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An analysis of low-level feature space for emotion recognition from the speech is presented. The main
goal was to determine how the statistical properties computed from contours of low-level features influence
the emotion recognition from speech signals. We have conducted several experiments to reduce and tune
our initial feature set and to configure the classification stage. In the process of analysis of the audio
feature space, we have employed the univariate feature selection using the chi-squared test. Then, in the
first stage of classification, a default set of parameters was selected for every classifier. For the classifier
that obtained the best results with the default settings, the hyperparameter tuning using cross-validation
was exploited. In the result, we compared the classification results for two different languages to find
out the difference between emotional states expressed in spoken sentences. The results show that from
an initial feature set containing 3198 attributes we have obtained the dimensionality reduction about
80% using feature selection algorithm. The most dominant attributes selected at this stage based on
the mel and bark frequency scales filterbanks with its variability described mainly by variance, median
absolute deviation and standard and average deviations. Finally, the classification accuracy using tuned
SVM classifier was equal to 72.5% and 88.27% for emotional spoken sentences in Polish and German
languages, respectively.
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1. Introduction

Humans show various emotions in their day to day
life in different situations. The ability to evaluate an
emotional state of the speaker could be the crucial ele-
ment in interpersonal communication. Such skill allows
getting information about the feelings of the interlocu-
tor. This information can be obtained from facial ex-
pressions, speech or physiological signals. The use of
speech signal to detect the emotional state seems to
be the easiest way due to simple acquisition conditions
and the fact the speech is a fundamental form of hu-
man communication.

The speaker’s emotional state can improve the pro-
cess of interaction in dialogue systems and has a broad
range of applications in voice-based human-computer
interaction systems. Since such a state has a close con-
nection with the personality of the speaker, it can be
used as a part of multimodal biometric systems. The

widespread application of the speech-based emotional
analysis may be the detection of intoxication of sleep-
less states of the speaker.

The problem of emotion recognition from speech
signal can be viewed as a typical problem of data clas-
sification where the most important role plays the rep-
resentation of speech in the feature space. Therefore,
despite many existing systems for this task, the selec-
tion of the acoustic features is not apparent. It highly
depends on the speaker characteristics and acquisition
conditions. However, as many studies show, the linguis-
tic information, along with acoustic information, can
improve the overall accuracy of such systems. The emo-
tional properties of voice are derived from attributes
such as pitch, loudness, length and vowel quality –
stressed parts of spoken sentence influences on the tem-
poral characteristics. The period and the loudness of
the sentence regions depend on the stressed and un-
stressed patterns. Therefore, the variability of the au-
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dio features in the time should be included in the ana-
lysis stage.

The way how human express their emotions de-
pends mainly on its anatomical properties, age, gen-
der, environment and situational context. Therefore,
designing a robust system for emotion recognition us-
ing speech signals is a demanding task. In the last
decade, many solutions for emotional state recognition
from acoustics signals have been proposed and can be
found in the literature.

Recently, an approach using gammatone frequency
cepstral coefficients was presented. In the experimen-
tal stage, two emotional databases were used, German
and Chinese. The study conducted using two classi-
fiers, K-nearest neighbours and long short term mem-
ory network. In both cases, the obtained best results
exceeded 90% (Zhu, Ahmad, 2019). Another study
(Feraru, Zbancioc, 2013) focused on the emotion
recognition used LPC features. The proposed system
uses W-KNN classifier and various combinations of
speech signal features, among others such as LPCC,
MFCC, LAR, PARCOR, fundamental frequency and
formants. In the result, it was shown that using an
extended set of the LPC was not introduced more in-
formation to improve the performance in emotion the
recognition which remains around 90%. Kathiresan
and Dellwo (2019) proposed cepstral derivatives in
MFCCs for emotion recognition. In the experimental
stage, two emotional databases were used with GMM
classifier. The results show that the MFCCs used with
feature cepstral delta and delta-delta can improve the
performance of specific emotions such as boredom.
However, the overall classification accuracy for both
used datasets was respectively 67.5% and 60.8%. Ano-
ther work (Hao et al., 2019) shows the use of the
SVM classifier based on sequential minimal optimiza-
tion (SMO). The research used speech signal features,
among others such as energy, pitch and MFCC. These
features were determined for two databases, German
and Chinese. In both cases, the results obtained were
about 80%. Moreover, with the rapid development of
deep learning, many approaches use such technique in
emotion recognition. For example, in (Rajak, Mall,
2019), the authors used a convolutional neural net-
work. The research was carried out using one dataset
with 1440 samples and MFCC coefficients. The results
obtained were around 50–55%. Another study using
deep neural network is (Lee et al., 2019) in which
one base of emotional speech was used. The used fea-
tures included MFCC with derivatives and fundamen-
tal frequency. Using deep neural network, the highest
score (69.4%) was obtained for MFCC without deriva-
tives. An example of using deep learning network is
presented in (Meng et al., 2019) where two emotional
speech datasets were used. The classification accuracy
obtained for the log-Mel spectra of speech as feature
space was around 90%.

