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A moving average (MA) is a commonly used noise reduction method in signal processing. Several studies
on wheeze auscultation have used MA analysis for preprocessing. The present study compared the performance
of MA analysis with that of differential operation (DO) by observing the produced spectrograms. These signal
preprocessing methods are not only applicable to wheeze signals but also to signals produced by systems such
as machines, cars, and flows. Accordingly, this comparison is relevant in various fields. The results revealed
that DO increased the signal power intensity of episodes in the spectrograms by more than 10 dB in terms of
the signal-to-noise ratio (SNR). A mathematical analysis of relevant equations demonstrated that DO could
identify high-frequency episodes in an input signal. Compared with a two-dimensional Laplacian operation, the
DO method is easier to implement and could be used in other studies on acoustic signal processing. DO achieved
high performance not only in denoising but also in enhancing wheeze signal features. The spectrograms revealed
episodes at the fourth or even fifth harmonics; thus, DO can identify high-frequency episodes. In conclusion,
MA reduces noise and DO enhances episodes in the high-frequency range; combining these methods enables
efficient signal preprocessing for spectrograms.
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1. Introduction

Many illnesses induce changes in breathing. These
changes can be detected by recording lung sounds.
Lung sound auscultation is thus critical. Currently,
COVID-19, a form of viral pneumonia, is one of the
main causes of death globally (Nguyen et al., 2021).
Consequently, lung sound auscultation is a crucial
process for physicians to detect abnormal breathing.
A computer-aided lung sound analysis is an accurate
method for facilitating auscultation. One commonly
applied method of computer-aided lung sound analysis
entails visualizing the lung sounds with a spectrogram
and subsequently performing an analysis (Fraiwan

et al., 2021; Kumar et al., 2021; Lang et al., 2021;
Li et al., 2021; Lu et al., 2021).

A spectrogram of a signal over time at various fre-
quencies displays power intensities and their distri-
butions. Spectrograms visually represent the strength
(or “loudness”) of a signal. In medical auscultation,
spectrograms have been increasingly used to analyze
the frequency of continuous lung sound signals to iden-
tify and characterize abnormal respiration.

A moving average (MA) is a commonly used tech-
nique for preprocessing biomedical signals (Sovijärvi
et al., 2000; Charbonneau et al., 2000; Tabata et al.,
2018; Taplidou, Hadjileontiadis, 2007; Bertran
et al., 2019). MA operates as an effective low-pass
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filter or band-pass filter that reduces high-frequency
noise (Hashemi et al., 2011; Sovijärvi et al., 2000).
However, low-frequency signal components in a spec-
trogram can cause noise, hindering signal analysis for
wheeze detection (Gavriely et al., 1984). A key fea-
ture of a wheeze is nonideal harmonic tones (Jeeru,
2021; Comajuncosas, 2010); whether MA can en-
hance this feature is unknown because the noise in
wheeze signals is random. Therefore, spectrogram ex-
amination is necessary to identify these tones (Li,
Hong, 2015; Mendes et al., 2015). In contrast to
MA analysis, differential operation (DO) for signal
analysis operates as a high-pass filter. Specifically,
DO reduces the low-frequency components of a sig-
nal (de Cheveigné, Nelken, 2019) and could thus
enhance wheeze signal features in a spectrogram (Bae
et al., 2021; Taplidou et al., 2003).

Accordingly, this study compared the performance
of MA analysis, DO, and their combination for cap-
turing wheeze features in spectrograms. Notably, sig-
nal preprocessing technology is crucial not only for
bioelectric signals but also for signals produced by
systems such as machines, cars, and flows. Therefore,
a comparison of the performance of MA- and DO-based
signal preprocessing methods is applicable to numer-
ous domains.

2. Methods

In MA analysis, the mean value within a signal win-
dow can be derived as follows:

x[n] =
1

N

n+N−1
∑
n

x[n], (1)

where x[n] is the mean of x[n] to x[n +N − 1], with
n = 1,2, ...,3 until the end point of the signal. N is the
number of window points. In this study, N was set to 3
in accordance with the procedures described by other
studies (Tabata et al., 2018; Taplidou, Hadjileon-
tiadis, 2007).

