditory image model, which has been
used to numerically explain the auditory phenomenon
of human’s auditory, was developed to automatically
extract snoring sounds from sleep sounds, which could
achieve a sensitivity of 97.2% from 40 subjects. The
work of Lim et al. (2019) and Adesuyi et al. (2022)
yielded the highest 99.0% accuracy compared with all
other studies. However, these results are not convincing
because that there are only 8 and 6 subjects for the two
studies. The diversity of samples too small to demon-
strate the effectiveness of the proposed algorithm. All
these studies are based on subject dependence, which
cannot be directly used in practice. It demonstrated
evident differences between snoring and non-snoring
sounds from all kinds of aspects. The models based
on deep learning perform much better than traditional
machine learning, which also demonstrates the effec-
tiveness of WPT features proposed in this work. It
is worth noticing that these works have yielded com-

Table 4. Classification results of current studies recorded by ambient microphones. Abbreviations include AdaBoost (adap-
tive boosting), CNN (convolution neural network), MNLR (multi-nominal logistic regression), STFT (short-time Fourier

transform), RNN (recurrent neural network), and LLEs (largest Lyapunov exponents).

Author Subjects Features + classifier Accuracy [%] Sensitivity [%]
Jiang et al. (2020) 15 Mel-spectrogram+CNN 95.1 95.4

Nonaka et al. (2016) 40 Audio image model+MNLR 97.3 97.2
Sun et al. (2022) 24 Sub-band features+XGBoost 94.3 96.5
Lim et al. (2019) 8 MFCC, STFT+RNN 98.5 99.3

Ankişhan, Tuncer (2017) 22 Chaotic features+LLEs 94.4 88.3
Arsenali et al. (2018) 20 MFCC+RNN 95.0 92.0
Adesuyi et al. (2022) 6 MFCC+CNN 99.0

This work 24 WPT features+XGBoost 95.15 96.94
WPT+MFCC+XGBoost 95.68 97.27

petitive results on their own limited dataset. However,
there is no sense to compare these accuracies because of
the inconsistent dataset used in studies. The dataset
of each study is established by its own team with sub-
jects from different counties, different recording equip-
ment, and different labeling standards of snoring and
non-snoring sounds. But the result of our work is com-
parable with previous studies in terms of our own
dataset. And it demonstrated that the distribution of
snoring and non-snoring sounds in each sub-band of all
frequency ranges is obviously different.

In conclusion, there are some contributions to this
study. Firstly, it used WPT to extract sub-band fea-
tures and yielded comparable accuracy in recognizing
snoring sounds. Then, it discussed different wavelet
functions and decomposition layers, concluding that
the difference is getting more evident with the fre-
quency range getting smaller, which is more beneficial
for classifying. Thirdly, it demonstrated that although
the distribution of snoring sounds is mainly on the low
frequency part, there are also differences between snor-
ing and non-snoring sounds in the high frequency part.
There are some limitations of the work. The data par-
tition methods mainly included subject dependence
and subject independence which greatly influenced the
classification performance. Subject dependence is an
original data partition method to discuss the features’
influence on classification performance, while the re-
sult of subject independence is more suitable for use
in practice. In this work, the partition of the training
set and test set is based on subject dependence be-
cause of the limited subjects. The subject independent
classification must base on a huge number of training
and validation subjects to make up for the influence of
individual characteristics. There are only 24 subjects
used in the study, which is hard to perform subject
independent classification considering individual cha-
racteristics. It is the next step of the paper to collect
much more snoring sounds from different subjects to
implement detecting snoring sounds based on subject
independence.
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5. Conclusion

This study proposed a snoring sounds recognition
system based on WPT features and XGBoost classi-
fier. The recorded sleep sounds of 24 subjects, firstly
were enhanced and segmented by a subspace noise
reduction algorithm and signal presence probability
based on the estimation of noise autocorrelation re-
spectively to obtain potential snoring episodes. In the
training set, 10-fold cross-validation was implemented
to select appreciated features and models. Results of
the recognition system showed that features based on
sub-bands could well classify snoring and non-snoring
sounds with accuracy of 95.65%, sensitivity of 97.27%,
and precision of 96.58% in the test set for DB7 fun-
ction and level 5, the best combination of all test condi-
tions. And the comparison among decomposition layers
shows, although the distribution of snoring sounds is
mainly in the low frequency part, there is also evident
difference between snoring and non-snoring sounds in
the high frequency part. However, the MFCC−WPT
combined feature set outperformed the simple MFCC
and WPT feature sets, with accuracy of 95.68%, sensi-
tivity of 97.27%, and precision of 96.68%. These results
have demonstrated that the wavelet packet analysis is
effective in recognizing snoring sounds with less com-
putational complexity, which can be further developed
to analyze OSAHS at home.
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