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The purpose of this study was to evaluate the psychoacoustic annoyance (PA) that the tractor drivers are
exposed to, and investigate its effects on their brain signals during their work activities. To this aim, the sound
of a garden tractor was recorded. Each driver’s electroencephalogram (EEG) was then recorded at five different
engine speeds. The Higuchi method was used to calculate the fractal dimension of the brain signals. To evaluate
the amount of acoustic annoyance that the tractor drivers were exposed to, a psychoacoustic annoyance (PA)
model was used. The results showed that as the engine speed increased, the values of PA increased as well. The
results also indicated that an increase in the Higuchi’s fractal dimension (HFD) of alpha and beta bands was
due to the increase of the engine speed. The regression results also revealed that there was a high correlation
between the HFD of fast wave activities and PA, in that, the coefficients of determination were 0.92 and 0.91
for alpha and beta bands, respectively. Hence, a good correlation between the EEG signals and PA can be used
to develop a mathematical model which quantifies the human brain response to the external stimuli.
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1. Introduction

Today, it may no longer be possible to imagine
a work and life environment without noise, and find-
ing such an environment is one of the human dreams.
Although humans are accustomed to the presence of
noise around them, its effects on the body and the
performance of individuals are not hidden from any-
one. So far, a lot of research has been done on the im-
pact of sound on body and mind (Van Kamp, Davies,
2013; Sygna et al., 2014; Basner et al., 2014). Peo-
ple working in various agriculture sectors are exposed
to many sound sources, including a variety of agricul-
tural machinery and implements. For this reason, noise
effects on people working in this sector have been stud-
ied by many researchers (Lalremruata et al., 2019;
Ghaderi et al., 2019).

Noise annoyance is another crucial issue in the field
of sound. Noise annoyance has nothing to do with
the users’ health and is merely a measure of a user’s
comfort. For example, the sound may have a low
pressure level and therefore not be dangerous to the
user, but qualitatively it can create annoying condi-
tions for the user. Thus, in addition to assessing the
sound pressure level, it is necessary to consider the ef-
fective factors causing noise annoyance (Fujii et al.,
2002). For this purpose, the sound quality criteria
are needed to express people’s mental feelings. There-
fore, psychoacoustics was proposed to study the human
mental perception of sounds. In fact, psychoacoustics
relates the physical properties of a sound to the sensa-
tion and perception that arises from it (Allen, 2000).
There are several qualitative criteria for the noise an-
noyance. The most important criteria are loudness,
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sharpness, roughness and fluctuation strength (Fastl,
Zwicker, 2007).

In recent years, much research has been done to find
a model of noise annoyance. Using jury test and regres-
sion analysis, some models have been proposed. Mean-
while, a model called psycho-acoustic annoyance was
introduced (Fastl, Zwicker, 2007). So far, several
studies have been conducted on the effect of sound
quality parameters on people’s performance, such as
cars (Nor et al., 2008), trains (Park et al., 2015), agri-
cultural machines (Lashgari, Maleki, 2016), con-
struction machinery (Carletti et al., 2011), ships
(Han, 2012), and aircraft (Janssens et al., 2008).
Therefore, it can be seen that the issue of sound quality
and noise annoyance is still of interest to researchers.

In recent decades, another important topic that
has attracted the attention of ergonomic researchers is
the assessment of physiological changes of individuals
in the working environment. To measure the physio-
logical changes of individuals, various methods can
be used, including the electroencephalography (EEG).
The EEG method directly evaluates the electrical ac-
tivity of the human brain and reflects all the physi-
cal and mental activities of individuals. EEG signals
are divided into five major frequency bands. These
frequency bands are called delta, theta, alpha, beta,
and gamma. The delta waves lie within the range of
0.5–4 Hz and are mostly associated with deep sleep.
The theta waves lie within the range of 4–8 Hz and
are associated with drowsiness or deep meditation.
The alpha wave is a fairly regular pattern between
8 and 13 Hz. This wave is associated with relaxed,
alert state of consciousness. The beta activity, which
is an irregular pattern between 13 and 30 Hz, occurs
mostly during alertness and active thinking, active at-
tention and solving problems. The frequencies above
30 Hz correspond to the gamma range. This rhythm
can be used for confirmation of certain brain diseases
(Dietrich, Kanso, 2010; Sanei, Chambers, 2013;
Jiang et al., 2019).