Assuming that x(t) is a signal, the first finite dif-
ference (DO) of x(t) can be written as follows:

∆x(t) =
x(t + h) − x(t)

h
, (2)

where ∆ is the difference operator, t is time, and h is
the interval between x(t) and x(t + h) for a digitally
sampled signal h = 1/fs, where fs is the sampling fre-
quency (Wang et al., 2020).

The element x[n] at the time point n in a spectro-
gram can be defined as follows (Haykin, Van Veen,
1998):

∣Xη[jΩ]∣
2
= ∣

∞
∑
−∞

x[n]w∗
[n − η]e−jΩn∣

2

, (3)

where w∗(n−η) is a window function, which is typically
a function of real numbers. Therefore, w∗(n− η)e−jΩn

represents an envelope function that causes a time shift
of η with a sine wave and a cosine wave. Furthermore,
e−jΩn is a phasor operator, which is the same as that in
the discrete fast Fourier transform (FFT). A spectro-
gram typically presents the relationship of the magni-
tude (in dB) of the time-independent discrete Fourier
transform with time. In this study, the number of
frames for the short FFT was set to 128, and the num-
ber of nonoverlapping points was set to 126. Addition-
ally, the study used four input wheeze signals to cre-
ate spectrograms: an original, unprocessed wheeze sig-
nal (OS), a signal processed through DO (DS), a signal
processed through the MA method (MS), and a sig-
nal processed through a combination of DO and the
MA method (DMS). The sampling frequency of the ex-
plored signals was determined to be 5512.5 Hz. The
computation was executed in the MATLAB R2016a
(MathWorks, USA) development environment.

3. Results

To compare the performance of the MA and DO
methods, the spectrograms were created for various
signals and used for analysis. Figure 1 displays the
spectrograms created for the four input signals:

• 1a presents the OS in the time domain; the x-axis
represents time, and the y-axis represents ampli-
tude.

• 1b shows the DS in the time domain.
• 1c demonstrates the spectrogram of the OS, indi-

cating eight distinct episodes; the frequency bands
of these episodes are at approximately 400 and
800 Hz.

• 1d presents the spectrogram of the DS, reveal-
ing 16 episodes with frequency bands at ap-
proximately 400, 800, 1200, and 1600 Hz; as the
episodes at 1600 Hz could not be distinguished,
they are indicated by arrows in the figure.

• 1e shows the MS.
• 1f displays the DMS.
• 1g presents the spectrogram of the MS, revealing

eight clear episodes with frequency bands at ap-
proximately 400 and 800 Hz.

• 1h demonstrates the spectrogram of the DMS, in-
dicating 12 visible episodes with frequency bands
at approximately 400, 800, and 1200 Hz.

Regarding the amelioration of high-frequency noise
in the signals, the combination of DO and MA analysis
resulted in the best denoising performance. The spec-
trogram presented in Fig. 1h reveals lower power levels
in the high-frequency bands. However, the spectrogram
in Fig. 1d exhibits lower power levels in these bands.
Accordingly, the DO process also exhibited acceptable
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Fig. 1. a) OS, b) DS, c) spectrogram of OS, d) spectrogram of DS, e) MS, f) DMS, g) spectrogram of MS, h) spectrogram
of DMS. The dashed line is at 1 kHz. Episodes above the dashed line are observable in d) and h), indicating that DO can

detect episodes with high-frequency components.

denoising performance levels. The dashed line indicates
1 kHz. The episodes above the dashed line are obser-
vable in Fig. 1d and 1h, revealing the performance of
DO in detecting episodes with high-frequency compo-
nents.

