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Two optimization aspects of the meshless method (MLM) based on nonsingular radial basis functions
(RBFs) are considered in an acoustic indoor problem. The former is based on the minimization of the
mean value of the relative error of the solution in the domain. The letter is based on the minimization of
the relative error of the solution at the selected points in the domain. In both cases the optimization leads
to the finding relations between physical parameters and the approximate solution parameters. The room
acoustic field with uniform, impedance walls is considered.

As results, the most effective Hardy’s Radial Basis Function (H-RBF) is pointed out and the number
of elements in the series solution as a function of frequency is indicated. Next, for H-RBF and fixed n,
distributions of appropriate acoustic fields in the domain are compared. It is shown that both aspects of
optimization improve the description of the acoustic field in the domain in a strictly defined sense.

Keywords: architectural acoustics; meshless method; radial basis functions; impedance boundary con-
dition.

1. Introduction

The main purpose of room acoustics is to describe
the steady state of enclosed spaces. There are many
methods for exact and numerical modelling of the inte-
rior acoustic field. Up to now the most popular numer-
ical techniques draw on mesh-based methods such as
the Finite Element Method (FEM), Boundary Element
Method (BEM), Finite Differences Method (FDM),
Trefftz Method (TM), Meshless Method (MLM) and
many hybrid methods. All of them belong to the wave-
based methods (WBM), (Prędka, Brański, 2020,
and references cited therein). Heuristic methods are
also important. They include acoustic image source
methods (ISM) based on the geometric diffraction the-
ory and acoustic energy methods (AEM) based on
the principle of energy conservation. All of the above-
mentioned methods have advantages and disadvan-
tages. In order to remove or alleviate disadvantages,
these methods are modified. In addition, hybrid me-
thods are created for the same purpose.

And so in (Meissner, 2019) an exact (modal repre-
sentation) of a room impulse response was used to de-
scribe acoustic field for low-frequency in rooms of arbi-

trary shape and walls covered by a material of complex
impedance. In (Shi et al., 2019) an exact (3D mod-
ified Fourier method) was applied to the description
of the acoustic field of coupled rooms. In this case
the solution series was supplemented with auxiliary
functions, which were introduced to ensure the uni-
form convergence of the solution over the entire solu-
tion domain. In (Meissner, Wiśniewski, 2019) an
exact method (modal expansion) was applied to study
the impact of room modes on low-frequency transients.
The sound source was a tone burst. A theoretical ana-
lysis was confirmed by FEM for two coupled rooms. In
(Van Horssen et al., 2018) applying characteristic co-
ordinates, an exact solution (formula of d’Alembert),
was achieved for initial-boundary problem described
by the wave equation and Robin boundary conditions.
In the work (Chen et al., 2019) the BEM, based on
non-uniform rational B-splines as basic functions, to
the solution of the 2D half-space acoustic problems
with absorbing boundary condition was applied. Fast
multipole method was used to accelerate the solution
of the BEM. In (Rabisse et al., 2019) a FDM in time
domain was applied for simulating the acoustic field in
the room with geometrical relief on the room surfaces.
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To mitigate drawbacks of the FEM to the solu-
tion of acoustic problems, in (Xiangyu et al., 2020)
the MLM in the local Galerkin weak form instead
of the mesh grid required in the global Galerkin weak
form was applied. In (Chen et al., 2017a) the FEM
and BEM coupling approach (hybrid method) was
used for vibro-acoustic analysis. The FEM and BEM
were used to model the structure and acoustic field re-
spectively. Considering the advantages of MLM, this
method was part of many hybrid methods. For exam-
ple, in (Xiangyu et al., 2018) a hybrid MLM – infinite
acoustic wave envelope element method (WEEM) was
proposed for acoustic radiation prediction. This hy-
brid method provides results with high accuracy and
also has a faster convergence speed than the standard
hybrid method FEM-WEEM. In (Wu et al., 2019) the
influence of acoustic waves to structural vibrations was
solved by a hybrid method consisting of FEM and
BEM; it was so called the acoustic-structural coupling
problem. In (Shaposhnikov, Jensen, 2018) an inter-
action between panel vibrations and the acoustic pres-
sure in closed domain was treated. To solve the prob-
lem, the FEM and BEM and the numerical Green’s
function (exact) were applied (hybrid method). For
two-dimensional acoustic radiation problems, in (Li
et al., 2020) the coupling of the RBF interpolation
on triangular mesh with standard FEM was proposed.
It was pointed out that coupled methods (hybrid
method) had significant superiorities over the standard
FEM. In (Pilch, 2019), in Imagine Sources Method
(ISM), the procedure of selection of main simulation
parameters, i.e. number of rays and ray tracing time,
was proposed. A range of input parameters was con-
trolled through criterion between a model and a mea-
surements results.

