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This paper describes research behind a Large-Vocabulary Continuous Speech Recognition (LVCSR)
system for the transcription of Senate speeches for the Polish language. The system utilizes several
components: a phonetic transcription system, language and acoustic model training systems, a Voice
Activity Detector (VAD), a LVCSR decoder, and a subtitle generator and presentation system. Some of
the modules relied on already available tools and some had to be made from the beginning but the authors
ensured that they used the most advanced techniques they had available at the time. Finally, several
experiments were performed to compare the performance of both more modern and more conventional
technologies.
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1. Introduction

Transcription of Parliamentary speeches is a very
common domain in Automatic Speech Recognition
(ASR) (Lööf et al., 2006; Pražák et al., 2006; Kos
et al., 1996). It is also a first stepping stone in many
languages for several reasons: laws of many countries
require official parliamentary meetings to be tran-
scribed, thus there is both demand for such a solution
and ample supply of publicly available training data.
If we look for examples in other domains that are

acoustically similar, the closest would be meeting tran-
scription: there is a possibility of interruptions from
other speakers and several people could be speaking
concurrently. On the other hand, the vocabulary is
very likely to be completely different as compared to
Parliamentary speeches. A better overlap, with regards
to the vocabulary, may be found in the transcription of
speeches or certain kinds of lectures, but considerably
different acoustic conditions would be present there,
with almost no interruptions and a single speaker.
Thus, it can be seen that the chosen task is quite
unique. While developing such a system, data from
various domains had to be used but the data from the
task itself were mainly depended upon.
The state of speech recognition in Polish is still very

weak as compared to other languages (Miłkowski,

2012), even though it is improving at a fast pace and
Polish should not be considered as an under-resourced
language for very long. Several research projects have
emerged in the last couple of years dealing with the
topics of automation in the telephony environment
(Marasek et al., 2009), transcription of legal docu-
ments (Demenko et al., 2008), and, recently, speech-
to-speech translation in different settings (Marasek,
2012). Commercially, there have been a few local start-
ups and a few attempts by world market leaders but
none has yet achieved real adaptation of LVCSR in
the field, with the exception of a few (Google and Ap-
ple/Nuance) which include ASR as a free service with
their existing products. This makes it quite difficult for
companies and organizations which might seek to use
such a technology and find that it either does not fulfill
their needs or is too expensive for them to pursue. It
has been our goal for many years to contribute to the
research on Polish ASR and help bring it to a level of
being both useful and attainable by the larger country
audience.

2. Data collection and preparation

The main data for this project were acquired by
virtue of an agreement between the Polish Senate
and the authors’ university. The law in Poland man-
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dates that all official parliamentary meetings need to
be recorded, transcribed, and publicized. Most of this
work is still being done manually with the record-
ings done with standard recording equipment and then
transcriptions done by professional transcription spe-
cialists hired and trained specifically for this purpose.
The audio quality is often quite poor – the desktop mi-
crophones are omni-directional which introduces a lot
of environmental distortion (reverberation caused by
room materials, background noise), and lossy compres-
sion is often used to store the files.
Recently, it has become more difficult to find such

transcription specialists and meet the ever growing de-
mand for information in an efficient and speedy man-
ner. These days, all the Senate and Parliamentary
meetings are available online in both audio/visual and
textual form. Having the technology to automate this
process, at least as an aid to the existing workforce,
could help both cut costs and make the task more
sustainable in the future. Additionally, one could im-
plement a technique called “respeaking”, which has
been shown as extremely successful in certain situa-
tions (Romero-Fresco, 2011). This method works by
using an adapted speaker-dependent system to recog-
nize a single, trained professional speaker who repeats
the audio that needs to be transcribed. Extremely
high accuracy rates (>99%) can be achieved using this
method, even with real-time transcription.
A subset of the Senate proceedings’ audio record-

ings with the matching transcripts was chosen for the
purpose of training both the acoustic and language
model. Initially, data provided directly by the Office of
the Senate was used but starting from the beginning
of 2013, many recordings have been released on the
Senate website and the website of the national televi-
sion network’s channel TVP Parlament. These record-
ings were of a considerably higher quality, so they were
added to our data set. In addition to that, the Polish
Parliament data available on the same websites and in
much larger quantities was also used.
The preparation of the corpora was a very time-