Several studies have been performed on oscillatory
brain activity while the participants were exposed to
auditory and visual stimuli. So far, different frequency
bands were used to measure brain activity in response
to auditory stimuli. Studies have indicated that the
delta, theta, alpha, beta, and gamma bands are influ-
enced by auditory stimuli (Mazaheri, Picton, 2005;
Lippé et al., 2009; Hettich et al., 2016; Mai et al.,
2016).

Because the brain has a nonlinear dynamic struc-
ture, the brain signals are also complicated and nonli-
near in nature (Korn, Faure, 2003). Therefore, one of
the most appropriate ways to describe the brain func-
tion is to use a nonlinear analysis based on the chaos
theory (Khodabakhshi, Saba, 2018). One of the
most essential features for evaluating the turbulence
of a signal is measuring complexity using the fractal

dimension (Mohammadi et al., 2018). When fractal
geometry was introduced by a French mathematician
named Mandelbrot, it attracted many researchers. It
was used to interpret complex natural phenomena in
various fields of science and engineering. In fractal geo-
metry, complexity is expressed by a number called the
fractal dimension. There are various algorithms for cal-
culating the fractal dimension, such as Katz, Higuchi,
Petrosian, and Box Counting.

People react to external stimuli such as sound, vi-
bration, light, and so on. By analyzing the reactions,
we can determine the positive or negative effects of
stimuli on humans and their behaviour. Since psychoa-
coustics is the human mental perception of sound, the
effect of sound quality parameters on the brain signals
is also important. Therefore, the effect of parameters
such as loudness, sharpness, roughness, and fluctuation
strength on some bands of the EEG has been studied.
The results show the correlation between loudness and
alpha band (Lee et al., 2013).

Since most garden tractors do not have cabs, the
drivers of these vehicles are exposed to the direct
sound. Therefore, it is essential to be aware of the
effects of sound on them. The purpose of this study
was to evaluate the psychoacoustic annoyance that the
tractor drivers are exposed to, and investigate its ef-
fects on their brain activity during their work acti-
vities.

2. Material and methods

2.1. Equipment

In this research, the sound of a garden tractor
(Goldoni 341) with a 3-cylinder engine and 41 horse-
power was recorded. The tests were carried out at five
engine speeds. Recording the sound signals was done
at the driver’s ear position. For this purpose, the mea-
surement microphone (MP201 model) was placed hori-
zontally on a tripod at an elevation appropriate to the
driver’s ear position.

2.2. Participants

Sixteen healthy males with an average age of 29
years and right-handed volunteers participated in this
study. All participants reported normal hearing and
no medical problems. The participants were asked to
close their eyes to avoid unwanted activity such as eye
blink/movement (Chen et al., 2017). First, the EEG
data of each participant was recorded in a quiet room
(rest mode). Then, they were asked to sit next to the
tractor (to eliminate the effects of other parameters
such as seat vibration) and listen to the emitted sound
(Fig. 1). At this stage, the participants were exposed
to the tractor sound at five different engine speeds.
This study was approved by the Ethics Committee of
Arak University.
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Fig. 1. Electrodes position (a) and experiment setup (b).