Four commercial software tools (ART A, Dirac,
EASERA, and WinMLS), widely used in room acous-
tics, were compared in (Alvarez-Morales, et al.,
2016). Comparison was drawn up from the room im-
pulse response measured with each tool under the same
conditions.

In (Brański, Prędka, 2018) MLM was pro-
posed to solve the acoustic boundary problem with
impedance boundary conditions imposed on the
boundary of the domain. In the solution in the form of
a series, the base functions were the nonsingular RBF.
From among many such RBF functions, Hardy’s mul-
tiquadratic functions (H-RBF) were selected. Because
H-RBF was parameterized, with the shape parame-
ter C, a relationship was found between this param-
eter and the physical parameters of the problem. So,
the coefficient C was expressed analytically as a fun-
ction of the separate quantities, i.e. the absorption co-
efficient α, acoustic frequency f and the number of
influence points n.

Under the above assumption that the C coefficient
was found separately for physical parameters, MLM

based on H-RBF was efficient at low and middle fre-
quencies.

In the next paper (Prędka, Brański, 2020), as-
suming the same boundary conditions as before, the
MLM to the solution of the acoustic indoor problem in
the full range of acoustic frequencies was worked out.
First of all three types of RBF were considered, i.e.
H-RBF, inverse multiquadratic (I-RBF) and Duchon’s
(D-RBF).

Next, the relations between physical and approx-
imate solution parameters primarily were shown, but
only for the mean value of the relative error in the do-
main. εm ≤ 5%. For this purpose it was shown that
the parameter C, only in H-RBF and I-RBF, was not
dependent on the absorption coefficient α. However,
the C was changed hyperbolically with respect to fre-
quency f and this change was different for separate
RBFs. The influence of frequency f on the number of
serial elements n was also determined. Hence, the con-
clusion that for all RBFs, even n = 15 provided results
with accuracy εm ≤ 5%.

Finally it was shown that for all values of acoustic
frequencies f and all values of absorption coefficients α,
the MLM with tested RBFs ensured the good acoustic
field in the sense of mean value accuracy in the domain.
But for low frequencies and low absorption coefficients
the approximate distribution of the acoustic field was
not similar to the exact one. It seems that the natural
way to improve results was to tighten the criterion of
searching for solution parameters.

In this paper, based on the minimization of the rel-
ative error εm and similar, based on the error but in
the selected point of the domain ε(x), an efficiency
of MLM is analyzed in detail. Quite similar like in
(Prędka, Brański, 2020), first the relations between
physical parameters and approximate solution param-
eters are shown. Next, the most effective function RBF
is indicated. At the end, for the most effective RBF and
fixed n, the distribution of the acoustic field in the do-
main is calculated, especially at low frequencies and
low values of the absorption coefficient.

2. Formulation of the boundary acoustic
problem

Let an acoustic boundary problem in the domain Ω
with a boundary Γ be given. In steady state this prob-
lem is described by Helmholtz equation and acoustic
boundary conditions. For example, the cross section of
simple acoustic room is considered in which the floor
is modelled through the Neumann boundary condition
(N), but the walls and ceiling are modelled through
impedance Robin boundary conditions (R); geometry
of this problem is in Fig. 1. So, the problem can be
finally described by (Prędka, Brański, 2020),

Lu(x) = ∆u(x) + k2
fu(x) = f(x), x = x′ ∈ Ω, (1)
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Dnu(x) = 0, x ∈ N, (2)

Dnu(x) + z0u(x) = 0, x ∈ R, (3)

where u(x) is the acoustic potential, f(x) – exciting
of the acoustic wave, x = (x, y, z), kf – wave number,
kf = ωf /c, ωf = 2πf – angular exciting frequency, c –
speed of sound, Dnu(x) = ∂u(x)/∂n, n – unit normal
vector pointing outward, z0(x) = (ωρ)/z(x), ρ – air
density.

Fig. 1. Geometry of the acoustic problem.

An acoustic source f(x) in 2D is assumed as the
0-order, Hankel function of the second kind, i.e. f(x) =
AH

(2)
0 (kfr). The intensity of the source A is chosen, so

that the Lm (Eq. (9)) takes the same value for different
values of the absorption coefficient α and frequencies
f (Brański et al., 2017).