4. Discussion

DO is effective as a high-pass filter. This is sup-
ported by the finding of the present study that DO
enhanced the high-frequency episodes at 1200 and
1600 Hz (Fig. 1d). Similarly, numerous researchers
have employed spectrograms to enhance episodes for
wheeze detection (Lin et al., 2015; Taplidou et al.,

2003; Mendes et al., 2015). DO enhances such epi-
sodes, thus increasing the performance of algorithms
used to detect these episodes. Nevertheless, this study
notably revealed that the fourth harmonic episodes ob-
served at approximately 1600 Hz were undistinguished
after DO in the corresponding spectrogram (Fig. 1d).

MA analysis can reduce high-frequency noise.
Accordingly, the power intensity of high-frequency
episodes can be averaged using MA analysis. This
study revealed that the episodes observed at approxi-
mately 1200 Hz in the spectrogram (Fig. 1h) were
less distinguished than those observed in the spectro-
gram (Fig. 1d). Furthermore, the episodes observed
at 1600 Hz almost completely disappear in the spec-
trogram. Signal-to-noise ratio (SNR) calculations were
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performed, and the results (Jet bar in the figures) re-
vealed that the SNRs of the high-frequency episodes at
1200 and 1600 Hz in the spectrogram shown in Fig. 1d
were greater than 20 dB, but those of the episodes
in the spectrogram shown in Fig. 1h were less than
10 dB. Therefore, in terms of SNR, DO outperformed
the DO–MA combination; specifically, the SNR for DO
exceeded that for the combination by 10 dB.

Conceptually, if Eq. (2) is substituted into Eq. (3),
the spectrogram of ∆x[n] can be expressed as follows:

fs ∣∆Xη[jΩ]∣
2
=fs ∣

∞
∑
−∞

(x[n]−x[n−1])w∗
[n−η]e−jΩn∣

2

,

i.e.

∣∆Xη[jΩ]∣
2
= ∣Xη[jΩ]∣

2
−∣

∞
∑
−∞

x[n−1]w∗
[n−η]e−jΩn∣

2

.

(4)
If N = n − 1, we obtain the following:

∣∆Xη[jΩ]∣
2
= ∣Xη[jΩ]∣

2

− ∣
∞
∑
−∞

x[N]w∗
[N−(η−1)]e−jΩ(N+1)

∣

2

. (5)

Replacing N with n yields the following:

∣∆Xη[jΩ]∣
2
= ∣Xη[jΩ]∣

2

− ∣
∞
∑
−∞

x[n]w∗
[n−(η−1)]e−jΩ(n+1)∣

2

, (6)

therefore:

∣∆Xη[jΩ]∣
2
= ∣Xη[jΩ]∣

2
− ∣e−jΩXη−1[jΩ]∣

2
. (7)

Equation (7) indicates that the spectrogram of
x′[n] is the difference between ∣Xη[jΩ]∣

2 and its phase
delay with the adjusted window function. Therefore,
the spectrogram of x′[n] is similar to that of x[n].

However, changes in the spectrogram of processed
signals can be observed through the formulas theoreti-
cally. Accordingly, Eq. (3) can be rewritten as follows:

∣Xη[jΩ]∣
2
= ∣

∞
∑
−∞

xη[n]e
−jΩn

∣

2

, (8)

that is:
xη[n] = x[n]w

∗
[n − η]. (9)

After applying DO, we obtain the following:

∆xη[n] = ∆x[n]w∗
[n − η] + x[n]∆w∗

[n − η], (10)

therefore:

∆x[n]w∗
[n − η] = ∆xτ [n] − x[n]∆w

∗
[n − η]. (11)

The spectrogram of ∆x [n] can be expressed as follows:

∣∆Xη[jΩ]∣
2
= ∣

∞
∑
−∞

∆x[n]w∗
[n − η]e−jΩn∣

2

, (12)

that is:

∣
∞
∑
−∞

(∆xη[n] − x[n]∆w
∗
[n − η])e

−jΩn
∣

2

= ∣Xη[jΩ]∣
2

− ∣
∞
∑
−∞

x[n]∆w∗
[n − η]e

−jΩn
∣

2

. (13)