consuming task because the official transcripts were
not an exact description of the audio. They were
written in a way so as to render grammatically cor-
rect written text without changing the semantics of
the statement. This was done by the official tran-
scribers in order to improve the presentation of the
written PDF document but made it slightly less use-
ful for acoustic training. That is why the data had
to be re-transcribed by a group of contract work-
ers. They also removed fragments of audio with high
background noise, double-speak and incomprehensible
speech, to simplify the transcription process. A large
portion of the data was also annotated with informa-
tion about a speaker (name, gender) to aid the nor-
malization and adaptation properties of the acoustic
models.

Alltogether, about 95 hours of recordings from
both the Senate and the Parliament, with 488 dif-
ferent speakers (mostly male) were prepared. Out of
that, 10 speakers were chosen randomly for the test
set (roughly 2 hours). All the recordings have been
saved as uncompressed 16-bit linear audio sampled at
16 kHz.
Acquiring the sufficient quantity of text data

turned out to be slightly more complicated. The elec-
tronic text corpora are difficult to obtain for Polish be-
cause of poor attempts of digitizing written works and
restrictive copyright laws. Furthermore, even though
some text corpora exist, they have very limited access,
forcing new researchers to recreate their own data sets
each time.
A reasonably large initial set of transcripts was

acquired with the help of the Office of the Senate
amounting to about 5 million words. This corpus was
then expanded with the transcripts of Parliamentary
sessions, committee meetings, and the publicly avail-
able portion of the National Corpus of Polish (NKJP)
(Przepiórkowski et al., 2012). This data needed to
be segmented and normalized to expand all the num-
bers and abbreviations to their spoken form accord-
ing to the grammatical rules. Corpus normalization is
usually done by hand but with the data of this size it
was necessary to create automatic tools for word form
agreement. This was solved using the authors’ own de-
coder trained on manually assigned grammatical rules
and manually expanded numbers. Tests showed around
10% error rate. The system first uses a list of word
mappings and specialized algorithms to expand all the
necessary tokens into all the possible expansions, in-
cluding all the grammatical forms of the individual
words. Next, a Viterbi-style decoder is used to find
the best sequence of word forms using a combina-
tion of 3 language models (word, stem, and grammar
class). More details about the system can be found in
(Brocki et al., 2012b).
An attempt to use a collection of legal documents

graciously provided by a large publisher of such works
was ultimately abandoned because the level of normal-
ization needed in such texts was too great to achieve
reasonable results. All experiments involving this data
decreased performance making it unsuitable for our
use. It is worth noting that such documents consist of
a very large amount of abbreviations and the sentence
structure does not correlate in any way with the spo-
ken language (outside of the courtroom, perhaps). The
only benefit would be to improve the vocabulary, but
without a proper context such models would not work
very well.
To summarize, most of the experiments were per-

formed on a corpus containing roughly 145 million
words. The corpus is tokenized, in the lower case, and
all the numbers and abbreviations expanded to their
full, spoken, grammatically correct forms.
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3. Transcription system implementation

The transcription system is based on ASR, which
is defined as a task of recognizing a sequence of words
based on an audio recording of speech, see (Jelinek,
1997; Mori, 1998; Rabiner, 1989).
To properly implement the transcription system,

several components needed to be developed:

1) phonetic transcription system, also known as a
grapheme-to-phoneme (G2P) converter,

2) voice activity detector (VAD),

3) acoustic model (AM),

4) language model (LM),

5) decoder,

6) presentation and subtitling module.

In Fig. 1, a simple overview of the relations be-
tween the system components is presented. The audio
signal, shown in the top left, is processed by a standard
Feature Extraction module (FE) to produce frames of
acoustic features. These frames are then filtered us-
ing the VAD module and fed into the AM. The infor-
mation gathered from both the AM and LM is pro-
cessed by the Decoder to generate a stream of words.
The words are determined by a vocabulary (VOCAB)
which is mapped to the phonetic output of the AM us-
ing a G2P module. Finally, the words are processed by
a subtitling module (SUB) producing subtitles which
can be presented on a video stream. Following is the
description of the individual modules in more detail.