2.3. Electroencephalogram

At each stage, the data was stored for 29 elec-
trodes FP1, FPz, FP2, F7, F3, Fz, F4, F8, FC5, FC1,
FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6,
P7, P3, Pz, P4, P8, O1, Oz, and O2 for 120 seconds
(Fig. 1). The reference region was linked at the right
earlobe and the ground electrode was placed at AFz.
To record the brain signals, the eWave32D was used
at a sampling rate of 1 kS/s, 24-bit resolution, with
a standard 10–20 hat.

After recording the data, all the intrusive arti-
facts such as blinking, eyeball movement, facial mus-
cle movement, electrode movement on the scalp, and
50 Hz noise were removed using MATLAB software
R2016. In order to noise removing, discrete wavelet
transformation (DWT) was used. In this study, each
signal is decomposed by DWT to 8 levels using
a mother wavelet of Daubechies 8 (db8). The db8
function is widely used for removing artifacts from
EEG signal (Nagabushanam et al., 2020; Luo et al.,
2016). The 8 level decomposition of EEG signals re-
sulted in one approximation and eight details coeffi-
cients. Thresholding functions are then applied to re-
move noise using noise thresholds. Finally, the EEG
denoised signal is reconstructed using inverse discrete
wavelet transform. After removing the artifacts, the
signals were decomposed into the frequency bands
delta, theta, alpha, beta, and gamma.

2.4. Psychoacoustic annoyance

Psychoacoustic annoyance was proposed for the
first time by Zwicker and Fastl. The PA’s value is cal-
culated from N5 loudness (the loudness value reached
to or exceeded from 5% of the measurement time
and was calculated by statistical analysis), sharpness,
roughness, and fluctuation strength together. The for-
mula for the psychoacoustic annoyance reads as follows
(Zwicker, Fastl 2007):

PA = N5 (1 +
√

ω2
S + ω2

FR) , (1)

where N5 is percentile loudness in sone.

ωS = (S − 1.75)0.25 log(N5 + 10)
for S > 1.75 acum,

ωS = 0 for S < 1.75 acum,

(2)

ωFR = 2.18

(N5)0.4
(0.4F + 0.6R), (3)

where S is sharpness in acum, R is roughness in asper,
and F is fluctuation strength in vacil. All details con-
cerning these metrics are described in other researches
(Lee et al., 2013; Lashgari, Maleki, 2015). Based on
these equations, specialized software is designed and
presented to calculate the mentioned metrics. In this
research, LabView software was used.

2.5. Higuchi’s fractal dimension

In this work, the HFD method was applied for the
EEG analysis. HFD is a fast algorithm to estimate
the fractal dimension of time series signals such as
EEG. This algorithm also provides a more accurate
measure of the signals’ complexity compared to other
methods (Al-Nuaimi et al., 2017; Mohd Radzi et al.,
2019).

The method for calculating the HFD of a signal is
presented in detail in other papers and the readers are
referred to a review on this method, and its applica-
tion (Kesić, Spasić, 2016). However, this algorithm is
briefly described below.

If x(1), x(2), ..., x(N) is the time series under ana-
lysis, the new time series Xm

k is defined as:

Xm
k ∶ x(m), x(m + k),

x(m + 2k), ...,(m + int [(N −m)
k

]k) ,

m = 1,2, ..., k, (4)

where m and k are initial time and time steps, respec-
tively.
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The length Lm(k) of each curve Xm
k is calculated

as follows:

Lm(k)= 1

k

⎡⎢⎢⎢⎢⎣

N − 1
int (N−m

k
)k

⋅
⎛
⎝

int(N−mk )

∑
i=1

∣x(m + ik) − x(m + (i − 1)k)∣
⎞
⎠

⎤⎥⎥⎥⎥⎦
. (5)

Total average length, is computed for all series for
each k (ranging from 1 to kmax):

L(k) = 1

k

k

∑
m=1

Lm(k). (6)

Then, in the plot of ln(L(k)) versus ln(1/k), the
estimate of HFD is given by the slope of the least-
squares linear fit.