A surface acoustic impedance z(x) is given by
(Prędka, Brański, 2020),

z(x) = p(x)/v(x) = ρc1 + (1 − α(x))1/2

1 − (1 − α(x))1/2
, (4)

where p(x) = iρωu(x) is an acoustics pressure, v(x) =
−Dnu(x) – particle velocity, i =

√
−1, α(x) – material

absorption coefficient (Kuttruff, 2000).

3. Approximate solution by MLM via RBF

An approximate solution of the problem is assumed
as the series,

ũ(x′) =∑
ν

aνR(r′ν) = ∣sν − x′∣ , (5)

where sν ∈ Ω = Ω ∪ Γ , x′ ∈ Ω (Fig. 1).
Three forms of RBF R(r′ν) are considered (Prę-

dka, Brański, 2020): H-RBF, (R(C, r′ν)), I-RBF
(R(C, r′ν)), D-RBF (R(r′ν)). Note that H-RBF and
I-RBF depend on the shape coefficient C, which should
be determined.

Now, in the domain Ω, the set of collocation points
{xµ} is selected, where µ = 1,2, ...,m = n, x′µ ∈ Ω,
xµ ∈ Γ (Fig. 2). Substituting Eq. (5) to Eqs (1)–(3)
one has,

∑
ν

aν (D2
xR(r′νµ)+D2

yR(r′νµ)+k2R(r′νµ))=f(x′µ), (6)

∑
ν

aνDnR(rνµ) = 0, xµ ∈ N, (7)

∑
ν

aν (DnR(rνµ) + z0(xµ)R(rνµ)) = 0, xµ ∈ R, (8)

where: e.g. D2
x(.) = ∂2(.)/∂(x′µ)2.

4. Optimization, numerical calculations, results

4.1. Acoustic field parameters

To derive a goal function, sound field parameters in
the domain are defined. First, an exact acoustic pres-
sure p(x) (Brański at al., 2017) and mean value of
the acoustic pressure pm in the 2D domain Ω are cal-
culated, where pm = 1/ni∑

i
p(xi), i = 1,2, ..., ni is the

number of calculated points xi = x′i ∈ Ω; they describe
acoustic fields in Pa. Next, the value of the sound pres-
sure level L(x) at the point x = x′ ∈ Ω and mean value
of the sound pressure level Lm in the domain Ω are
given jointly in a compact form; they describe acoustic
fields in dB,

{L(x), Lm}={10 log (p(x)/p0)2
,10 log (pm/p0)2}, (9)

where p0 = 2 ⋅ 10−5 Pa. Consequently, for approximate
pressures {p̃(x), p̃m}, approximated acoustic pressure
levels are obtained respectively,

{L̃(x), L̃m}={10 log (p̃(x)/p0)2
,10 log (p̃m/p0)2}. (10)

To notice quantitative change, in dB, between ex-
act and approximated acoustic fields at the point and
in the domain respectively, the appropriate differences
are calculated and they could be presented jointly
too, i.e.:

{δ(x), δm} = {∣L(x) − L̃(x)∣ , ∣Lm − L̃m∣} . (11)

Finally, to notice a quantitative change, in percent-
age, between the same quantities, one can use the ap-
propriate relative error formulas,

{ε(x), εm}={∣δ(x)/L(x)∣ ⋅ 100%, ∣δm/Lm∣ ⋅ 100%} . (12)

Each of these two errors is a goal function and min-
imizing them leads to finding optimal solutions. Here-
under, first the error in the domain εm and then the
error at the point ε(x) are minimized.

The following global values and symbols are as-
sumed: ρ = 1.205 kg/m3, c = 344 m/s, {ax, bx} =
{0,5} m, {ay, by} = {0,2.5} m. The source is placed
at the point x0 = {x0, y0 = {2.5,1.25} m. Acoustic val-
ues imposed on the boundaries are z0(ax) ≡ z0(bx) ≡
z0(by) = Z and z0(ay) = 0. Influence points are marked
by “○” and collocation points are marked by “●”. Both
kinds of points coincide with each other; the rest of the
labels are depicted in Fig. 2.
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Fig. 2. Distribution of all points in the Ω.

Numerical details are presented for selected dis-
crete values of the full scope of the absorption coeffi-
cient, i.e. {α} = {0.1, step 0.1,0.9} and selected acoustic
frequencies, represented by octave frequencies, namely
f = 125,250, ...,16000} Hz.

4.2. Optimization of the solution to the problem
in the domain

In this subsection, minimization of the error εm,
Eq. (12), leads to the optimal solution of the problem.
Hereunder, open marks, regardless of their shapes and
colours, apply to n = 15 elements in the series, while
solid marks apply to n = 45 ones. Furthermore, blue,
red and green marks, regardless of shape, are refered
to H-RBF, I-RBF and D-RBF respectively.