Fig. 1. General system overview containing
all the components described in Sec. 3.

3.1. Grapheme-to-phoneme conversion

The G2P conversion is an important bridge be-
tween the sounds of speech and how we are used to
reading and writing words on paper. This procedure is
important both in the training phase (to convert the
training transcripts into a description of recognizable
speech sounds) and during a normal use (to convert
the recognized sounds into readable text).

The phonetic alphabet chosen for this project is a
variant of the Polish SAMPA (Wells, 2013), modified
to contain only alphabetic characters (so symbols like
the apostrophe and tilde were replaced with the letters
i and n, respectively, see Fig. 2). The only actual dif-
ference is the lack of the “N” symbol which was found
to carry little benefit when modelling speech purely
for ASR purposes. It is, however, important to men-
tion the multiple pronunciations per word arising from
either Speaker dependent variability or coarticulation
effects arising from context. Homographs are thus nat-
urally solved at the LM level with the dictionary con-
taining all the word variants. Homophones that are
also heterographs are a slightly greater issue and, de-
pending on the decoder, may be resolved in several
ways (e.g., using disambiguation symbols). Homonyms
are not of concern for pure LVCSR tasks.

senackiej s e n a ts k j e j
senackim s e n a ts k i m
senackimi s e n a ts k i m i
senacką s e n a ts k o m
senacką s e n a ts k on
senat s e n a t
senatach s e n a t a x
senatem s e n a t e m
senator s e n a t o r
senatora s e n a t o r a
senatorach s e n a t o r a x
senatorami s e n a t o r a m i

Fig. 2. An example of a phonetic dictionary as a result
of the G2P conversion process.

The G2P system in the described project is a fast
C++ stream processor based on a set of rules written
as graphs. Each word or phrase is expanded to a graph
form (FSA) based on these rules and then a dictio-
nary is generated by traversing each node in the graph.
Even though various systems for other languages al-
ready exist, for Polish such a task can be solved fairly
efficiently by a finite set of rules, with the expressive-
ness of a regular language. The only problem using
this approach are names, foreign and other atypical
words. Such words were transcribed using a manually
built dictionary which converts them to a form that
can be transcribed using the rules mentioned before.
The final system was tested and manually corrected
using the lexicon generated from the training corpus,
to minimize the potential errors that can occur for this
particular task. Finally, the system consisted of a set of
972 basic rules and 4802 word replacement rules due to
exceptions. With regards to the acutal performance of
the system, it is generally assumed that the system per-
forms accurately, with respect to phonetic rules, when
given correctly normalized input in Polish. The only
errors that occur are either due to errors in the pre-
processing or because of foreign or foreign sounding
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words. As a simple test, a transcript from a fairly re-
cent Senate meeting (July 23, 2014) was processed and
after manually checking the resulting dictionary, only
a dozen of the 12k words in the dictionary were mis-
transcribed. These were exclusively English words like
“board of trustees” and “cashback” or English-derived
spelling in words like “stricte”.

3.2. Audio processing and voice activity detection

The audio pre-processing and parameterization
were done similarly for all the tested solutions in this
paper. A standard 39 feature vector (12 Mel-Frequency
Cepstral Coefficients (MFCCs) + energy with delta
and acceleration coefficients) was extracted from the
signal windowed at 100 frames per second with frames
being 25 ms long. Each of the programs implements
its own feature extraction front-ends but they are all
greatly influenced by HTK (Young et al., 2002), and,
therefore, the differences between them should be min-
imal.
Audio data is usually not homogeneous and con-

tains mixed fragments of speech, music, background
noise, and silence. As mentioned previously, distin-
guishing between these different types of audio is very
important for the performance of the transcription sys-
tem, especially when performing online recognition.
Literature shows that acoustic modelling using Ar-
tificial Neural Networks usually outperforms equiva-
lent Gaussian Mixture Models (GMMs) in accuracy
(Robinson et al., 1996). That is why the authors de-
cided to use an LSTM RNN (Graves et al., 2004) to
perform the VAD audio segmentation. The same fea-
ture set mentioned above was used to train the RNN to
recognize two classes: speech and non-speech. The out-
put of the network was additionally smoothed using an
excitation integrator in order to produce speech frag-
ments of the minimum length of 20 frames (Brocki et
al., 2006). Such a system achieved 93.5% frame-level
accuracy with the system tuned in, so that most er-
rors occur in non-speech fragments.
Other available systems were also tested for the

