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The magnetoacoustic heating of plasma by harmonic or periodic saw-tooth perturbations at a trans-
ducer is theoretically studied. The planar fast and slow magnetosound waves are considered. The wave
vector may form an arbitrary angle θ with the equilibrium straight magnetic field. In view of variable θ
and plasma-β, the description of magnetosound perturbations and appropriate magnetosound heating
is fairly difficult. The scenario of heating depends not only on plasma-β and θ, but also on a balance
between nonlinear attenuation at the shock front and inflow of energy into a system. Under some condi-
tions, the average over the magnetosound period force of heating may tend to a positive or negative limit,
tend to zero, or may remain constant when the distance from a transducer tends to infinity. Dynamics
of temperature specifying heating differs in thermally stable and unstable cases and occurs unusually in
the isentropically unstable flows.
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1. Introduction

Nonlinear wave theory studies not only distortions
of intense waves in the course of their propagation,
but also the nonlinear effects associated with them.
Among them, excitation of non-wave modes are of es-
pecial importance. The entropy mode is responsible for
isobaric variations of the medium’s background tem-
perature, and the vortex mode associates with the bulk
vortex velocity with zero perturbations in tempera-
ture and pressure. If these modes enhance in the field
of intense sound, they are not longer stationary but
slowly varying in time. They are called acoustic heating
and streaming (Rudenko, Soluyan, 1977; Hamil-
ton, Blackstock, 1998). Similarly, we may call non-
linear excitation of the non-wave modes by intense
magnetosound perturbations magnetosound heating
and streaming. Close attention to the wave processes
and associated with them nonlinear phenomena in
a plasma is constantly growing. Remote observations
of wave processes and appropriate effects are often the
only way to conclude about properties of a plasma and
physical processes in it (Kelly, Nakariakov, 2004;
Ballai, 2006).

Variety of magnetosound modes provides diversity
of nonlinear phenomena. In particular, excess tem-
perature in the secondary entropy mode depends on
plasma-β, degree of non-adiabaticity and geometry of
a flow. In view of difficulty in general analytical de-
scription, we focus on the planar flow of an ideal mag-
netic gas affected by the straight equilibrium magnetic
field which forms constant angle θ with the wave vec-
tor. The planar or quasi-planar geometry fits well with
perturbations excited by planar transducer and may
reproduce the conditions of remote plasma’s flow. De-
viations from flow’s adiabaticity play the key role in
wave dynamics and appropriate nonlinear phenomena.
Taken alone, without attenuation due to friction and
thermal conduction, non-adiabaticity is the only rea-
son for interactions of modes, along with nonlinearity.
Inflow of energy into the system may enhance wave
perturbations in the course of propagation (Singh et
al., 2012; Ojha, Singh, 1991). This results in anoma-
lous excitation of the secondary modes (Molevich,
2001a; Perelomova, 2010; 2012). On the other hand,
enlargement of wave perturbations balanced by the
nonlinear attenuation at the shock front may lead
to formation of autowaves or stationary wave forms
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(Makaryan, 2007; Geffen, 1963; Sharma et al.,
1981). These kinds of wave forms are of especial impor-
tance due to the following reasons: any perturbation at
a transducer evolves in to a set of autowaves; they are
the simplest mathematical case as well as correspond-
ing nonlinear phenomena. Dynamics of the wave forms
depends not only on the degree of deviation from adi-
abaticity due to inflow of energy, but also on a balance
of this degree and nonlinear distortions which in turn
depends on the magnitude of wave perturbations, pa-
rameter of nonlinearity, and wave speed (these latter
values are functions of plasma-β and θ). The magne-
toacoustic heating may also develop in other scenarios
which will be discussed in details later.

The text is organised as follows. Section 2 intro-
duces a generic heating-cooling function, reminds the
initial system of PDEs describing motion of an ideal
magnetic gas, modes in a linear flow, and conditions of
isentropic and thermal instability. Projectors in a lin-
ear flow are mentioned as a method to derive linear
and weakly nonlinear dynamic equations. This section
refers to the previous results. In Sec. 3, periodic magne-
toacoustic perturbations are analytically studied. The
attention is paid to conditions of discontinuity forma-
tion, waves with shock fronts and autowaves in two
cases: sinusoidal velocity at a transducer and the saw-
tooth velocity at a transducer. Dynamics of the intense
saw-tooth shaped perturbations were studied by the
author in (Perelomova, 2019). Magnetosound heat-
ing caused by these kinds of exciters is analytically
studied in Sec. 4. Section 5 presents the conclusions.

