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Detection of audio spoofing attacks has become vital for automatic speaker verification systems. Spoofing
attacks can be obtained with several ways, such as speech synthesis, voice conversion, replay, and mimicry.
Extracting discriminative features from speech data can improve the accuracy of detecting these attacks.
In fact, a frame-wise weighted magnitude spectrum is found to be effective to detect replay attacks recently. In
this work, discriminative features are obtained in a similar fashion (frame-wise weighting), however, a cosine
normalized phase spectrum is used since phase-based features have shown decent performance for the given
task. The extracted features are then fed to a convolutional neural network as input. In the experiments
ASVspoof 2015 and 2017 databases are used to investigate the proposed system’s spoof detection performance
for both synthetic and replay attacks, respectively. The results showed that the proposed approach achieved
34.5% relative decrease in the average EER for ASVspoof 2015 evaluation set, compared to the ordinary cosine
normalized phase features. Furthermore, the proposed system outperformed the others at detecting S10 attack
type of ASVspoof 2015 database.
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1. Introduction

Automatic speaker recognition (ASR) systems,
where the aim is to verify or identify a person from
his/her voice biometrics, have witnessed great perfor-
mance improvements in the last decades with the de-
velopment of methods such as Universal Background
Model (UBM) (Reynolds et al., 2000) and i-vectors
(Dehak et al., 2011). On the other hand, spoofing at-
tacks are proven to be detrimental to ASR systems (De
Leon et al., 2012; González Hautamäki et al., 2015;
Wu et al., 2012). The vulnerability of ASR systems is
a serious threat, since high quality spoofing attacks
can be obtained with the development of related tech-
nology in both hardware and software manners. Fur-
thermore, the mass adoption of the ASR systems can
attract attention of malicious individuals. Open source
algorithms or recorded speech of a target speaker can
be used for spoofing attacks with a little or even no
expertise in the field.

The ASVspoof Challenges provided researchers
large scale databases with several attack types and

known/unknown attack conditions, which aid to the
developments of counter-measures for spoof detection
(Kinnunen, 2017; Todisco et al., 2019; Wu et al.,
2017). Conventional methods such as Mel-Frequency
Cepstral Coefficients (MFCCs) and Gaussian Mixture
Models (GMMs) can be used for spoofed detection.
However, many different methods have been developed
with superior performances. For example, Constant-Q
Cepstral Coefficients (CQCCs) (Todisco et al., 2017)
is found to be one of the best features for spoof detec-
tion, and given as a baseline method for the ASVspoof
2017 and 2019 challenges. CQCCs include constant-Q
transform to obtain time-frequency representation of
the speech signals. Further modifications to CQCCs to
increase its performance are proposed in (Yang, Das,
2020) and (Yang et al., 2018). On the other hand, it
is shown that simply increasing the number of filters
and cepstral coefficients for MFCC can generate a high
performance (Chen et al., 2018).

Besides the MFCC and CQCC features, many
other magnitude-based features can be found in the
literature for spoof detection (Font et al., 2017;
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Sahidullah et al., 2015). The main reason for us-
ing the magnitude-based features may be the fact that
the phase spectrum is usually neglected in speech and
speaker recognition systems. Hence, researchers usu-
ally focus on the magnitude spectrum to extract use-
ful information. However, phase features can also pro-
vide traits to detect spoof attacks, or at least they
may provide complementary information to magnitude
features (Jung et al., 2019; Liu et al., 2019; Tian
et al., 2016). Such combinations of phase-based fea-
tures are used for spoof detection in (Patel, Patil,
2015; Singh, Pati, 2019), and (Srinivas et al., 2018).
Wu et al. (2012) showed that the cosine normalized
phase spectrum (or cosine phase in short) and Modified
Group Delay (MGD) features can outperform MFCCs.
In (Liu et al., 2015), local binary pattern, cosine phase,
and MGD features are combined to achieve a bet-
ter performance than each sub-system. A group delay
based phase spectrum is found to be more effective to
detect replay attacks than several other features (Cai
et al., 2019). A magnitude-phase spectrum, where both
spectra are used to extract features, has performed
better than MFCCs and CQCCs (Yang, Liu, 2018).
Features obtained from instantaneous frequency, which
is time derivative of phase, achieved a higher perfor-
mance for replay attack detection task than MFCC,
CQCC, and MGD features (Rafi, Murty, 2019). Var-
ious phase and magnitude based features are examined
and fused in (Xiao et al., 2015), where very high di-
mensional (13056) feature vectors are obtained for each
frame by considering 51 consecutive frames. Fused sys-
tem achieved almost a perfect score for the ASVspoof
2015 evaluation data, expect the S10 condition, where
Equal Error Rate (EER) is 26.1. In (Tom et al., 2018),
group delay features and convolutional networks with
attention are used to achieve 0.0% EER value for the
ASVspoof 2017 database version 1.0.

