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The paper presents a method of eliminating the tonal component of an acoustic signal. The tonal component
is approximated by a sinusoidal signal of a given amplitude and frequency. As the parameters of this component:
amplitude, frequency and initial phase may be variable, it is important to detect these parameters in subsequent
analysis time intervals (frames). If the detection of the parameters is correct, the elimination consists in adding
a sinusoidal component with the detected amplitude and frequency to the signal, but the phase shifted by
180 degrees. The accuracy of the reduction depends on the accuracy of parameters detection and their changes.

Detection takes place using the Discrete Fourier Transform, whose length is changed to match the spectrum
resolution to the signal frequency. The operation for various methods of synthesis of the compensating signal
as well as various window functions were checked. An elimination simulation was performed to analyze the
effectiveness of the reduction. The result of the paper is the assessment of the method in narrowband active
noise control systems. The method was tested by simulation and then experimentally with real acoustic signals.
The level of reduction was from 6.9 to 31.5 dB.
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1. Introduction

Tonal signals are most often defined as signals in
which energy is concentrated in a narrow frequency
band and tonality is assessed by comparing levels in
adjacent bands (ISO 2017). The definition applies to
both signals that contain more than one tonal com-
ponent and to signals for which the nature of the
tonal component is different. In (Zivanovic et al.,
2004), the authors indicate that the definition given
above includes both pure tones (time-invariant and
modulated) and narrowband noise. The classification
of tonal components has been extended (Łuczyński,
2019a) to include further signals showing tonal nature
under certain conditions, e.g. sweep or signals from
the engine, where the rotational speed increases or de-
creases. In this work, the algorithm will be tested for
stationary periodic signals and periodic signals modu-
lated by a random function according to the classifica-
tion proposed in (Łuczyński, 2019a). An input signal

with a tonal component whose level will be reduced
is called the original signal. The added tonal compo-
nent is called a compensation signal. The result of the
process (the output signal) is called the compensated
signal.

Signals containing tonal components include sound
produced by the transformer (Quia et al., 2002;
Zhang et al., 2012), mains hum (Łuczyński, 2019b),
fan noise (Wang et al., 2005), music and speech
signals (Yoshizawa et al., 2011; Rocha, 2014; Łu-
czyński, 2018) or internal combustion engine noise
(Łuczyński, Brachmański, 2017). These signals can
be modeled as sinusoidal signals with added noise. At-
tenuation or reduction of these signals is important in
noise control and in signal processing. Narrow band
active reduction (ANC) systems have been developed
for this purpose. The effectiveness of such systems is
largely influenced by the adjustment of the original
signal and compensating signal parameters. In ANC
systems in free field, the adjustment highly depends on
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the position of the reference microphone and secondary
source (Dąbrowski, 2013), but also on accurate detec-
tion of parameters (Łuczyński, 2017). These systems
have a certain effectiveness, but it should be remem-
bered that total noise reduction is not always desirable,
as e.g. in the case of a car cabin, where we do not want
to get rid of the sound of the engine but only reduce
its level (active equalization (Kuo, 1997)). General re-
quirements for ANC systems are described in 6 points:
high attenuation, wide attenuation band, internal sta-
bility, numerical stability, convergence is case of adap-
tive systems, high robustness to changes of disturbance
(Pawełczyk, 2008).

In narrowband ANC, both different signal parame-
ter detection algorithms and different methods of cre-
ating the compensating signal are used. Sometimes
notch filters (Kim, Park, 1999; Górski, Morzyński,
2013) are used for frequency estimation. Some papers
use high resolution spectral analysis to determine the
parameters of tonal components (Łuczyński, 2019b;
2018; Yoshizawa et al., 2011). The compensating sig-
nal can be the filter compensated signal with appro-
priate gain and phase shift (Wang et al., 2005). Ano-
ther solution used is the synthesis of the compensating
signal (Quia et al., 2002; Zhang et al., 2012; Xiao
et al., 2009).

Initially, narrowband ANC systems were intended
for signals in which the parameters of tonal compo-
nents were stable (Quia et al., 2002; Qio, Hansen,
2000) and it was demonstrated that the effectiveness of
these systems decreases with the increase of the length
of the compensating signal (Zhang et al., 2012). In
next step, the systems were developed that can work
when both the signal and the ambient acoustic condi-
tions change over time (Xiao et al., 2009; Rout et al.,
2019). A common feature of narrowband ANC systems
is the high efficiency of reducing tonal components un-
der appropriate operating conditions.