Since the acoustic feature space plays a crucial
role in the classification process, there were many var-
ious features has been proposed for emotional state
recognition from a speech signal. The extensive analy-
sis of feature sets used for this task can be found
in (Ververidis, Kotropoulos, 2006; Anagnos-
topoulos et al., 2015; Swain et al., 2018). In this
work, we have analysed a set of popular low-level au-
dio features which map time-frequency properties dif-
ferently along with their temporal variability for speech
utterances.

Our primary motivation behind the study was
to determine the most influential low-level audio at-
tributes extracted from speech waveform on the emo-
tional speech utterances classification. The physiologi-
cal properties of the speech signal are highly depen-
dent on many factors, including the speaker’s gen-
der, age, language, voice pathologies, etc. It was in-
teresting to find out how popular feature sets may
have an impact of distinguishing between the types
of emotional states in the spoken sentences. The
main contribution of this work is an extensive anal-
ysis of large feature space of acoustical features and
its comparison for two different databases with emo-
tionally tinged utterances in Polish and German lan-
guages.

The rest of this paper is organized as follows: Sec. 2
presents audio datasets used in the experimentation
phase. An analysis of discriminative properties of audio
feature space is described in Sec. 3. The Sec. 4 contains
a description of obtained results and its influence on
the classification accuracy of emotional states. The last
section concludes the whole study.

2. Speech data

In our study, we have used two databases of emo-
tional speech. The first data set (dbDE) is called Emo-
DB (Burkhardt et al., 2005) and it contains 535
sentences in the German language recorded as mono-
phonic with sample rate equal to 16 kHz. The utter-
ances are spoken by ten professional actors including
five men at the age of 25, 26, 30, 31, and 32 years
old as well as five women at the age of 21, 31, 32, 34,
and 35 years old. These actors speak ten different sen-
tences lasting from 1 to 5 seconds in the following emo-
tional states: anger, disgust, fear, happiness, sadness,
boredom, and neutral. The second dataset (dbPL) used
in experiments is called Database of Polish Emotional
Speech (Slot et al., 2009). It contains 240 examples
of emotional speech in the Polish language recorded as
monophonic with 44.1 kHz sampling rate. The utter-
ances by four men and women actors were recorded,
where every actor spoke five sentences in the emo-
tional states as anger, boredom, fear, happiness, sad-
ness and neutral. Recordings representing disgust emo-
tional state in Emo-DB were omitted to obtain the
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same set of emotions in both databases due to perform
consistent comparisons.

3. Feature space analysis

Since the audio features are the crucial part of any
audio recognition system, in this study, we have ana-
lyzed many popular features and its statistical proper-
ties for emotional speech (Mitrovic et al., 2010; Ey-
ben, 2016). The parametrization stage was performed
using 25 ms frames of speech with overlapping equal to
10 ms applying for each frame the Hamming window
and pre-emphasis filtering. The proposed feature set
contains many attributes computed in time and fre-
quency domain. The feature space includes the energy
of the signal, fundamental frequency (F0) (Boersma,
Paul, 1993; Boersma, Weenink, 2001), linear pre-
diction coefficients (LPC) (Markel, Gray, 1976), lin-
ear predictive cepstral coefficients (LPCC) (Rao et
al., 2015), Mel frequency cepstral coefficients (MFCC)
(Davis, Mermelstein, 1980), and bark frequency
cepstral coefficients (BFCC) (Kuan et al., 2016). The
selection of fundamental frequency for the whole spo-
ken sentence seems to be the most promising part of
the feature space. It is because F0 trajectory represents
the properties of the vocal tract; it carries informa-
tion related to the speaker and the prosody attributes
such as intonation and rhythm. For this reason, those
properties should provide much information about the
characteristics of emotional expression of voice. To in-
clude dynamic information of speech in our feature set,
we decided to use the velocity and acceleration of the
specific attribute changes over time. For this purpose,
we computed the delta (∆) and double delta (∆∆) tra-
jectories and included them to the final set of features.