The aforementioned studies reveal the importance
of phase related features. Recently, it is reported that
the discriminative power of the features can be en-
hanced with weighting schemes (Yang et al., 2019;
2020). The proposed approaches are combined with
constant-Q transform and applied to magnitude spec-
trum. Improvements over the standard CQCCs are ob-
served in both studies. Hence, regarding the impor-
tance of the phase spectrum, the performance of the
frame-wise weighting for the cosine normalized phase
features is investigated in this paper.

Although the performance of the extracted features
is critical for detecting the spoofed speech, the other
part of the system consists classifiers, where suitable
models are built by using the features from the training
data. Similar to the features, a large variety of meth-
ods can be found for classifiers. A comparison between
GMMs, generalized linear discriminant sequence ker-
nel, and i-vector can be found in (Hanilçi et al., 2015)
for ASVspoof 2015 database. On the other hand, a di-

rect comparison between different classifiers found in
the literature may not be meaningful due to the differ-
ent databases, different features, and different configu-
ration of parameters. However, a general trend can be
seen from the results of the challenges. For example,
ASVspoof 2015 results indicate that many participants
preferred GMM or i-vector based classifiers (Wu et al.,
2017). Contrary to this, more and more studies include
deep learning approaches in the recent ASVspoof 2019
challenge (Alzantot et al., 2019; Białobrzeski et
al., 2019; Chang et al., 2019; Gomez-Alanis et al.,
2019; Jung et al., 2019; Zeinali et al., 2019). Con-
sidering the superior performance of the deep learn-
ing architectures in diverse areas, researchers inher-
ently examined them in spoof detection tasks. With the
same concerns, convolutional neural networks (CNN)
employed as classifiers in this paper.

The performance of the proposed system (weighted
cosine phase features – CNN) is analyzed using
ASVspoof 2015 and 2017 version 2.0 databases. The
ASVspoof 2015 database includes speech synthesis and
voice conversion attack types, while the ASVspoof 2017
focuses on the replay attack scenario. The remaining of
the paper is organized as follows: in Sec. 2 details of the
proposed approach are given from both feature and
classifier perspectives, Sec. 3 shows the experimental
setup and results, Sec. 4 includes a discussion of the
results, and Sec. 5 concludes the paper.

2. Proposed approach

In this section, the proposed system is explained
through two subsections. In the first subsection, frame-
wise weighted cosine normalized phase features are
introduced with the extraction steps. In the second
subsection, the details of CNN classifier employed
to detect spoofing attacks using the extracted fea-
tures are given. The reasons behind choosing these
methods are also explained in the respective subsec-
tions.

2.1. Weighted cosine phase cepstral features

A frame-wise weighting approach is proposed in
(Yang et al., 2019) for magnitude spectrum obtained
via constant-Q transform, and achieved lower EER
values than MFCCs and CQCCs, with a common
Deep Neural Networks (DNN) classifier. The main idea
behind the weighting is to increase the Fisher ratio be-
tween two classes, as given with Eq. (1):

FC1C2 =

(mC1 −mC2)
2

vC1 + vC2

, (1)

where C1 and C2 represent the classes, mC1 , mC2 , vC1 ,
and vC2 represent the means and variances of C1 and
C2, respectively. FC1C2 is the Fisher Ratio between the
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classes. Assuming X and Y are the magnitude spectra
of a genuine frame and spoofed speech frame as