In this work, the authors focus on the ANC ele-
ment, which is responsible for the correct acquisition
of data on the parameters of tonal components based
on signal analysis and preparation of the compensat-
ing signal. The difference in sound levels before and
after reduction was assumed as the measure of evalua-
tion of the algorithm quality. The algorithm for detect-
ing tonal components is based on the use of a discrete
Fourier transform. In general, there is a trade-off be-
tween frequency resolution and signal length for DFT.
To obtain a high signal resolution, the long analysis
window should be selected. In the case of time-varying
signals, however, it is necessary to operate on as few
signal samples as possible. For this reason, solutions
are being sought that increase the frequency resolu-
tion of DFT (Yoshizawa et al., 2011; Ueda et al.,
2013) or allow the identification of the frequency spec-
trum of tonal components parameters with the high-
est possible precision. This work presents the use of

one of the DFT properties that allow accurate identi-
fication of parameters so that they can be used for
effective reduction of the tonal components, even if
the parameters of these components vary over time,
as e.g. in the case of car engine rotation speed fluctu-
ation (Dąbrowski et.al. 2017).

The rest of this article is organized as follows. Sec-
tion 2 introduces the tonal component reduction algo-
rithm. The methods for parameter detection are dis-
cussed in detail. Sections 3 and 4 present the results of
experiments: in Sec. 3 for a pure tone and in Sec. 4 for
an actual signal, i.e. a single tonal component of the
combustion engine sound signal. The conclusions are
presented in Sec. 5.

2. Tonal signal reduction algorithm

The algorithm for reducing the level of tonal com-
ponents in acoustic signals consists of three stages:
detection of the parameters of the tonal component
(amplitude, frequency and initial phase), synthesis
of the compensating signal (pure tone) and addition of
the compensating signal to the original signal in accor-
dance with the assumptions of active noise reduction
algorithms.

For the detection of tonal component parameters,
the discrete Fourier transform (DFT) property was
used, which means that the most accurate readings
occur when the signal frequency corresponds to an in-
tegral multiple of the DFT resolution, which is related
to the sample rate and DFT length (formula (1)). In
such situations, a single frame (window) contains the
entire signal periods

f = k ⋅
Fs
N
, (1)

where f is signal frequency [Hz], Fs is sampling rate
[S/s], N is DFT length, k ∈ {1,2, ...}.

To observe this, calculations were made on how
the detection of parameters changes depending on the
length of the DFT. The tested signal is expressed by
the formula (2):

x(t) = A cos (2πft − ϕ), (2)

where the parameters are: A = 0.7, f = 100 Hz, ϕ = 0,
t ∈ {0, 1

Fs
, 2
Fs
,⋯}, and A is amplitude of a tonal com-

ponent, f is frequency of a tonal component, ϕ is initial
phase of a tonal component.

The calculations were done in a loop for the DFT
length N ∈ {i, I + 1, I + 2, ...} samples, where k is natu-
ral number. The DFT length corresponds to the signal
length, expressed in samples, which has been subjected
to a discrete transform. The DFT transform was cal-
culated for each number of samples and the maximum
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Fig. 1. Impact of DFT length on the detected parameters: a) value of the detected amplitude, b) relative error of amplitude
detection, c) relative error of frequency detection, d) absolute error of initial phase detection.

amplitude was determined from the spectrum. The cor-
responding frequency and the initial phase were read
for the determined amplitude. Knowing the amplitude,
frequency and initial phase of the signal and the cor-
responding detected parameters, detection errors were
calculated. A summary of the read out amplitude value
and parameter detection errors as a function of DFT
length is shown in Fig. 1.