purpose of VAD. Shout (Huijbregts, 2008) is a
speech recognition toolkit with a focus on speaker’s
diarization and adaptation. It contains a series of
simple tools that perform various steps including:
VAD, speaker diarization, VTLN (see Subsec. 3.3),
model adaption, and, finally, recognition. The VAD
program contains a simple, pre-trained GMM based
acoustic model that detects two classes (speech and
non-speech). This tool performed well for the Senate
speeches analyzed in the project.
Several of the decoders that were tested in the

project also contained a built-in VAD functionality.
Julius (Lee et al., 2001) contains several methods
of VAD: using a simple audio analysis (level thresh-
old and zero-crossing), using an AM which contains a

model for silence and using an external GMM model.
The first two methods were compared and both per-
formed very similarly. For Julius, either of the methods
is very much advised as it allows the decoder to seg-
ment the speech into coherent fragments, drastically
improving performance with very long audios, as it is
the case with Senate speeches. Kaldi (Povey et al.,
2011) performs silence detection only using the pro-
vided acoustic model and, given the extensive model
adaptation tools, performs very well on such audio
data. More details on the decoders are given in Sub-
sec. 3.5.

3.3. Acoustic modelling

Depending on the system used, various AMs were
created. For the GMMs used in both Julius and Kaldi,
a simple 5-state (including start and end) topology
was used to model triphones. For Julius, HTK tools
were used to create tied-state triphones with both tree
and clustering based state tying. The Kaldi project
provides its own set of training tools with many
state-of-the-art training and adaptation methods in-
cluded in the basic program: cepstral-mean normaliza-
tion (CMN), linear discriminant analysis (LDA) and
maximum likelihood linear transformation (MLLT)
feature transformation, vocal tract length normaliza-
tion (VTLN), subspace gaussian mixture modelling
(SGMM), feature space maximum likelihood linear
regression (fMLLR) adaptation, training using maxi-
mum mutual information (MMI) criterion, and speaker
adaptive training (SAT). Details on the performance of
these methods are described in the experiment section.
CMN is a typical processing step for cepstral fea-

tures which stands for subtracting the mean and re-
moving the variance from the training data. The cep-
stral mean is usually regarded as the source of bias in
the data arising from the differences in the transmis-
sion channel, whether it be intrinsic to the speaker or
the environment where the recording took place. The
subtraction of the cepstral mean is roughly equivalent
to the de-convolution of the data with the transmission
channel profile (Young et al., 2002).
LDA is a common machine learning algorithm most

often used to compress multi-dimensional feature space
through a linear combination. This method is slightly
more useful when faced with a feature space with many
hundreds dimensions of various types and sources and
can easily cause an increase in WER (word error rate).
A slightly more robust approach uses MLLT (Psutka,
2007) which ties transformations to particular HMM
(Hidden Markov Model) states and uses likelihood cri-
teria to optimize the solution.
VTLN is a simple spectrum level processing tech-

nique that commonly uses a single parameter to mod-
ify the frequency envelope of the signal in order to
compensate for the changes in pitch between speakers
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(which arise due to the difference of the length of the
vocal tract) (Eide, Gish, 1996).
SGMM is a technique for acoustic modelling in

which all phonetic states share a common GMM struc-
ture and their means and mixture weights vary in
a subspace of the total parameter space (Povey et
al., 2010). This method creates more compact mod-
els which often perform better, especially with small
amounts of training data.
Finally, fMLLR and MMI are common GMM adap-