X = x1, x2, ..., xK , Y = y1, y2, ..., yK , (2)

where x1, x2, ..., xK and y1, y2, ..., yK are frequency co-
efficients of each spectrum, respectively, and K is the
total bin number. The sums along frequency coeffi-
cients are represented by SX and SY , and defined as

SX =

K

∑

k=1

xk, SY =

K

∑

k=1

yk. (3)

Yang et al. (2019) found out that multiplying each
magnitude spectrum frame with its sum along fre-
quency coefficients, leads to increased discriminative
power, i.e. a bigger Fisher ratio value. That means, in-
stead of using X and Y , the authors used X ′ and Y ′

which are defined as

X ′
= Sxx1, Sxx2, ..., SxxK ,

Y ′
= Syy1, Syy2, ..., SyyK ,

(4)

to enlarge discriminative information between genuine
and replayed speech. The detailed mathematical proof
is given in the reference for interested readers. A simi-
lar approach is derived in (Yang et al., 2020), using
mean-based and variance-based log magnitude spectra.
The modified log magnitude improved the results, com-
pared to the sum along frequency coefficients method.

When the given equations are examined, it can
be seen that the frame-wise weighting does not rely
on magnitude spectrum. In fact, it can be included
at different steps of feature extraction process. There-
fore, phase features can also benefit from a weighting
method. In order to verify this, the cosine normali-
zed phase features (Wu et al., 2012) are chosen in
this work. To extract these features, a cosine function
is applied to the unwrapped phase spectrum. Then,
a discrete cosine transform is applied to obtain cep-
stral coefficients. Although there are many other phase
based features, the cosine phase features are chosen
due to their straightforward implementation. It is as-
sumed that the benefits of weighting approach can be
easily observed, since there are only a few steps in
the extraction process, any improvement in the results
can be mainly attributed to the frame-wise weighting.
The cosine function maps its inputs into [−1, 1] inter-
val, hence, the modified log weighting of Yang et al.
(2020) cannot be used due to the negative values of the
phase spectrum, before or after cosine normalization.
The proposed feature extraction process is summarized
as a block diagram in Fig. 1. The frame-wise weighting

Fig. 1. Extraction process of the proposed frame-wise weighted cosine phase features.

is applied after the cosine function. Although it may
be applied directly to the phase spectrum, mapping
the results into [−1, 1] interval with the cosine func-
tion may hinder the potential improvements. There-
fore, once the cosine normalized phase spectrum is ob-
tained, the frame-wise weighting is applied by sum-
ming each frequency coefficient of the frame as ex-
plained previously. Then, the discrete cosine transform
is applied to extract cepstral features.

In the previous studies, various dimensional co-
sine phase-based features have been used with different
classifiers. In (Alam et al., 2015), 12-dimensional co-
sine phase features are combined with 12-dimensional
MFCC and log energy, and GMM is used as a classifier.
Voice activity detection is also applied to remove non-
speech frames. In (Wu et al., 2012), 12-dimensional co-
sine phase features are used with a GMM classifier. In
(Novoselov et al., 2016), first and second order deriva-
tives are included along 12-dimensional cosine phase
features and a support vector machine is chosen as
the classifier. In (Hanilçi et al., 2016), GMM and i-
vector are considered as classifiers for 32-dimensional
cosine phase features. 57-dimensional features were
used in (Hanilçi, 2018a), and 60-dimensional features
were used in (Sahidullah et al., 2015).

Since those number of features and their variations
(such as delta, acceleration, log energy, voice activity
detection, cepstral mean normalization, etc.) make it
hard to determine a fixed number of coefficients for
optimal performance, using high dimensional features
seems to be an effective way. In (Tian et al., 2016)
and (Xiao et al., 2015), very high dimensional vectors
are extracted from both magnitude and phase spec-
trums, and neural networks are used to handle those
high dimensional inputs. In (Tom et al., 2018), phase
spectrum-based group delay grams are constructed
and fed to a CNN to detect replay attacks. Both of
these high dimensional systems resulted in very high
performing systems (2.62% EER on ASVspoof 2015
and 0% EER for ASVspoof version 1.0, respectively).
Inspired by the success of high dimensional features
and modelling capacity of deep learning models, 128-
dimensional cepstral features and CNNs are used in
this work. The next subsection gives the details of the
CNN models.