When the condition of formula (1) is not met, i.e.
there is no signal frequency match to the DFT reso-

Fig. 2. Block diagram of the tonal components elimination
algorithm in single frame (window).

lution, there is an underestimation of the amplitude
value. On the other hand, the largest amplitude valu-
es read from the spectrum correspond to the search
value. The smallest parameter detection errors (ampli-
tude, frequency and initial phase) occur for these DFT
lengths when the amplitude value read is the largest.
As part of the algorithm is indication of the optimal
DFT length based on finding the number of samples for
which the amplitude for the selected DFT band is the
highest. This means that by performing DFT repea-
tedly for a different number of samples, you can deter-
mine when the DFT resolution matches the signal fre-
quency. The algorithm has been tested for various op-
erating conditions, for different window functions used
at the detection stage, and for different methods of cre-
ating the compensating signal. The block diagram of
the algorithm is shown in Fig. 2. The number n cor-
responds to the local maximum of the function of the
maximum value of the amplitude-frequency spectrum.
This corresponds to the number of periods of the tonal
component of the original signal which are included in
a signal with a length such as the DFT for this maxi-
mum of the function.

3. Elimination of stationary tonal component

3.1. The impact of the initial phase

One of the factors that affects the detection effi-
ciency and thus the reduction of the component level
is the value of the initial phase in the signal frame.
A case with a signal frequency of 100 Hz and a sam-
pling rate of 1000 samples per second is a situation
where it is possible to accurately match the DFT re-
solution to the signal frequency using the number of
samples that corresponds to the full number of signal
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periods. For example, when the DFT length is 20 sam-
ples, the signal frequency is an integer multiple of the
DFT resolution. However, in most cases it is difficult
or even impossible to accurately match the number of
samples to meet the condition described in formula (1).
Even if we choose the optimal DFT length, we are
not sure that the frequency and resolution match will
be perfect. This occurs, for example, for a signal with
a frequency of 127 Hz and a sampling rate constant of
44 100 samples per second. The signal length subjected
to the DFT transform would have to be about 347.2
or its multiple samples, which of course is impossible
because the number of samples must be an integer.
Therefore, parameter detection will be affected by an
error and under certain conditions it may happen that
the value of the amplitude read from the complex spec-
trum exceeds the actual value of the amplitude. In such
a situation, the developed algorithm will consider the
given number of signal samples as adequate to read
the other parameters, although this is not the optimal
DFT length. It is affected by the initial phase of the
signal, which in some cases increases the effective value
of the signal fragment. The shorter the signal, the more
noticeable this relationship is.

To prove this, an experiment was carried out for
two sinusoidal signals described by formula (2). In
both cases the amplitude was 0.7, the frequency was
127 Hz and the sampling rate was 44 100 samples per
second. The signals differed in the initial phase, which
was 0.8 radians in the first case and 0 in the second.
For both signals, the effect of DFT length on the
value of the detected amplitude was determined, and
then according to the algorithm for which the DFT
lengths were determined the largest values (search for
local extremes). The results are shown in Fig. 3. The
crosses indicate the amplitude maxima, which are re-
lated to the signal lengths, which approximately cor-
respond to the full signal periods.

a)

b)

Fig. 3. The effect of DFT length on the read maximum
amplitude for a signal with an initial phase: a) 0.8 radians,

b) 0 radians.

An exact match occurs for hypothetical DFT
lengths equal to: 173.6, 347.2, 694.5, 1041.7, 1389.0,
1736.2, and 2083.4. These numbers, rounded to the
nearest integer, correspond to the numbers of samples
read in example a) (except for the first DFT length).
For this case, subsequent local extremes of function
correspond to numbers of samples 164, 347, 694, 1042,
1389, 1736, and 2083. Therefore, it can be assumed
that subsequent local extremes of function correspond
to integer multiples of full signal periods except for the
first extremum, which corresponds to half signal pe-
riod. In this case, however, the amplitude value is sig-
nificantly underestimated. A DFT length of 347 sam-
ples corresponds to a spectrum resolution of 127.09 Hz.
This means that the DFT resolution did not perfectly
match the signal frequency. However, the number of
samples 347 is an integer that with the smallest error
approximates the sought value. For comparison, the
DFT length of 346 samples corresponds to a resolution
of 127.46 Hz and the length of 348 samples corresponds
to a resolution of 126.72 Hz.