tation methods. The former uses a set of linear trans-
formation of the means and variances of the GMM
models to reduce the difference between the model and
the adaptation data set. Unlike the more traditional
MAP (maximum a posteriori) approach, MLLR can
adapt faster using less data. MMI is a slightly differ-
ent adaptation approach that uses a discriminative ap-
proach to training GMM models. As such, it requires
exact aligned training data to plug into its cost func-
tion. This alignment is usually not available ahead of
time as making time aligned training data by hand is
unfeasible at such quantities, but it is rather derived
from running the decoder iteratively on data, slightly
improving its performance along the way. This method
can also utilize various objective functions, thus, the
fMMI method will optimize both feature and model
space errors, while the boosted MMI (also known sim-
ply as BMMI) is modified to boost the paths that con-
tain more errors. The details on these methods can be
found in (Veselỳ et al., 2013).
Apart from the already available tools, an RNN

based bi-directional LSTM (BLSTM) acoustic model
was created by the authors. Such models are different
from the aforementioned GMM models in that they
contain variable length context, which allows them to
efficiently model the dynamic nature of the data. The
model was trained using a modified Back-Propagation
Through Time (BPTT) routine which required the au-
thors to reduce the training set to about 40 hours,
due to the system complexity and time constraints
(Graves, Schmidhuber, 2005).
Attempts were also made to use the new deep

learning architectures, which was demonstrated in the
combination of the Deep Belief Network (DBN) and
BLSTM acoustic model. The initial results were very
promising but the complexity of the system made
it impossible to utilize on real-world data, for now.
Similarly, some improvements were noticed using the
recently developed DBN components in the KALDI
toolkit (Veselỳ et al., 2013). The tools used there
implement the standard approach to DBN training as
described in (Hinton et al., 2006), by pre-training a
set of Restricted Boltzman Machine (RBM) layers and
then using standard error backpropagation on all the
layers. The error can be calculated using several cri-
teria: cross-entropy between the predicted and refer-
ence label distribution, MMI for discriminative train-

ing (just like the already mentioned above), and sMBR
(state-level Minimum Bayes Risk) which is similar to
MMI but works at a more granular level. An addi-
tional benefit to the toolkit is that it implements the
costly training algorithms on the GPU (graphic card
processor) using the Nvidia CUDA toolkit, which gave
a 45-fold speedup compared to a single thread on the
CPU. For typical LVCSR tasks, the training can still
take weeks, even when several GPUs are used.

3.4. Language modelling

Much of the work in the project was spent on de-
veloping language models and evaluating their influ-
ence on speech recognition performance. Two kinds
of models have been developed: traditional N-gram
and RNN-based models. For N-grams, several aspects
were tested: context length (N = 2..5), interpolation
or back-off, smoothing methods (Kneser-Ney, Witten-
Bell), dictionary size, and the quality was measured
using perplexity on the test set. The best results were
achieved with interpolated models with Kneser-Ney
smoothing, which is consistent with results for other
languages mentioned in the literature (Kneser, Ney,
1995).
One of the greatest challenges was the size of the

models. For example, a 5-gram model trained on our
corpus with a dictionary containing 308337 words, con-
tains about 46 million word sequence probabilities,
which is obviously impractical for real use. One so-
lution is model pruning by minimal threshold entropy
change for the chosen n-grams. Setting the threshold
value to 10−8, 10−9 eliminates about 50% of uncom-
mon n-grams, with a relatively small increase in per-
plexity. Such a model can be used in practice, even
though it is still quite large, consuming as much as
1 GB of memory.
Several programs for N-gram model creation were

tested: SRILM (Stolcke et al., 2002), IRSTLM
(Federico et al., 2008), and MITLM (Glass et al.,
2009). The most robust and best quality results were
achieved using the SRILM package.
An ANN based connectionist language model