Time step is a free parameter and fractal dimension
increases as this parameter grows and reaches a con-
stant value for k > kmax. The point at which fractal
dimension plateaus is considered to be the value of
kmax (Zappasodi et al., 2015). In this work, kmax was
found to be equal to 70.

3. Results

Table 1 shows sound quality metrics and sound
pressure level (SPL) at different engine speed.

The results of the PA are presented in Fig. 2. The
ascending trend of PA is visible due to an increase
in engine speed. Comparison of means at 5% proba-
bility level shows a significant difference between the

a) b) c)

d) e)

Fig. 3. Mean HFD in different stages for each band: a) alpha; b) beta; c) theta; d) delta; e) gamma.

Table 1. Sound pressure level and sound quality metrics at
different engine speed.

1 2 3 4 5
SPL [dB] 90.32 90.27 90.87 91.43 92.16

Loudness (sone) 3.61 5.00 5.51 5.81 7.00
Sharpness (acum) 1.43 1.67 1.72 1.75 1.84
Roughness (asper) 0.10 0.14 0.20 0.22 0.20
F.Strength (vacil) 0.11 0.09 0.08 0.07 0.07
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Fig. 2. PA values in different engine speeds.

mean values of PA. The average PA in this tractor is
6.97, with a standard deviation of 1.56. The highest PA
value was obtained at speed 5, which is 89.4% higher
than speed 1.

To evaluate the HFD changes due to the increase
of engine speed, the HFD averaged across all elec-
trodes and all subjects. Therefore the HFD value of all
29 electrodes was calculated for each subject, and fi-
nally, the average HFD for all subjects was determined
separately for each frequency band.

The mean HFD in different stages for each band
is shown in Fig. 3, separately. As can be seen from
this figure, in the frequency bands, except for the delta
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band, the mean HFD of different engine speeds has in-
creased compared to the rest stage. Although there is
no definite trend in theta, delta, and gamma bands, the
general trend of the graphs represents the increase of
mean HFD of the alpha and beta bandwidth due to
an increase in engine speed. For the theta and delta
bands, fluctuations are seen in the mean HFD of dif-
ferent engine speeds.

The mean HFD at the first stage (rest) and the last
stage (speed 5) is shown in Fig. 4. In this figure, the
mean HFD of the last stage also increases compared
to the first stage. According to Table 2, the effects of
stages were significant at a level of 5%. The last stage,
which has the highest PA, shows an increase in mean
HFD in most electrodes. In just six electrodes, 3 (FP2),
4 (F7), 8 (F8), 9 (FC5), 10 (FC1), and 12 (FC6), the
mean HFD in the last stage is lower than in the first
stage. As the figure shows, half of these six electrodes
are in the frontal lobe and the other half are in the
central lobe of the brain. According to Fig. 1a, it can
be seen that these six electrodes are located almost
symmetrically in both hemispheres of the brain.

Fig. 4. Mean HFD of 29 electrodes for all subjects at first
and last stages.

Table 2. Analysis of variance of data on mean HFD.

Source SS df MS F Prob >F
Stages 0.00946 1 0.00946 9.81 0.0028
Error 0.05401 56 0.00096
Total 0.06347 57
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Fig. 5. Brain mapping for the first stage (a), last stage (b) and difference (c).

To compare the results of the first and last stages,
the HFD averaged across all frequency ranges. Figure 5
shows the brain map of mean HFD for the first and last
stages. Besides, the difference between the two stages
is shown. As can be seen from the figure, the fractal
dimension of parts of the frontal, central and parietal
lobes increased in the last stage compared to the first
stage when the PA level reached a maximum. The sym-
metry seen in the first stage brain map is not seen in
the last stage.