In the case of b) successive local extremes of func-
tion correspond to the number of samples 224, 376,
715, 1057, 1401, 1746, and 2092. One signal period
corresponds to approximately 347 samples. The am-
plitude value read for these frame lengths is: 0.6469,
0.7164, 0.7055, 0.7027, 0.7016, 0.7010, and 0.7007.
It can be seen that in this case the maximum ampli-
tude is shifted. The longer the signal, the smaller the
shift and it corresponds to: 60, 29, 21, 15, 12, 10, and 9
samples.

The only difference in the signals presented in both
examples is the value of the initial phase. Figure 4
shows the signal waveforms that correspond to one and
two signal periods indicated by the algorithm for both
initial phase cases (see also Table 1).

a) b)

c) d)

Fig. 4. Signal waveforms with a length of about 1 period
(a and c) and two periods (b and d) for the initial phase of
the signal equal to 0.8 (a and b) and the initial phase equal

to 0 radian (c and d).

The signal lengths, relative errors of detection of
the tonal components parameters (dA amplitude er-



M. Łuczyński et al. – Active Cancellation of the Tonal Component of Sound. . . 583

Table 1. Analysis of signal parameters shown in Fig. 4.

Case
Signal length

[number of samples]
RMS value

Detection error
Amplitude (dA) [%] Frequency (df) [%] Phase (dϕ) [rad]

a 347 0.495 0.00016 0.07 0.0019
b 694 0.495 0.00024 0.07 0.0041
c 376 0.511 −2.34 7.65 0.56
d 715 0.501 −0.79 2.87 0.62

ror, df frequency error, dϕ initial phase error) were
compared and the RMS values of both signals were cal-
culated. The theoretical RMS value of a sinusoidal sig-
nal should be 0.7/

√
2 = 0.495.

The RMS value of the second signal is greater
than the theoretical value for the sinusoidal signal.
This is due to the high values of samples with indexes
above 347. For this reason, the algorithm indicated this
DFT length as the optimal, i.e. one for which the am-
plitude value read is the largest. The amplitude value
read from the spectrum is related to the RMS value of
the signal. Figure 5 shows how the RMS value of the
signal depends on the signal length for two cases dif-
fering in the initial phase. In the first case, when the
signal starts with the initial phase 0.8, the effective
value of the sinusoidal signal fragment does not ex-
ceed the theoretical value, i.e. A/

√
2 in any case. At

the same time, it has the highest value for the num-
ber of samples corresponding to entire periods (and
half of the period). In the second case, when the initial
phase was 0, so the signal began with high values, it
happens that the effective value of the signal is greater
than the theoretical, therefore for these lengths DFT
the largest amplitude values read from the signal spec-

a)

b)

Fig. 5. Dependence of the RMS value of the signal on
the DFT length expressed in the number of samples: a) the
initial phase equal to 0.8 rad; b) initial phase equal to 0.
Theoretical effective value of the sinusoidal signal is marked

with a red line.

trum were found. This phenomenon is becoming less
noticeable when the length of the signal increases.

To indicate how the developed method is effec-
tive for detection and elimination of tonal components,
the least favourable conditions should be determined.
These cases mainly depend on the value of the initial
phase in the signal frame. It should be assumed that
the initial phase of the signal in the frame can take
any value in the range of 0 to 2π. To find the least
favourable conditions, it was checked how the reduc-
tion efficiency for a pure tone depends on the initial
phase. Figure 6 shows this relationship for signals with
approximately one and two signal periods. The data
regarding the analysis of the algorithm operation for
the DFT length corresponding to the first six periods
are presented in Table 2. The conditions when the lo-
west reduction was achieved are assumed as the least
favourable and for these conditions the effectiveness of
the method is determined.

a)

b)

Fig. 6. The influence of the initial phase of the signal on
the value of the reduction of the tonal component level
for the DFT length corresponding to: a) one signal period,

b) two signal periods.

In all the cases analysed, the largest reduction oc-
curred for the initial phase of 0.8. The smallest reduc-
tion occurred for the initial phase from 1.8 to 2.1 de-
pending on the number of signal periods, and this value
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Table 2. The results of the algorithm for signals with different initial phase. Time window shape: rectangular.