2. Modes in the linear MHD flow

We make use of a set of ideal MHD (magnetohy-
drodynamic) equations describing a perfectly electri-
cally conducting gas. It includes the continuity equa-
tion, momentum equation, energy balance equation,
and electrodynamic equations in the differential form
(Freidberg, 1987; Krall, Trivelpiece, 1973):

∂ρ

∂t
+∇ ⋅ (ρv) = 0,

ρ
Dv
Dt

= −∇p + 1

µ0
(∇ ×B) ×B,

Dp

Dt
− γ p

ρ

Dρ

Dt
= (γ − 1)L(p, ρ), (1)

∂B
∂t

= ∇ × (v ×B),

∇ ⋅B = 0,

where p, ρ, v are thermodynamic pressure and density
of a plasma, and its velocity. Magnetic flux density is
denoted by B, and µ0 is the permeability of the free
space. The third equation in the set (1) refers to an
ideal gas with the ratio of specific heats under con-

stant pressure and constant density γ, γ = CP /CV .
The fourth equation is the ideal induction equation,
and the fifth one is the Maxwell’s equation reflecting
solenoidal character of B. The generic heating-cooling
function L(p, ρ) is responsible for non-isentropicity of
a flow (Nakariakov et al., 2000). It reflects inflow
of energy into a system and losses due to radiation.

Following Nakariakov et al. (2000), we assume
that the wave vector of a planar flow forms constant
angle θ (0 ≤ θ ≤ π) with the constant straight equilib-
rium magnetic field B0. Direction of the wave vector is
pointed by axis z. The y-component of B0 equals zero,
so as

B0,x = B0 sin(θ), B0,z = B0 cos(θ), B0,y = 0.

The system (1) displays the nonlinearity of MHD
flows. For further analysis, its leading order form con-
sidered, valid with accuracy up to quadratic nonlin-
ear terms (Nakariakov et al., 2000; Perelomova,
2016a; 2018a). The linear flow (that is, a flow with
infinitely small perturbations of thermodynamic vari-
ables) is described by the linearised version of the sys-
tem (1). We consider first the linear flows. All ther-
modynamic quantities are expanded in the vicinity
of the equilibrium thermodynamic state as f(z, t) =
f0 + f ′(z, t). A plasma is motionless in equilibrium:
v0 = 0. The leading order seven equations include first
partial derivatives of variables ρ′, vx, vy, vz, p′, Bx,
By with respect to time. The energy equation con-
tains terms proportional to Lp, Lρ in its linear part
and terms proportional to Lpp, Lpρ, Lρρ in its nonlin-
ear part, where

Lp =
∂L

∂p
, Lρ =

∂L

∂ρ
, Lpp =

∂2L

∂p2
,

Lρρ =
∂2L

∂ρ2
, Lpρ =

∂2L

∂p∂ρ

are partial derivatives of the heating-cooling function
L(p, ρ) with respect to its variables evaluated at equi-
librium state (p0, ρ0). The dispersion relations follow
from the linearised Eqs (1), if one looks for solutions
of the linearised equations in the form of a sum of pla-
nar waves proportional to exp(iω(kz)t− ikz), where k
designates the wave number, so as

f ′(z, t) =
∞

∫
−∞

f̃(k) exp(iω(k)t − ikz)dk,

ω1,2 = ±CA,zk, ωj = Cjk − iCjDj ,

ω7 =
i(γ − 1)Lρ

c20
,

(2)

where j = 3, ...,6, Cj is the magnetosound speed satis-
fying the equation

C4
j −C2

j (c20 +C2
A) + c20C2

A,z = 0, (3)



A. Perelomova – Magnetoacoustic Heating of Plasma Caused by Periodic Magnetosound Perturbations. . . 243

CA and c0

CA = B0√
µ0ρ0

, c0 =
√

γp0
ρ0

designate the Alfvén speed and the acoustic speed in
non magnetised gas in equilibrium, CA,z = CA cos(θ),
and

Dj =
Cj(C2

j −C2
A)(γ − 1)

2c20(C4
j − c20C2

A,z)
(c20Lp +Lρ).

The first two roots ω1, ω2 specify the Alfvén waves. The
next four roots refer to slow and fast magnetosound
waves, which rely on compressibility, and the last root
ω7 corresponds to the entropy mode. The vortex mode
does not exist in the planar geometry of a flow. For any
non zero magnetosound speed Cj , the denominator in
the expression for Dj differs from zero except the case
∣Cj ∣ = c0 = CA, since zero C2

j −c20C2
A,z leads to equalities

CA,z = c20+C
2
A

2c0
and C2

A,x = −
(c20−C

2
A)

2

4c20
. The degenerative

case ∣Cj ∣ = CA = c0 is beyond interest. ∣Cj ∣ = CA is not
acoustic case, and ∣Cj ∣ = c0 corresponds to the flow in
non-magnetized gas. The dispersion relations Eqs (2)
and Eq. (3) have been established by Nakariakov
et al. (2000) andChin et al. (2010). The magnetosound
perturbations may enhance if a linear flow is adibati-
cally unstable (Field, 1965; Parker, 1953), that is,
if

c20Lp +Lρ > 0. (4)

The condition of thermal instability Lρ < 0 ensures
enlargement of perturbations specifying the entropy
mode in a linear flow. The projecting rows read-
ily follow from the dispersion relations and corre-
sponding links of perturbations specifying any mode
(Perelomova, 2006; 2016b; 2018a). Operators pro-
jecting the total vector of disturbances into specific
excess densities, satisfy the equalities

Pj ( ρ′ vx vy vz p′ Bx By )T = ρj , j = 3, ...7.