2.2. Convolutional neural networks

CNN is one of the most popular deep learning
architectures, and used for spoofed speech detection
in many studies with various combinations (Cai
et al., 2019; Chettri et al., 2020; Dinkel et al., 2017;
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Gomez-Alanis et al., 2019; Jung et al., 2019; Tom
et al., 2018; Zhang et al., 2017). It should be noted
that more complex models such as ResNet (Tom et al.,
2018), combination of CNNs with recurrent neural net-
works, etc. may boost the system’s performance. Ho-
wever, in this work, our main goal is to investigate
the effectiveness of frame-wise weighting approach on
phase features. Therefore, a conventional CNN model
is preferred following the setup given in (Zhang et al.,
2017).

Similar CNNs are used for both ASVspoof 2015 and
2017 databases, except the output layer where six out-
puts are used for ASVspoof 2015 database, and two
outputs are used for ASVspoof 2017 database to rep-
resent genuine and spoof attack types. Four convolu-
tional layers with different filter sizes and filter num-
bers are used. Pooling layers are added to each convo-
lutional layer for down sampling. After the last con-
volutional layer, a fully-connected layer is used which
is connected to the softmax output layer. The num-
ber of neurons in the fully-connected layer is 1024 for
ASVspoof 2015 database, and 64 for ASVspoof 2017
database. Since the ASVspoof 2017 is relatively smaller
than the other database, it is found that a smaller
number of neurons fit better to the data. Batch nor-
malization and ReLU activation function are used.
50% dropout is added to the fully-connected layer.
A summary of the CNN parameters is given in Table 1.

Table 1. CNN architecture for the proposed system.

Type Size/# of filters

Layer 1 Convolutional
pooling

7× 7/16
3× 3

Layer 2 Convolutional
pooling

5× 5/32
3× 3

Layer 3 Convolutional
pooling

3× 3/32
3× 3

Layer 4 Convolutional
pooling

3× 3/32
3× 3

Layer 5 Fully-connected 1024 (64 for ASVspoof 2017)

Layer 6 Sofmax output
layer

6 (2 for ASVspoof 2017)

3. Experiments

In this section, details of the databases are given
first, then experimental setup is described. Finally,
the results are provided for each database separately,
a comparison between the proposed systems and sim-
ilar previous works on the same database is also in-
cluded.

3.1. Datasets

As mentioned previously, ASVspoof 2015 and
ASVspoof 2017 version 2.0 were used in the experi-

ments. The ASVspoof 2015 data includes synthetic
speech attacks, and the ASVspoof 2017 data includes
replayed speech attacks. Sampling rate of the utteran-
ces is 16 kHz for both databases. The statistics of each
database are given in Tables 2 and 3. It should be noted
that ASVspoof 2019 database is also publicly available,
and it includes both the synthetic and the replayed
speech attacks. However, to the best of the author’s
knowledge, any study on the ASVspoof 2019 data in-
cluding the cosine phase features is not present yet.
Therefore, only 2015 and 2017 data were considered in
this work to make a comparison between the proposed
system and other cosine phase feature based systems
found in the literature.

Table 2. Statistics of ASVspoof 2015 data; number of availa-
ble utterances per class and their portions in the database.

Class
Segments

Train Development Evaluation
Genuine 3750 3497 9404
S1 to S5 2525 9975 18400
S6 to S10 0 0 18400

Table 3. Statistics of ASVspoof 2017 data; number of availa-
ble utterances per class and their portions in the database.

Class
Segments

Train Development Evaluation
Genuine 1507 760 3565
Spoof 1507 950 14465

In the ASVspoof 2015 data, 10 different spoofing at-
tacks are present. Five of them (S1–S10) are included
in each part of the database (train., dev., eval.) and
called as known attack types. The rest is only available
in the evaluation data and is called as unknown at-
tack types. All attack types use the same STRAIGHT
vocoder, except S5 and S10 attacks. S5 uses mel-log
spectrum approximation vocoder, and S10 uses a more
complex diphone concatenation method. Among all of
the available attacks, S10 is considered as the hardest
one to detect, as it overlaps with the genuine speech
data (based on i-vector representations), and it is not
present in the training partition. Therefore, the classi-
fiers can misinterpret it as genuine speech. Interested
readers can refer to Fig. 2 of Wu et al. (2017) for a vi-
sual representation, and also for the further details of
the speech synthesis algorithms.