Number of signal periods
1 2 3 4 5 6

The shortest DFT length 301 664 1023 1375 1725 2075
The longest DFT length 416 722 1060 1402 1747 2092

Difference 115 58 37 27 22 17

The largest reduction [dB] 58.2 52 57.1 78.2 58.8 52.3
Initial phase for the largest reduction 0.8 0.8 0.8 0.8 0.8 0.8

The smallest reduction [dB] 10.3 16.3 20.3 22.8 24.7 27.1
Initial phase for the smallest reduction 2 2.1 2 1.8 1.8 1.8

Average level of reduction* 19.7 23.1 26.5 29.9 31.3 32.7
*For initial phase between 0 and 2π

of the initial phase is considered the least favourable
condition for a rectangular window.

Additionally, based on Table 2, the following con-
clusions can be drawn:

• To make sure that the maximum corresponding
to one period of the analysed signal is captured,
regardless of the value of the initial phase, at least
416 samples must be taken, which is about 20%
higher than the theoretical value for which the fre-
quency should be adjusted to the DFT resolution.

• With the increase of signal length and with
successive periods, the difference between the
largest and smallest DFT lengths that the algo-
rithm chooses as optimal decreases. This confirms
that the longer the signal, the harder it is to
change the effective value of the signal with single
samples (even of high value).

• The longer the signal and the more signal periods,
the greater the minimum and average tonal com-
ponent reduction. There was no clear trend to
change the largest reduction value.

• The longer the signal and the more signal periods,
the less influence the initial phase of the signal is.

The calculations were repeated for different frequen-
cies and the observations were similar. Therefore, the
effectiveness of the method for a rectangular window is
determined on the basis of the value of the initial phase
for which the smallest reduction of the stationary tonal
signal occurs.

3.2. Impact of window function

Next calculations were carried out for different time
windows (Fig. 7). Time windows were used at the stage
of parameter detection (according to the algorithm in
Fig. 2). For each time window shape, calculations were
made with an initial phase in the range of 0 to 2π in
steps of 0.1 and for different frequencies in the range of
100 Hz to 150 Hz in steps of 1 Hz. In order to determine
the reduction efficiency for the stationary tonal signal,

a) b)

c) d)

e) f)

g) h)

Fig. 7. Applied window functions: a) Hanning, b) Ham-
ming, c) Gauss, d) Blackman-Harris, e) Blackman, f) Bart-

let, g) Chebyshev, h) rectangular.

the least favourable conditions for each time window
were determined.
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When a time window on the signal is applied and
then a DFT transformation on this signal is performed,
the amplitude of the spectrum reading will be at
a lower level than in the case of a rectangular window,
as shown in Fig. 8 below. Therefore, the correction
depending on the window type is needed. DFT calcu-
lations of the pure tone with known amplitude and fre-
quency as well as DFT length such that the DFT reso-
lution was adjusted to the frequency were performed.
The value of the amplitude read in the presence of in-
dividual time window was compared with the known
value of the pure tone amplitude and then the correc-
tion factors were calculated on this basis. The calcu-
lated correction factors for different time windows are
shown in Table 3.

a)

b)

Fig. 8. (a) Graph in time domain and (b) graph in frequency
domain of single tonal component with superimposed rec-
tangular window (blue) and Hanning window (orange).

Table 3. Spectral correction factors for various time
windows.

Window function The value
of the read amplitude

Correction
factor

Hanning 0.35 2
Hamming 0.38 1.85
Blackman 0.29 2.38
Bartlett 0.35 2
Gauss 0.35 2.02

Blackman-Harris 0.25 2.79
Dolph-Chebyshev 0.26 2.7

rectangle 0.7 1

The results of the minimum reduction efficiency of
the stationary tonal component by means of the DFT
variable length algorithm in the presence of various
time windows are presented in Table 4. The results
are presented for DFT lengths corresponding from 1
period to 6 signal periods.

Table 4. The smallest reduction of the level of tonal com-
ponent for various time windows and signal lengths corre-

sponding to signal lengths from one to six periods.