Notably, all the terms of (∆xτ [n]−x[n]∆w
∗[n−η])

are in the real part. The window function is typically
uniform, that is:

ω∗[n − η] = (u[n] − u[n − η])
∗
, (14)

therefore:

∆ω∗ [n − η]=(δ [n]−δ [n−η])
∗
. (15)

Substituting Eq. (15) into Eq. (13) yields the following:

∣∆Xη[jΩ]∣
2
= ∣Xη[jΩ]∣

2
− ∣(1 − e−jΩη)X0[jΩ]∣

2
. (16)

The right side of Eq. (16) is easily interpreted
because ∣X0 [jΩ]∣

2 indicates the spectrogram of x[n]
without the window function. Considering the signal
originality, ∣X0 [jΩ]∣

2 more clearly reveals the charac-
teristics of a signal in the frequency domain. Equa-
tion (16) indicates that the spectrogram of ∆x[n] is
the difference between the spectrogram of x[n] and the
phase-changed original spectrogram of x[n] without
the window function. Therefore, Eq. (16) indicates the
following properties of the processed signals:

1) The power intensities in Fig. 1d are shown to be
lower than those in Fig. 1c. This was determined
to influence the presentation of a larger range of
power intensities in the spectrogram. The change
in the power intensity resulted in the enhancement
of higher-frequency episodes.

2) ∣X0 [jΩ]∣
2 represents the spectrogram of x[n]

without the window function; thus, ∣X0 [jΩ]∣
2

is not as smooth as ∣Xη[jΩ]∣
2. Therefore, the

frequency components are clearer in ∣X0 [jΩ]∣
2.

Episodes represent the harmonics for specific du-
rations. Therefore, the frequency components of
episodes should be enhanced in ∣X0 [jΩ]∣

2. This
thus explains the higher-frequency episodes ob-
servable in Fig. 1d in this study.

Wheeze sounds produce a more harmonic signal
than do other lung sounds. This thus explains why
the DS in this study was similar to the OS. Accord-
ingly, DO has superior performance in episode detec-
tion in wheeze spectrograms.
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In pattern recognition, edge detection is commonly
used for enhancing episodes in wheeze spectrograms.
Edge detection entails the use of a two-dimensional
Laplacian operation to scan an image. Compared with
a two-dimensional Laplacian operation, DO method
applied in this study is easier to implemented and
could be used in other studies on acoustic signal pro-
cessing.

5. Conclusions

MA analysis is a commonly used preprocessing
method for reducing high-frequency noise for wheeze
detection. This study compared MA analysis with DO
to determine its advantages and disadvantages. On the
basis of the study results, we propose that DO is in-
stead used for signal preprocessing in wheeze detec-
tion. According to Eq. (16), the reduction of the total
power intensity are relatively elevated the power in-
tensity of the specific higher frequency episodes. Fur-
thermore, ∣X0 [jΩ]∣

2 is not as smooth as ∣Xη[jΩ]∣
2.

Therefore, the frequency components are clearer in
∣X0 [jΩ]∣

2 and the higher-frequency episodes are also
enhanced.

DO can improve the performance of other algo-
rithms for detecting episodes in spectrograms. Specif-
ically, DO can help identify high-frequency episodes.
This is supported by this study’s finding that the
episodes could be observed at approximately 1600 Hz
in the spectrogram shown in Fig. 1d.

The spectrogram in Fig. 1h has the highest SNR
of the four spectrograms, indicating the advantages of
combining MA and DO. In the high-frequency range,
using the MA reduces noise, and employing DO en-
hances episodes. Employing a combination of MA and
DO is thus an efficient method for signal preprocessing.

Notably, preprocessing technology is crucial not
only for bioelectric signals but also for other signals
produced by systems such as machines, cars, and flows.
Therefore, understanding the relative advantages of
MA and DO in preprocessing is critical for numerous
applications.
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