The ASVspoof 2017 version 2.0 data, consists of re-
played speech attacks, obtained via replaying and re-
cording genuine utterances using various devices and in
various acoustics environments. The version 1.0 data
includes data anomalies such as zero-valued samples
and silence periods, which affects the detection perfor-
mance (Delgado et al., 2018). Those files were fixed
in the version 2.0 data.
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3.2. Experimental setup

For each database, the CNN model given in Sub-
sec. 2.2. is used with the indicated parameters. For
the feature extraction, the audio signals are divided
into 25 ms length frames with 10 ms overlap. Ham-
ming window is applied before taking 512-points dis-
crete Fourier Transform. The cosine function is then
applied to the unwrapped phase spectrum. Frame-wise
weighting is introduced at this step as explained in
Subsec. 2.1. Finally, discrete cosine transform is used to
extract cepstral features. First 128-dimensions (exclud-
ing the zeroth coefficient) are selected from each frame.

As the CNN model requires a uniform input, the
length of the audio signals is adjusted to be 4 seconds
as in (Zhang et al., 2017). Note that this length is
chosen based on the average length of ASVspoof 2015
data (3.5 s), but in this work it is also applied to the
ASVspoof 2017 data (which has 2.6 s average training
data (Chettri et al., 2018)). The utterances longer
than 4 s are truncated, and the utterances less than
4 s are padded by repeating the data to match the
length. So, a 2-D input per utterance is provided to
the inputs of the CNN. For the outputs, it is observed
that using six outputs (one for genuine type, five for
different spoof types represented in the training data)
is more effective than two outputs (one for genuine,

Table 4. Comparison of the performances between the proposed Cos-CNN system and other cosine phase spectrum based
studies in terms of EER [%] values for the development set of ASVspoof 2015 data. Note that most studies just reported

the average EER.

System
Spoofing type

Average
S1 S2 S3 S4 S5

Proposed weighted Cos-CNN 0.8897 3.2001 1.4097 1.2799 5.6838 2.4926
CosPhasePC-SVM (Novoselov et al., 2016) 0.13 0.20 0.04 0.05 0.23 0.15

Cos-GMM (Hanilçi, 2018b) 0.170 0.985 0.237 0.219 2.7 0.862
Cos-GMM (Liu et al., 2015) – – – – – 4.487
Cos-SVM (Liu et al., 2015) – – – – – 4.403

Cos-GMM (Hanilçi et al., 2016) – – – – – 1.09
Cos-i-vector (cosine scoring) (Hanilçi et al., 2016) – – – – – 11.8
Cos-i-vector (PLDA scoring) (Hanilçi et al., 2016) – – – – – 4.54

Cos-GMM (Sahidullah et al., 2015) – – – – – 1.11
Cos-SVM (Sahidullah et al., 2015) – – – – – 10.83

Table 5. EER [%] values for evaluation part of ASVspoof 2015.

System
Known Unknown

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Average
Proposed weighted Cos-CNN 0.63 2.64 0.89 0.73 5.06 9.83 1.59 2.78 1.01 16.72 4.193

Cos-GMM 1.20 5.03 0.12 0.15 5.49 4.53 1.77 8.13 3.79 33.90 6.41
Cos-GMM (Hanilçi, 2018b) 0.08 0.68 0.06 0.06 2.04 2.83 0.13 0.32 0.33 34.74 4.13
Fusion (Liu et al., 2015) 0.17 0.61 0.31 0.28 0.39 0.90 0.24 0.41 0.24 28.58 3.21
Fusion (Xiao et al., 2015) 0 0 0 0 0.01 0.01 0 0 0 26.1 2.62

Fusion (Novoselov et al., 2016) 0 0.02 0 0 0.01 0.01 0 0.01 0 19.57 1.96

the other for all spoof types) for ASVspoof 2015 data
(Zhang et al., 2017). Therefore, six outputs are also
used in this work as stated previously. In the ASVspoof
2017 data, only two classes are available, hence two
outputs. The CNN models are trained separately for
each database, using only the training data available
in each case. MATLAB is used for all of the aforemen-
tioned process. The CNN network is trained on a single
GPU (Nvidia GTX 1070 TI).