To more closely examine the relationship between
the sound and brain activity of the subjects, the re-
gression between the PA and different bands was per-
formed separately, and the results are shown in Table 3.
As can be seen, there is a high correlation between the
alpha and beta bands, and PA. In some studies, in ad-
dition to evaluating each band individually, different
relative algorithms have been proposed to examine the
state of brain activity (Chen et al., 2013; Eoh et al.,
2005; Jap et al., 2009). In this study, some algorithms
were used and the results of the regression between PA
and these algorithms are shown in Table 3. The result
indicates that none of these algorithms improved the
coefficient of determination.

Table 3. Correlation between PA and different bands
and algorithms.

Bands and algorithms R2

α 0.92
β 0.91
θ 0.53
δ 0.46
γ 0.26
β/α 0.90
θ/α 0.86
θ/β 0.77
γ/δ 0.39

(α + θ)/β 0.77
(γ + β)/(δ + α) 0.92
(α + θ)/(α + β) 0.69
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4. Discussion and conclusion

In this study, a garden tractor whose engine is very
close to the driver was used. Since the tractor does
not have a cab, the sound of the engine as one of the
main sources of sound reaches the driver directly. An
increasing trend of PA was observed due to the in-
crease of engine speed. Changing the values of sound
metrics due to changes of the engine speed is logical,
as reported in other studies (Siano et al., 2015; Liu
et al., 2015). Since PA is formed from these criteria,
PA’s change is due to a change in the engine speed.

In this study, it was decided that the participants
were exposed to the sound of the tractor directly. In
order to eliminate the effects of other parameters such
as seat vibration, the participants were requested to sit
next to the tractor. Therefore, lateralization is the lim-
itation of this study.

Since the participants were only exposed to the
engine sound, the changes observed in HFD can be
attributed to differences in PA. A similar result has
been reported for increased HFD of the brain sig-
nals when exposed to sound stimuli (Gladun, 2020).
However, the effect of sound on human brain activi-
ty has also been reported in other studies. Studies
have shown that human exposure to pleasant and
unpleasant tones affects different areas of the brain
(Banerjee et al., 2016). A noisy work environment
can also cause changes in brain signals (Bhoria et al.,
2012). According to the results, the two alpha and beta
bands had the greatest effect in this regard. The effect
of the external stimuli on the alpha and beta bands has
also been expressed in other studies (Bhoria et al.,
2012; Yeo et al., 2009).

According to the results, in most electrodes, the
mean HFD of the last stage, which has the highest PA
level, is higher than the first stage. In many previous
studies, midline scalp sites have been used to record
auditory activity (Atli et al., 2019; Neuhaus et al.,
2009; Kropotov et al., 2000). Among midline elec-
trodes used in this study, only electrode 22 (Pz) was
unchanged in two stages. At the other four electrodes,
the mean HFD of the last stage is higher than the first
stage.

The maximum difference between the two stages is
also related to the electrodes of the two central and
parietal lobes. The motor and somatosensory cortexes
are located in these areas. These cortexes are signifi-
cantly more involved in the cognitive information pro-
cessing and functional control than other regions of the
brain (Zhang et al., 2018). The results of other studies
have shown that in the drowsiness phase, the activity
of neurons in both motor and somatosensory cortex de-
creases and leads to significant changes in EEG signals
(Zhang et al., 2018).

Since increasing the sound level leads to the ir-
regularity of signal, it can be concluded that the dis-

turbance rate of the wave rises for high level sounds.
Therefore, the fractal dimension of the sound will in-
crease in proportion to the increase in engine speed
(Boroujeni, Maleki, 2019). On the other hand, re-
search has shown that the fractal dimension of the
biological signals is correlated with the fractal dimen-
sion of the external stimuli. Increasing the fractal di-
mension of the external stimuli increases the fractal
dimension of the biological signals. Research has also
been done on the fractal dimension of the sound stimuli
on the fractal dimension of the brain signals (Namazi,
2018; Sink et al., 2011). Therefore, the increase in
the fractal dimension of the last stage by increasing the
engine speed is consistent with the results of the other
research.