Window function
Number of signal periods

1 2 3 4 5 6
Hanning 6.6 31.3 39.9 44.1 46.7 48.2
Hamming 17.4 30.8 31.7 33.2 34.6 37.1
Blackman 1.9 38.5 44.7 46.1 48.2 48.5
Bartlett 37.9 46.6 48.4 50.4 50.4 50.4
Gauss 1.2 28.8 32.5 35.1 36.9 41

Blackman-Harris −1 45.8 48.4 49.8 50.4 50.4
Chebyshev −0.2 37.9 41.7 45.2 47.1 48.5
rectangle 10.2 16.1 20.1 22.7 24.6 27

Conclusions from the elimination for stationary
tonal components:

• The longer the signal, the greater the reduction
level. The best results for short signals (about 1
signal period) were obtained for the Bartlett win-
dow.

• The worst results for short signals were obtained
for the Blackmann-Harris window and the Cheby-
shev window. It may happen that the compen-
sated signal will have a higher level than the ori-
ginal signal.

• Best results for long signals were obtained for
Bartlett and Blackmann-Harris windows.

• The worst results for long signals were obtained
for the rectangular window.

4. Elimination of the tonal component
in actual signals

4.1. Reduction of the tonal signal in combustion
engine

The signal which was analysed in the previous sec-
tion is an ideal signal model. However, these consider-
ations were made to indicate the algorithm parameters
for which the reduction of the tonal component may
be the largest. Real signals are characterized by varia-
bility of parameters over time such as small random
parameter modulations or an increase or decrease in
amplitude and/or frequency.

In this section, the operation of the developed al-
gorithm will be checked for a periodic signal modu-
lated by a random function. An example of such a sig-
nal could be the sound of an internal combustion en-
gine. Recordings of the two-stroke internal combus-
tion engine with a constant speed of about 7200 RPM
were carried out in the acoustic chamber under con-
trolled acoustic conditions. A single tonal component
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was separated by means of frequency filtration. The
tested signal is not an ideal pure tone with fixed pa-
rameters. Time-varying is both the amplitude and fre-
quency, which oscillate around the average value. Figu-
re 9 shows the signal’s time course with the envelope
marked in red. In the analysed range, the average am-
plitude value is 0.68, the maximum value is 0.82, and
the minimum value is 0.55. The standard deviation
of the amplitude value is 0.06. The average frequency
is 122.9 Hz, the maximum value is 129.7 Hz and the
minimum value is 120.5 Hz. The standard deviation of
the frequency value is 1.41.

Fig. 9. Time course of tonal component with modulated
amplitude and frequency.

Elimination was performed for the length of the
compensating signal in a single frame corresponding
from 1 to 6 periods. The results of the tonal component
level reduction are shown in Fig. 10.

Fig. 10. The results of the reduction of the tonal component
of the combustion engine signal.

With short signals of about one period, large differ-
ences in level reduction can be observed depending on
the shape of the time window. The best results were
obtained for Hanning, Hamming, Bartlett and rectan-
gular windows.

It can also be observed that the longer the compen-
sating signal, the lower the level of component reduc-
tion. This is due to the variability of the original signal
parameters. As the compensating signal is a sinusoidal
signal, then larger mismatches between the original sig-
nal and the compensating signal occur. The results of
the algorithm using single frame length of 1 and 6 pe-
riods of given tonal component and Bartlett window
are shown in Fig. 11.

For a long compensating signal, a larger mismatch
between the compensating signal and the original sig-
nal can be observed.

a)

b)

Fig. 11. The initial fragment of the signal before and after
the elimination of the tonal component using the Bartlett

window.

4.2. Application of overlapping windows for synthesis
of the compensating signal

The elimination results presented so far have been
made using the elimination method according to the
diagram described in Fig. 12. This means that sub-
sequent analysis windows do not overlap and have
the shape corresponding to a rectangular function. It
is simply reduced to collecting the appropriate num-
ber of samples, within these samples the parameters
of the compensating component are detected, and then
the compensating signal is added to the original signal.
Then another set of samples is taken. This way, the
compensating signal is created.

Fig. 12. Elimination scheme without windows
overlapping.

In Fig. 12, Li is a number of samples indicated by
the algorithm for which the tonal frequency and DFT
resolution are tuned.

The consequence of the use of rectangular time win-
dows that do not overlap are the discontinuities of the
compensating signal in the case when the successive
windows (frames) have a difference between the final
phase in the previous frame and the initial phase in
the subsequent frame. A way to avoid this type of phe-
nomenon is to use an overlapping of windows of the
right shape. The idea of such overlapping is shown in
Fig. 13.
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Fig. 13. Elimination scheme with windows overlapping.