3.3. Results on ASVspoof 2015

Table 4 shows the performance of the proposed sys-
tem for the development set of the ASVspoof 2015
database, and some other studies that also imple-
mented the cosine phase-based cepstral features. Al-
though the features are based on the cosine normalized
phase spectrum, various configuration led to a high
range of EER values. The proposed system achieved
a moderate performance. Since EER values based on
each attack type are not available for the most studies,
a comparison is not possible in that sense. However, the
proposed method mostly failed at capturing S2 and S5
attacks in the development data.

Table 5 shows the EER values for the evalua-
tion data. In this case, most of the previous studies
reported the results with fused systems, or simply igno-
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red the cosine normalized phase features and used seve-
ral other feature types that performed better on the
development data. Therefore, to emphasize the effect
of weighted feature parameters, ordinary cosine phase
cepstral features are extracted without the weighting
step for comparison purposes. 20 cepstral coefficients
(including zeroth coefficient) saved after the discrete
cosine transform, and two 512 mixtures GMM are
trained for genuine and spoof classes. The proposed
weighted Cos-CNN system achieved ∼34.5% relative
improvement over the ordinary Cos-GMM system. On
the other hand, a similar system of (excluding zeroth
coefficient) (Hanilçi, 2018b) yielded similar average
EER value as the propose weighted system, which
proves that feature dimensions and types affect the
performance. Further discussions are left to the next
section.

The results of the evaluation data indicate that the
proposed frame-wise weighted phase spectrum is much
more efficient to capture S10 attacks. Even the best
performing systems on average EER, which have com-
bined several features or subsystems, are struggling to
detect S10 attacks. Further optimizations on the fea-
tures may help to improve the proposed system’s ac-
curacy on detection of the other attack types. As an
alternative, the proposed system can be combined with
the other subsystems to decrease the average EER.

3.4. Results on ASVspoof 2017

Results for both development and evaluation data
are presented in Table 6. Compared to the previous
database, studies that include the cosine phase fea-
tures are limited in this case. Nevertheless, the ex-
periments are conducted to observe the performance
of the proposed system for replay attack detection.
57-dimensional feature vectors (including static, and
its first and second order derivatives) are used in
(Hanilçi, 2018a), and several different features and
classifiers are investigated. For comparison, only the
cosine features with GMM and i-vector classifiers are
included in Table 6. It can be observed that the perfor-
mance of the proposed system lies between the others
for the development set. For the evaluation set, perfor-
mance of the proposed system got closer to the i-vector
classifier. All of the systems performed very poor on
the evaluation data, which may indicate that cosine

Table 6. EER [%] values observed with the ASVspoof 2017
database.

System Development Evaluation
Proposed weighted Cos-CNN 17.44 39.28

Cos-GMM
(Hanilçi, 2018a)

25.95 46.9

Cos-i-vector
(Hanilçi, 2018a)

11.9 36

phase based features are not suitable for replay attack
detection tasks.

To have a visual examination of the network out-
puts, weighted cosine phase features for a selected sen-
tence are given in Fig. 2, where the top row shows
the genuine speech, and the bottom row shows the
replayed speech. Left column indicates the correctly
detected utterances, while right column indicates the
missed utterances. Although it may be hard to see
a clear correlation between the figures, the detected
replayed speech (bottom left) and the missed genuine
speech (top right) have a similar content at the begin-
ning, and also around 300th frame.
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Fig. 2. Weighted cosine phase features for the correctly clas-
sified utterances (left column) and the missed utterances

(right columns).