As other findings confirm, an increase in the fractal
dimension is associated with an increase in the comple-
xity of the neural activity (Hinrikus et al., 2011;
Pavithra et al., 2014; Vega, Noel, 2015; Kesić,
Spasić, 2016). Complexity is assumed to be synony-
mous with the functioning of the brain system. Com-
plexity in nervous systems is related to the functional
benefits such as high flexibility, rapid adaptation to
the environment, and system dynamics (Zappasodi
et al., 2015). On the other hand, the reduction in brain
complexity can be interpreted as a reason for reducing
the brain’s ability to continue a task. The reduction in
brain complexity can be explained by the functional
isolation of the neurons with greater independence of
the brain components (Xu et al., 2018). This is why
decreased EEG complexity has been linked to dysfunc-
tion in the neurological injuries such as Alzheimer’s
disease (Zappasodi et al., 2015).

Other studies have shown that FD in the wake-
fulness is increased compared to the drowsiness state
(Klonowski et al., 2005; Pavithra et al., 2014). Due
to the decreased brain activity in drowsiness, sleepy
drivers lose the ability to make decisions and cannot re-
spond quickly to external stimuli (Mardi et al., 2011).
On the other hand, sound can cause mental stress in
people. Research has shown that the alpha and beta
bands are related to stress and rapid brain activity
such as decision making, analysis, and information pro-
cessing (Banerjee et al., 2016). Measuring changes in
the alpha and beta bands is one way to detect stress
through brain signals (Sulaiman et al., 2011). Also,
acoustic stimuli are often used as stressors to measure
stress (Nishifuji et al., 2010).

Low levels of HFD in the first stage (rest) in Fig. 4
show that participants are in a stress-free and relaxed
position. The HFD values increased after sound expo-
sure. This increases the brain activity and alertness.
In some studies, a quiet environment has been used
to accelerate drivers’ drowsiness, because a quiet envi-
ronment can make people drowsy (Mardi et al., 2011;
Samiee et al., 2014; Kong et al., 2011). Therefore,
it can be concluded that sound can prevent drivers
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from falling asleep and increase their focus on their
tasks.

The delta and theta bands are regarded as slow
wave activities, while the alpha and beta bands are
considered the fast wave activities (Jap et al., 2009;
Zhang et al., 2018). Results showed that there is
a high correlation between the fractal dimension of fast
wave activities and PA. However, there is a weak corre-
lation between the fractal dimension of the slow wave
activity and PA, and in algorithms that include slow
wave activity, this weak correlation is also seen.

However, the research has shown that a small frac-
tal dimension indicates resting state and the environ-
mental sounds increase brain activity and consequently
the fractal dimension of brain signals (Bojić et al.,
2010). Increasing the fractal dimension is a sign of
alertness and will cause the driver to react quickly
(Mohd Radzi et al., 2019). Therefore, it can be said
that in cases such as driving, the presence of sound can
to some extent prevent the driver from falling asleep
and increase the driver’s concentration, and reaction
speed, though the other aspect of sound that causes se-
vere injuries to people should not be ignored. However,
in this study, the sound pressure level in the driver’s
ear position was less than 80 dB, which according to all
standards, will allow the driver to work 8 hours a day.

In conclusion, the HFD method may not be the
simplest and the most effective method for analyzing
the EEG signals; still, the speed, accuracy, and cost
of using the HFD method have made it widely useful
for medical research and diagnosis. However, the use
of HFD combined with other linear and nonlinear me-
thods will lead to better results (Kesić, Spasić, 2016).
The results of this research show that the PA model
has a high correlation with the alpha and beta bands.
The early detection of the driver’s fatigue and drowsi-
ness can effectively prevent accidents, so, the use of
the PA model in this regard can be useful and further
research in this area is suggested. An important result
of investigation the correlation between the EEG sig-
nals and PA is that the analysis could potentially be
used in the development of mathematical models that
relate human reaction to external stimuli.
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