was also tested during the project (Brocki et al.,
2012a). Such a model uses a dictionary that maps
a vector of features C to each word, containing d
real values. To calculate the probability of the next
word in the sequence, a vector of features x =
(Cwt−n, Cwt−n+1, . . . , Cwt−1) is fed into the ANN,
which consists of a sequence Cwt concatenated to-
gether, where wt is a word at time t in the word se-
quence. Therefore, this vector describes a context of
length n. The output layer contains as many neurons
as there are words in the dictionary with an additional
output for out-of-vocabulary (OOV) words. A soft-
max activation function is used in the output layer,
which allows expressing the output as word occurrence
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probability, i.e., preserves the stochasticity property.
The ANN is trained to minimize the log-likelihood us-
ing gradient descent. The gradient can be calculated
using the well-known back-propagation algorithm, al-
though modified to include not only the neural net-
work synaptic weights but also the matrix containing
the C vectors of word features. The process of training
such a model is quite time consuming but in (Brocki,
2010b) the author suggests a parallelization scheme
that allows using the model in practice (although the
training still takes several weeks).
The connectionist model was trained in the follow-

ing way: each word was assigned a 50-tuple real valued
vector representing the input to the ANN. These values
were initially set randomly in the range −0.01 to 0.01.
The ANN was trained using a gradient descent algo-
rithm with a momentum set to 0.99 and learning rate
set to 10−7. The final network outperformed the best
n-gram model in perplexity by about 24% (Brocki,
2010a; Brocki et al., 2014).

3.5. Decoders

During the project, the authors tried to adapt both
their existing decoder (Koržinek, Brocki, 2007;
Brocki et al., 2008) and other open projects available
online to the task of Polish Senate speech transcrip-
tion. The authors’ connectionist decoder was compared
to Julius (Lee et al., 2001) and Kaldi (Povey et al.,
2011) with respect to accuracy, speed, and system re-
quirements.
The simplest and unsurprisingly most popular so-

lution is the Julius decoder. It is a mature project with
a very convenient open license which already got a lot
of attention in Polish research circles. The system uti-
lizes AMs trained using the well known HTK (Young
et al., 2002) toolkit and LMs available in the stan-
dard ARPA format. The decoder is a classic multi-
pass Viterbi style decoder capable of outputting both
lattices and confusion networks alongside the normal
time-aligned output. It has remarkably low system re-
quirements (less than 100 MB per channel) and is quite
easy to set up and use on almost any platform (Win-
dows, Linux, Mac) without needing extra external li-
braries.
At the time of writing this paper, Kaldi was a ra-

ther new but active project. It is a modern Weighted
Finite-State Transducer (WFST) based toolkit includ-
ing tools for everything from AM training to final
output decoding in many ways (online, offline, time-
aligned, lattices) with many tools available for model
retraining, segmentation, and adaptation. It includes
even some basic Artificial Neural Network (ANN) and
Deep Neural Network (DNN) models for both AM and
LM use. The only tools not available directly in the
toolkit are those for creating standard N-gram LMs,
but many are easily available and supported by the

system (Perl scripts for using some of the tools are
also available). Kaldi is much more advanced than
Julius, and unsurprisingly, performs much better but
at a much greater memory cost. Each channel can take
well over 1 GB of memory and the setup is a bit more
difficult, but it functions very well as an online de-
coder. It is very stable and works efficiently in real-
time. It utilizes several external libraries, which makes
it a challenge to set up on anything but Linux (at the
time of writing this paper).
The authors’ decoder is a connectionist system

that uses a Long Short-Term Memory (LSTM) based
Recurrent Neural Network (RNN) for the AM and
a Viterbi decoder to output single or n-best output.
The decoder uses a special LM comprising of 3 mod-
els: a word model using 3-grams, a lemma model using
5-grams, and a grammar class model using 7-grams.
The three models are combined using linear inter-
polation optimized using an Evolutionary Strategy
(Michalewicz, 1996) that minimizes perplexity. The
feature front-end implements a dynamic normaliza-
tion scheme and a VAD along the standard 39 fea-
ture extraction mentioned in the previous chapter. The
system is very easy to set up but takes a lot of re-
sources (at least 1 GB memory) and a long time (sev-
eral weeks) to fully train. Nonetheless, it can perform
quite accurately in real-time, even on an average home
computer. Due to memory optimization techniques uti-
lized, it is currently working only on Windows.

3.6. Subtitling and data selection

The presentation system chosen for the project was
meant to aid the already existing system present on
the new website of the Polish Senate. The website fea-
tures video recordings and transcripts as separate doc-
uments. The authors’ system can be thus used in two
potential use-cases:

1) as a fully functional transcription tool – to display
automatic (and somewhat inaccurate) transcripts,
until the manual transcripts become available (usu-
ally 1–2 days after the actual meeting),

2) as a subtitle alignment tool – to assign subtitle time-
codes to existing manual transcripts, once they be-
come available.