To further investigate the network outputs, Fisher
ratio between the classes was calculated following
Eq. (1). The ratio between the true positive genuine
speech and the false negative genuine speech was cal-
culated as 0.0115, whereas the ratio between the true
positive genuine speech and the false positive replayed
speech was 0.0035. Similarly, the ratio between the
true negative replayed speech and the false positive
replayed speech was 0.002, and the ratio between the
true negative replayed speech and the false negative
genuine speech was 0.0006. As the ratios between the
class members are expected to be relatively small com-
pared to the inter-class ratios, these results indicate
that the proposed network’s predictions were mean-
ingful.

4. Discussion

The proposed system was tested under two differ-
ent database conditions, and the results are presented
in the previous section. In general, the proposed ap-
proach achieved compatible results compared to sev-
eral different studies found in the literature.
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For the ASVspoof 2015 database, the importance of
the feature extraction parameters are observed from
Tables 4 and 5. Although similar phase features and
similar classifiers are used in several studies, the re-
sults vary. That indicates more improvements may be
achieved with the proposed weighted phase spectrum
and CNN system. For instance, first and second order
derivatives can be extracted. Also, the effects of voice
activity detector, cepstral mean/variance normaliza-
tion, different number of features, using a specific fre-
quency range, etc. can be investigated. Similar find-
ings are also relevant for the results obtained via the
ASVspoof 2017 database.

An interesting observation from the Table 5 is that
the proposed system performed much more better than
the others for the S10 portion of the evaluation set
of ASVspoof 2015. The S10 attack, which is a speech
synthesis algorithm, is considered as the most harm-
ful spoof attack of that database. As can be seen in
Table 5, even the systems that have achieved nearly
perfect scores for the other types are highly susceptible
to this specific attack. One of the most important out-
comes of this paper is that the weighted cosine phase
features can be used in the fused systems to further
increase the system’s performance, especially for the
S10 attack.

A possible drawback of the proposed system could
be the feature dimensions. The feature dimensions are
adjusted to match the CNN inputs of Zhang et al.
(2017), since the main focus of the proposed work is
on the effects of frame-wise weighting, the CNN archi-
tecture is not modified (except the last fully connected
and output layers for the ASVspoof 2017). Hence,
the CNN model may be modified for optimal perfor-
mance by adding/removing layers, changing the filter
sizes and numbers, etc. More importantly, the 128-
dimensional vectors obtained after the discrete cosine
transform may include redundant information. Usual-
ly, a few coefficients are stored and the remaining are
neglected, as the most useful information are presented
in the first coefficients. Although high dimensional fea-
ture vectors have proven to be effective in the pre-
vious studies, high dimensional static cepstral coeffi-
cients seem to be exceptional for this case due to the
aforementioned reason. As an alternative, 30 static co-
efficients and its derivatives may be used, instead of
using the 128 static coefficients. This way, temporal
information will be also served to the classifier, which
may help to boost the system performance.

Other than the possible improvements for the co-
sine phase features, different types of phase features
can also be used with the frame-wise weighting ap-
proach. As mentioned in the Sec. 2, the cosine normali-
zed phase spectrum is chosen for its straightforward
implementation, which allowed us to understand the
effects of weighting. In fact, many other phase-based
features such as group delay outperforms the cosine

phase features. They can also benefit from the frame-
wise weighting within their respective extraction pro-
cess. So, a future work subject will be the compari-
son between several different weighted phase-based fea-
tures.

5. Conclusions

In this paper, a frame-wise weighting strategy,
which was reported to be effective with the magni-
tude spectrum, was applied to the phase spectrum.
128-dimensional cepstral coefficients were extracted
from the weighted cosine phase features, and a CNN
model was used as the classifier. The performance of
the proposed system was analyzed through the ex-
periments conducted with ASVspoof 2015 and 2017
databases separately, to examine the system under
various spoofing attacks. Comparable results were ob-
tained for each database. Further, the proposed system
outperformed many other systems, which include fu-
sion of features/classifiers, for the spoofing attack S10
of ASVspoof 2015 database.

Although the results indicate that the frame-wise
weighting approach could be beneficial for phase spec-
trum features, a more detailed analysis is required for
further improvements. Therefore, future works will be
conducted to find a more optimal feature set, and deep
learning model.
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