First, the relations between physical parameters
and approximate solution parameters are found.
1) At this stage, the parameter C and the error εm,

as a function (f, n), are jointly presented. The
left ordinate axis shows values of C = C(f, n),
while the right ordinate axis shows values of
εm(f, n). The vertical lines in the figure mean
εd(f, n) = εmax(f, n)−εmin(f, n), where εmax(f, n)
and εmin(f, n) are maximum and minimum er-
ror εm(f, n) respectively, and these values are
achieved for α ∈ ⟨0.1,0.9⟩. All results are presented
in Figs 3 and 4.

Values of C(f, n), for n = 15, between f =
125 Hz and f = 1000 Hz form an almost straight
line, hence C = 5. But for frequency f = 500 Hz
and for n = 15, the εd(f, n) rapidly increases and
for n = 45, the εd(f, n) is relatively small. This is
the reason for increasing n from n = 15 to n = 45
for this frequency. For the frequencies greater than
f = 500 Hz, for n = 45, discrete values C(f, n) may
be interpolated by a parabolic line in the form
C = a1f

2 + a2. For H-RBF, a1 = −8.7435 ⋅ 10−9,
a2 = 4.2514, but for I-RBF, a1 = −7.5240 ⋅ 10−9,
a2 = 4.6861.

2) At this point, the most effective function RBF is
indicated. To achieve this, errors εm = εm(f, n,α)
are compared for separate α, for a fixed num-
ber n and selected for representative frequency
f = {250,1000,4000} Hz. The RBF which achieves
the smallest error εm(f, n,α) is considered as

Fig. 3. The parameter C(f, n) (LHS axis) and εm(f, n)
(RHS axis) for H-RBF.

Fig. 4. The parameter C(f, n) (LHS axis) and εm(f, n)
(RHS axis) for I-RBF.

the most effective; results are depicted in figures
below.

Figures 5–7 show that for H-RBF and I-RBF
errors εm are considerably smaller than for D-RBF
and for H-RBF and I-RBF errors are comparable.
However, in general the error εm is the smallest
for H-RBF. Hence, it is considered that MLM
with the base H-RBF is the most effective. All
the following calculations are made for H-RBF.
So the index “H” is omitted in the labels, e.g.
LH → L, εH(x)→ ε(x), εm;H;O → εm;O and so on.

Fig. 5. Errors εm(f, n,α) = εm(250,15, α)
for separate RBF.
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Fig. 6.Errors εm(f, n,α) = εm(1000,45, α) Fig. 7. Errors εm(f, n,α) = εm(4000,45, α)
for separate RBF. for separate RBF.

a) b)

c) d)

e)

f)

Fig. 8. LHS – Le;apr = Le;apr(x), RHS – L = L̃(x): a) and b) f = 250 Hz, c) and d) f = 1000 Hz, e) and f) f = 4000 Hz.
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Table 1. Comparison of the optimal errors values in the domain and at the point.

f [Hz] δ...(xw) [dB] ε...(xw) [%] δ.../δ
w
... [dB] ε.../ε

w
... [%]

250
δ = 3.0007 ε = 3.9351 δm = 0.4146 εm = 0.5552

δO = 0.0217 εO = 0.0284 δwm;O = 3.4576 εwm;O = 4.6101

1000
δ = 2.6990 ε = 3.7092 δm = 0.3142 εm = 0.4186

δO = 0.7219 εO = 0.9971 δwm;O = 0.4725 εwm;O = 0.6301

4000
δ = 2.1097 ε = 2.9205 δm = 0.1049 εm = 0.1399

δO = 1.1191 εO = 1.5510 δwm;O = 0.1166 εwm;O = 0.1555

a) b)

Fig. 9. LHS – ε = ε(x), RHS – εO = εO(x).

3) Now, the effect of minimizing the error εm is pre-
sented. First, for the most effective H-RBF and
chosen f = {250,1000,4000} Hz, α = 0.1, the dis-
tribution of the exact Le(x) and approximate
L̃(x) acoustic fields are calculated. An exact solu-
tion Le(x) is replaced by its mean square approx-
imation Le;apr(x); results are depicted in Fig. 8.

4) To show the effect of minimizing the error εm, two
acoustic fields in the domain are compared only
for f = 250 Hz; for remaining frequencies, main re-
sults are in the Table 1. Firstly, it is calculated for
the parameters obtained in (Prędka, Brański,
2020), i.e. n = 45 and C = 2.205. For these pa-
rameters L̃(x) = L(x) is calculated, it is the so-
lution for H-RBF and error εm < 5%. The error
of this solution εm(x) is calculated according to
Eq. (12), where L(x) = Le;apr(x); results are pre-
sented in Fig. 9 (LHS); the value of the error is
εm = 3.2377%.