The latter of the two tasks may seem as much more
trivial but is actually quite challenging. The biggest
problem is that the manual transcripts are not an ac-
curate representation of what is actually spoken during
the meetings. The transcripts are corrected in order
to be easier to read in PDF form but omit many nu-
ances of speech, like word repetitions, interruptions,
and paralinguistic sounds. That is why, an alterna-
tive time-alignment technique is used: first the audio
is recognized using a language model trained on the
vocabulary that is known to exist in the audio and as
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a second step, text-to-text alignment is used to deter-
mine which portions of the audio have been correctly
matched with the text. Next, this same method is used
recursively on all the incorrectly aligned segments un-
til a perfect alignment is reached (Katsamanis et al.,
2011). Given enough time, this method always con-
verges to the forced time-alignment, although this may
not always be our goal. If the transcripts that we are
trying to align contain errors, we may decide to stop
the forced alignment early and accept the ASR out-
put instead. This may ultimately prove more accurate
than fully forced time-alignement.
There are also many technical issues related to sub-

title generation. This is usually handled by the spe-
cialized software designed specifically for use in televi-
sion or movie subtitling. Such software contains many
heuristics to determine how to optimally fit the infor-
mation on the screen in order to make it easy to follow
for the viewer. The system in this paper implemented
only the basic heuristics: the number of characters per
cue, minimum duration between two consecutive cues,
and duration of cue after the speech is over. More ad-
vanced heuristics would be difficult to implement, be-
cause the output of the ASR is a stream of words that
lacks any sentence boundaries, punctuation, or capital-
ization. This problem also affects Machine Translation
and it is planned for the future to fix it with additional
modules for punctuation and capitalization.
The final system also has the ability to export the

result in WebVTT (Hickson, 2012) format. This is
a W3C standard for describing subtitles used on web-
sites. It is easy to deploy with existing streaming solu-
tions, especially if HTML5 is used. This method was
successfully tested by the authors on several modern
browsers (e.g., Google Chrome).

4. Experiments

A comparison between the authors’ system, Julius,
and Kaldi was performed. All three systems described
in the previous sections were trained on the same fea-
ture sets. This comparison is fairly imprecise as these
systems are vastly different in their capabilities and
training approaches. The values here are what can be
regarded as the baseline for each system, given the
same training data. Evaluation was perfomerd on an
independent set of about 50 minutes in length with 10
different speakers.

Table 1. Comparison of different systems trained on the
same data. The vocabulary was set to 90 k words and the
LM was trained on a corpus of 60 million tokens.

System WER

Julius/w 5-gram LM 34.62

Authors’ hybrid system/w tripple LM 32.68

Kaldi/w 3-gram LM 30.06

The authors’ connectionist system surpasses the
traditional Hidden MarkovModel (HMM) based one in
both accuracy and resource consumption. Even though
it works in real-time on a typical laptop computer,
it consumes up to 2 GB of memory, whereas Julius
performs at a fraction of that memory footprint. On
the other hand, to achieve such results, Julius works
only one third of real-time. Kaldi is capable of match-
ing and exceeding the authors’ system performance in
real-time but has similar memory requirements as that
system.
Many experiments were performed on the Kaldi

system in order to establish the lowest error rate. These
experiments included the following: different acoustic
data training sets, different methods for training AMs,
different language data training sets, context length of
LMs, entropy pruning in LMs, dictionary size, Out-Of
Vocabulary (OOV) words inclusion or exclusion from
the training data, decoder parameter tuning. These ex-
periments were tested on the set containing 10 different
speakers (approx. 2 hours of data).
Table 2 shows a typical training procedure span-

ning over several AM optimization techniques available
in Kaldi. Table 3 presents the evolution of the system
given more data. The BASELINE system was trained
on the initial 28 hours of Senate data and a vocabulary
of 60 k words. In EXP1, more data from various online
sources was added to improve the language model. By
expanding the vocabulary to 211 k words in EXP2, the
error rate was reduced quite significantly. Adding the

Table 2. Comparison of training methods in Kaldi on an
initial training set containing only Senate recordings and

transcripts.