For every feature from the set, a contour was cal-
culated as an attribute value computed for consecu-
tive frames of the analysed signal. Then, for each con-
tour, a 13th-dimensional vector was computer contain-
ing 13 statistical properties such as lowest (MIN) and
highest (MAX) value, range (RNG), mean (MEAN),
standard deviation (STD), first quartile (Q1), median
(ME), third quartile (Q3), interquartile range (IQR),
quartile deviation (QD), average deviation (AD), me-
dian absolute deviation (MAD) and variance (VAR).
Table 1 shows the complete list of the proposed fea-
tures used in the experiments with the dimensionality.
The total number of features in the initial set is equal
to 3198. In the next step, the features selection pro-
cedure was conducted. We have used the SelectKBest
algorithm (Pedregosa et al., 2011) with χ2 test as
a scoring function. The algorithm selects the best fea-
tures based on univariate statistical tests. The Tables 2
and 3 show features sets achieved in the result of the
selection process for both datasets. In the first case, for
the dbPL, the dimensionality was reduced by 80% and
by 79% for the dbDE dataset. According to Table 2,

Table 1. Initial set of audio features used
in the experiments.

Features Label Dimensionality
EN + ∆ + ∆∆ EN 39
F0 + ∆ + ∆∆ F0 39

LPC20 + ∆ + ∆∆ LPC 780
LPCC20 + ∆ + ∆∆ LPCC 780
MFCC20 + ∆ + ∆∆ MFCC 780
BFCC20 + ∆ + ∆∆ BFCC 780

Total 3198

Table 2. List of features obtained in the feature
selection process for dbPL dataset.

Features Dimensionality
EN + ∆ 25
F0 + ∆ 10

LPC13 + ∆ 314
LPCC4 + ∆ 101
MFCC5 + ∆ 99
BFCC11 + ∆ 105

Total 654

Table 3. List of features obtained in the feature
selection process for dbDE dataset.

Features Dimensionality
EN + ∆ + ∆∆ 20
F0 + ∆ + ∆∆ 32

LPC15 189
LPCC6 69

MFCC15 + ∆∆ 158
BFCC20 + ∆∆ 204

Total 672

none of properties of double delta trajectories have
been included in the feature set after selection pro-
cess. It can be probably connected with the prosodic
attributes of language like melody or rhythm. In order
to determine the quality of obtained feature sets, we
have employed three classifiers representing different
types of classifications. The first of these is Support
Vector Machine (SVM), whose classification process is
an attempt to separate individual classes using a hy-
perplane (Chang, Lin, 2011). The next is Random
Forest (RF) based on a large number of individual de-
cision trees that operate as an ensemble and each tree
in a random forest throws out the class forecast, and
the class with the most votes becomes model’s fore-
cast (Breiman, 2001). The last one is Naive Bayes
(NB) which is a probabilistic classifier based on apply-
ing Bayes’ theorem with strong independence assump-
tions between the features (Zhang, 2004).

The classification results for the feature sets and
selected classifiers are shown in Table 4 and Fig. 1
presents the participation of statistics used for the
final feature space. In addition, Fig. 2 shows the con-
tribution of the derivatives (∆, ∆∆) in the final feature
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Table 4. Classification accuracy results using reduced feature sets for selected classifiers and both datasets.

Classifier
Energy F0 LPC LPCC MFCC BFCC

dbPL dbDE dbPL dbDE dbPL dbDE dbPL dbDE dbPL dbDE dbPL dbDE
SVM 52.50 58.02 46.25 59.25 46.25 67.90 48.75 62.34 72.50 73.45 58.75 83.33

NB 40.00 44.44 27.50 46.76 31.25 40.12 42.50 28.39 58.75 48.76 47.50 67.28

RF 43.75 50.61 43.75 50.61 37.50 47.53 43.75 50.00 43.75 54.32 42.50 69.13

a) b)

Fig. 1. The number of statistics instances used to compute the reduced feature set from feature contours
for dbPL (a) and dbDE (b) datasets.

a) b)

Fig. 2. The number of statistics instances based on derivatives (∆, ∆∆) used to compute the reduced feature set
from feature contours for dbPL (a) and dbDE (b) datasets.
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a) b)

Fig. 3. Classification accuracy using tuned SVM classifier and obtained for individual, reduced feature sets
(depicted in Table 2 and Table 3) for dbPL (a) and dbDE (b) datasets.

space. Interestingly, the occurrence of derivatives in
the feature space is highly dependent on the source
audio data. The best results for each feature subset
and both datasets were achieved for SVM classifier.
Therefore, we decided to use this classifier in the next
experiments.