Li is the number of samples indicated by the al-
gorithm for which the tonal component frequency and
DFT resolution are tuned. L′i is the number of sam-
ples indicated by the algorithm for windows shifted in
accordance with the assumed window overlap.

The compensating signal obtained for the windows
not shifted and shifted are multiplied by the func-
tion of the window of the appropriate shape and then
these signals are added together. Comparison of results
without overlapping and with overlapping is shown in
Fig. 14.

a)

b)

Fig. 14. Fragment of the compensated signal: a) without
overlapping b) with overlapping.

It can be seen that in the signal with overlap-
ping signal discontinuities have been eliminated (places
marked in red).

Table 5. Reduction of the level of the tonal component of
the internal combustion engine signal for a signal length
of about 1 period with and without overlapping (expressed

in dB).

Window function
Reduction

with
overlapping

Reduction
without

overlapping
Difference

Hanning 27.3 21.2 6.1
Hamming 29.8 29.7 0.1
Blackman 11.8 12.4 −0.6
Bartlett 31.5 28.2 3.2
Gauss 20.3 12.8 7.5

Blackman-Harris 6.9 6.9 0
Chebyshev 7.8 7.6 0.2
rectangle 18.1 30.1 −12

Recalculations were performed using window over-
lap for the length of the compensating signal in a single
window approximately equal to 1 period. The Han-
ning window was used for overlapping. The results of
the tonal component reduction with the use of overlap-
ping and without overlapping are presented in Table 5.

5. Discussion and conclusions

An algorithm proposal for using discrete Fourier
transform for reducing the level of tonal components
of acoustic signals has been presented. It consists of
three stages: detection of tonal component parame-
ters (amplitude, frequency and initial phase), synthesis
of the compensating signal (pure tone) and addition of
the compensating signal to the original signal in accor-
dance with the assumptions of active noise reduction
algorithms.

The detection of tonal component parameters uses
the discrete Fourier transform (DFT) feature, which
means that the most accurate readings occur when the
signal frequency corresponds to an integral multiple of
the DFT resolution that is related to the sample rate
and DFT length. The optimal DFT length is indicated
based on finding the number of samples for which the
amplitude for the selected DFT band is the highest.
Only in the case of shorter signals (e.g. with a length
close to one period) may additional errors appear. This
is due to the fact that, depending on the initial phase
of the signal, the RMS value of a signal that is a lit-
tle longer than one period may exceed the theoretical
RMS value of a sinusoidal signal. For this reason, cal-
culations were made for various initial phases to find
the least favourable conditions.

For the least favourable conditions and using va-
rious time window functions, the minimum tonal com-
ponent reduction efficiency was determined for an ideal
sinusoidal signal. A simulation was also carried out
for an example signal whose parameters change over
time. It was a signal of a single tonal component of
the combustion engine sound at constant speed. The
length of the synthesized compensating signal was de-
pendent on the length of the DFT as indicated by the
algorithm at the stage of parameter detection.

The elimination of the tonal component, which in
the analysed cases was an incomplete elimination, was
carried out for two cases: when the subsequent win-
dows did not overlap and when they overlapped in
50%. In the case of overlapping windows, the Hanning
window was additionally used.

The method presented in the article differs from the
previously known algorithms for reducing tonal noise
in that the frequency of the tonal component is not
known a priori and its precise detection is an element
of the reduction algorithm. The use of a variable length
DFT adjusts the analysis length to the signal frequency
so as to obtain the lowest possible frequency detection
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error. In such a situation, the signal frequency may
vary.

The main disadvantage of the presented method of
detecting tonal components is the long computational
time, which does not allow the algorithm to work in
real time due to the need to repeatedly calculate the
DFT transform, whose length in the vast majority of
cases will not take the value of 2n (where n is natural
number) which would allow for the use of Fast Fourier
Transform in optimal conditions.

The high minimal efficiency of the tonal component
level reduction even for short signals with a duration of
1 period (31.5 dB for the Bartlett window), indicates
that the method can be used not only for active noise
reduction, but also wherever an algorithm for accurate
parameter detection is needed even with short time
windows (computing of spectrograms, analysing non-
stationary signals).
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