Method WER

Initial trigram 37.37

+LDA/MLLT 34.37

+MMI 32.01

+MPE 32.55

+SAT(fMLLR) 33.51

+MMI 31.81

+fMMI 29.85

+BMMI 29.69

+SGMM 32.39

Table 3. Several iterations of the system. The WER was
reduced by adding more data as they became available.

Step Triphone +SAT +fMMI

BASELINE 34.37 33.51 29.85

EXP1 30.89 25.69

EXP2 25.88 21.3

EXP3 23.96 19.96

EXP4 22.46 19.56
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data from the NKJP corpus helped further reduce the
WER in EXP3 and adding the full audio corpus, as
shown in EXP4, brought the overall error rate to the
final level of 19.5%.
The best results using Kaldi (WER = 19.5%) were

achieved with AMs trained using fMMI criterium on
a dictionary of 211 thousand words (giving ca. 350
thousand phonetic forms – the increase is mostly due
to coarticulation rules that allow many words to be
pronounced in multiple ways) and a 5-gram language
model with the entropy pruning threshold set to 10−9.
Preliminary experiments using DBNs were also per-

formed. Initial experiments using the authors’ connec-
tionist decoder showed an improvement of 5% accuracy
but due to the limitations of the system, the experi-
ments were done on a much smaller corpus. Further
experiments were therefore performed using the tools
available in the Kaldi toolkit. A network was trained
on the small, initial training set (as in Table 2) and
the output of the fMLLR acoustic models was used as
the input to the network. The WER was reduced to
29.51%, which is an improvement of 4% to the initial
result. Note that this is the simplest training method
available in Kaldi and further experiments need to be
performed to fully utilize the toolkit (especially the
MMI training methods).

5. Discussion and conclusion

Some observations can be made from these experi-
ments:

• modern AM training methods can considerably im-
prove the error rate,

• increasing the training data set size generally im-
proves performance but not consistently; i.e., there
are certain training methods that achieve higher
gain with more data than others,

• a strong influence of the LM on the final performance
was noticed during the experiments; it should be
noted, however, that increasing the dictionary size
does not always improve performance because new
words may occur too sparsely in the training corpora
to be modelled to a satisfactory level,

• very large dictionaries have to be reduced to be us-
able but pruning causes considerable increase in per-
plexity; it is distinctive, however, that the pruning
of Polish data needs to be about two times smaller
than English because of the rich inflection present
in the language,

• a notable problem remaining is the lack of language
data, specifically corpora of spoken language, avail-
able for Polish, instead of the literary or “smoothed”
data that is very common; this makes the LMs
poorly correlated with the actual spoken utterances,
since they lack many of the common spontaneous
speech artifacts – repetitions, hesitations, pauses,

and mispronunciations; the relatively (compared to
other languages) small domain text corpora reflect
the poor recognition results.

This paper described the research behind creating
the first Polish LVCSR transcription system of Sen-
ate speeches. The authors made effort to use the best
tools available at the time to achieve this goal. Initial
attempts were slightly discouraging, especially when
relying on the HTK workflow and the Julius decoder.
Fortunately, the transition to the Kaldi toolkit helped
to achieve reasonable results. While the best result
(WER 19.5%) may seem worse than what is reported
for other languages, the reasons behind it are pretty
clear: lack of training data, especially language data,
introduces high LM perplexity and OOV rates. Com-
bined with the fact that inflected languages have much
larger vocabulary sizes makes Polish quite a challenge
to overcome. The authors hope that this small step will
encourage others to contribute and help bring the state
of Polish ASR to the levels of the overall international
research.
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(2006), The 2006 RWTH parliamentary speeches tran-
scription system, [in:] INTERSPEECH.

24. Marasek K. (2012), TED Polish-to-English transla-
tion system for the IWSLT 2012, Proceedings IWSLT
2012.

25. MarasekK., Brocki Ł.,KoržinekD., Szklanny K.,
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