Having selected the classifier, in the next step,
we have performed the hyperparameter optimiza-
tion of the SVM classifier with RBF, linear,
and polynomial kernels using cross-validation. For
this purpose we employed GridSearchCV algorithm
(Pedregosa et al., 2011). The initial parameters was
configured as C = {10−5,10−4, ...,1, ...,105,106}, γ =
{10−5, ...,1, ...,106,1/K}. In the result, the best confi-
gurations were obtained for RBF kernel with γ = 1/K
and C = 1 for dbPL and RBF kernel with γ = 0.01 and
C = 10 for the dbDE datasets. After using the tuned
classifier for each dataset, the classification results are
presented in Fig. 3 where the accuracy for the indivi-
dual subsets of features can be observed. The final clas-
sification accuracy for tuned SVM classifier was equal
to 72.5% in case dbPL dataset and 88.27% for dbDE.

4. Discussion

In case dbPL dataset, using the MFCC coefficients,
the highest overall correctness was obtained. The high-

est classification accuracy occurs for fear, boredom, and
neutral emotions. However, for happiness, the best re-
sult was achieved by BFCC coefficients. On the other
hand, for the anger emotional state, the highest ac-
curacy occurs in subset calculated based on the fun-
damental frequency and sadness emotion was best de-
scribed by the LPC coefficients. The subset calculated
based on BFCC trajectories gave the best results in
case of dbDE dataset. The highest classification accu-
racy was obtained in case of all emotions. Interestingly,
the LPC coefficients also ensured the highest classifi-
cation accuracy for sadness emotional state.

Summarizing the results, the most recognizable
emotions with the accuracy over 80% were neutral,
anger, fear and sadness for dbDE dataset. Whereas
in the dbPL dataset, emotions such as fear and sad-
ness were recognized with accuracy above 80%. Addi-
tionally, to provide more details on the classification
process in the best situations for both datasets, the
confuse matrices are depicted in Fig. 4. The distribu-
tion of statistics selected in feature sets for both cases
is shown in Table 5.

In order to assess the actual discrimination power
of attributes optimized separately for both languages,
we have performed the classification with exchanged
feature spaces. After the experiment for this case, the
accuracy for dbPL was equal to 56% while for dbDE
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a) b)

Fig. 4. Confusion matrices for classification using tuned SVM classifier and reduced feature subsets (marked rows in Table 2
and Table 3) for dbPL (a) and dbDE (b) datasets.

Table 5. The number of instances for statistics computed from feature contours in the best cases.

Feature set MIN MAX MEAN STD Q1 ME Q3 RNG IQR QD AD MAD VAR
MFCC5 + ∆ 4 5 7 9 9 4 9 7 9 9 9 9 9

BFCC20 + ∆∆ 11 17 20 15 20 19 19 13 12 12 15 15 16

was 72%. In both cases, there was a decrease in ac-
curacy equal to 16.5% and 16.3%, respectively. In the
case of the dbPL dataset, on average, the most errors
occurred as a result of confusing sadness emotion with
other emotions. For the dbDE dataset, errors most fre-
quently appear while confusing with neutral state. In
this case, also it occurred a situation where the anger
and sadness emotional states were recognized with per-
fect accuracy.

5. Conclusions

Emotional state detected from speech signal plays
an important role in human-machine interaction sys-
tems as an essential component improving the func-
tionality of voice dialogue systems. We described the
impact of selected speech signal features and classifi-
cations methods on the quality of recognition of the
speaker’s emotional states. We have shown how indi-
vidual audio features affect the recognition of specific
emotion, which are the most and the least recogniz-
able. Due to the close connection with the voice source,
we were expecting at the beginning, a more discrim-
inatory power of attributes related to the fundamen-
tal frequency. The result of the analysis turned out
to be that the energy distribution in various bands
led to better classification results. The less influence

of fundamental frequency on the final classification ac-
curacy may be caused by multiple factors related to
speakers. The introduction of vocal tract normalization
stage along with sophisticated mid- and high-level fea-
tures based on properties of vocal tract may improve
the overall discriminatory power. The differences in the
results between the used datasets show how much the
expression of specific emotions can differ in two differ-
ent languages. The dissimilarities between classifica-
tion results for both cases may arise from the fact that
selected languages came from two different language
groups where prosodic attributes in expressive speech
vary significantly. Another reason may be a quite di-
verse group of speakers in both databases and a higher
number of examples in the dbDE dataset. The ob-
tained results were compared for each used feature sub-
set in terms of a different impact on the classification of
specific emotions depending on the speaker’s language.
In our future work, we plan to build a hybrid approach
combining acoustic and linguistic features along with
various ensemble learning schemes.
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