Secondly, sound field is calculated for the minimum
error εm = εm;min, i.e εm;O, now n = 15 and C = 5. For
this data, L̃(x) = LO(x) is calculated, i.e. the solution
for H-RBF and optimal n and C. In this case, the error
εO(x) is calculated analogously as above; results are in
Fig. 9 (RHS). The value of the error is εm;min = εm;O =
2.1020%.

The comparison of ε(x) and εO(x) shows, at first
glance, that optimization of parameters of H-RBF so-
lution ensures expected better results. In addition, the
average values εm and εm;o εm;O quantitatively con-
firm this conclusion, see Table 1.

In the next subsection, the idea of H-RBF solution
optimization is developed based on minimizing the er-
ror at the point of the domain.

4.3. Optimization of the solution to the problem
at the point

To minimize the error ε(xw), the point xw =
(xw, yw) = (0.2400,0.1587) is chosen. At this point, for
f = 250 Hz, the difference δH(xw) = 3 dB, Eq. (11),
and the error ε(xw) = 3.9351%, Eq. (12), where
L(xw) = Le;apr(xw) and L̃(xw) = L(xw). The error
minimization ε(xw) is carried out in the same way as
the error εm.

Because H-RBF contains the shape parameter C,
its effect on ε(xw) is determined; results are shown
in Fig. 10. Hence, for C = 0.011, the error ε(xw) has
a minimum value of εmin(xw) = εO(xw) = 0.0284%,
while δmin(xw) = δO(xw) = 0.0217 dB.

Fig. 10. Error ε(xw) in the function
of the C shape parameter.
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a) b)

Fig. 11. Optimization of the solution at the point xw; LHS – LwO(x), RHS – εwO(x)ε
w
o (x).

For this value C, the acoustic field L̃(x) = LwO(x)
and the error εwO(x) are calculated, see Fig. 11.
Next, the appropriate mean values are calculated,
namely: the difference δwm;O = 1.6616 dB and the mean
error value εwm;O = 2.1637%. Both of these values
should be related to δm;O = 1.3796 dB and εm;O =
1.7964%, respectively.

From the analysis of the optimization of the solu-
tion at the point it follows that very good results can
be achieved, but only at this point. This happens at the
cost of worsening the solution in other parts of the do-
main, which can be measured by either the mean value
of the difference δwm;O in dB or/and the mean value of
the error εwm;O in %.

5. Conclusions

In the paper, two aspects of optimization were pro-
posed to improve an efficiency of MLM. Firstly, it was
done by minimizing the average error εm in the domain
Ω and secondly, by minimizing the error ε(xw) at the
point xw ∈ Ω.

First of all, for H-, I- and D-RBF respectively, the
number of elements n in the series was established. It
was found that in the case of H- and I-RBF, parameter
C has a large influence on the number of elements n in
the series as a function of frequency f . This relation,
C = C(f, n), was found in an analytical form, but al-
ternatively for low and medium and high frequencies.

Further, the most effective base function RBF was
pointed out. For this RBF, i.e. H-RBF, the optimiza-
tion of parameters of the solution was performed.
For this purpose, the error εm was minimized, so
εm = εm;min. To show the effect of minimizing, the er-
ror εm;min was compared with the error εm, i.e. for the
solution with parameters without optimization. Then
both solutions were presented.

At the end, for H-RBF the optimization of para-
meters of the solution were performed, minimizing the
error at the point ε(xw), hence ε(xw) = εmin(xw) was
obtained. The effect was compared to the one of mini-

mizing the mean error in the domain εm. In this case,
better results were obtained only at this point. From
analysis of the problem arise the following conclusions:

1) From the engineering point of view, the optimal
number of elements n is n = 15 for lower frequen-
cies and n = 45 for medium and higher frequencies.

2) For low frequencies, between f = 125 Hz and
f = 500 Hz, and for n = 15, the shape parameter
C(f, n) is presented in the form of almost straight
line, hence C = C(f, n) = C(f,15) = 5. In the re-
maining range of acoustic frequencies and n = 45,
a function graph C = C(f, n) = C(f,45) is inter-
polated by a parabolic line.

3) H-RBF provides the best results out of three
tested base functions.

4) Optimization parameters of the H-RBF solution,
based on minimizing the average error in the do-
main, improves the solution in measure of this er-
ror.

5) Optimization parameters of the H-RBF solution,
based on minimizing the error at one point of the
domain, improves the solution only in this point.
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