They have been established in the leading order
by the author in (Perelomova, 2018a). In particu-
lar, the projecting row onto an excess density specify-
ing the entropy mode, takes the form

P7 = ( 1 a∗ 0 b∗ − 1

c20
0 0 ) , (5)

where

a∗ = −
(γ − 1)CA,xρ0

CA,zc40
(c20Lp +Lρ)∫ dz,

b∗ = −(γ − 1)ρ0
c40

(c20Lp +Lρ)∫ dz.

Projectors are useful in derivation of systems of
coupling nonlinear dynamic equations which account
for interactions of different modes in various kinds of
nonlinear flows (Leble, Perelomova, 2018).

3. Periodic magnetoacoustic waves
with shock fronts

The evolution equation governing velocity in in-
dividual magnetosound wave has been derived by
Nakariakov et al. (2000):

∂vz
∂t
+C ∂vz

∂z
−DCvz + εvz

∂vz
∂z

= 0, (6)

where ε responses for nonlinear distortions,

ε=
⎛
⎝
(γ+1)c20(C2−C2

A,z)
2(C4−c20C2

A,z)
+

3C4C2
A,x

2(C2−C2
A,z)(C4−c20C2

A,z)
⎞
⎠
.

Zero denominator C2 − C2
A,z in the right hand side

equals zero if C = 0 or ∣C ∣ = CA (this is out of interest
since it is not an acoustic case). The ordering number
of magnetosound mode will be omitted. The Eq. (6)
does not consider nonlinear interaction between modes
but individual evolution of velocity in one dominant
magnetosound mode. Dominance suggests that magni-
tudes of perturbations specifying this mode are much
bigger than that of other modes. Equation (6) refers to
both slow and fast modes. Equation (6) is very simi-
lar to equations describing perturbations in open flows
which may be acoustically active (Osipov, Uvarov,
1992; Molevich, 2001b; Zavershinsky et al., 2015;
Leble, Perelomova, 2018). For definiteness, we con-
sider modes with C > 0, that is, slow or fast modes
propagating in the positive direction of axis z. Equa-
tion (6) by means of new variables (for non zero D, C)

V = vz exp (−Dz) , Z = e
Dz − 1

D
, τ = t − z/C

rearranges into the leading order equation:

∂V

∂Z
− ε

C2
V
∂V

∂τ
= 0. (7)

Note that Z is always positive for non zero D. Equa-
tion (7) is well studied in the nonlinear wave the-
ory (Rudenko, Soluyan, 1977; Sharma et al., 1987;
Hamilton, Blackstock, 1998). It may be solved
by the method of characteristics. Discontinuity in the
wave form always forms in acoustically active media
(that is, in the case D > 0) (Osipov, Uvarov, 1992).

3.1. Harmonic at a transducer magnetosound velocity

The leading-order solution to Eq. (6) which is sinu-
soidal at z = 0 with period T0, reads

vz = v0 exp(Dz)
∞

∑
n=1

2Jn(nπK−1(exp(Dz) − 1)) sin(2πnτ/T0)
nπK−1(exp(Dz) − 1)

, (8)
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where Jn designates the Bessel functions of the first
kind, v0 denotes an amplitude of velocity at a trans-
ducer,

vz(z = 0, t) = v0 sin(2πt/T0)

and

K = DC
2T0

2εv0
.

It is the Bessel-Fubini solution valid before formation
of a discontinuity (Rudenko, Soluyan, 1977; Os-
ipov, Uvarov, 1992), that is, if

0 < z < zsh = ln(1 +K/π)D−1.

A discontinuity always forms in acoustically active
flows with K > 0 (that is, D > 0) and in the case

Fig. 1. Dimensionless distance of the discontinuity formation, ∣D∣zsh at v0c0
T0(c20Lp+Lρ)

= −1 (top row), v0c0
T0(c20Lp+Lρ)

= −0.04

(middle row), v0c0
T0(c20Lp+Lρ)

= 1 (bottom row). Fast magnetosound perturbations (left panels) and slow magnetosound
perturbations (right panels).

−π < K ≤ 0 at the distance zsh and does not form at
all if K ≤ −π. If θ = 0 or θ = π, the distance of shock
formation changes abruptly at β = 2

γ
, where

β = 2c20
γC2

A

is the plasma-β. If θ = 0 or θ = π, there are two speeds
of propagation along axis z, c0, and CA. They are equal
in the degenerate case β = 2

γ
. For fast magnetosound

perturbations and β < 2
γ
, ∣D∣zsh = 0, and in the case

β > 2
γ
, ∣D∣zsh = ln(2π) − ln(2π − (γ−1)T0(c

2
0Lp+Lρ)

(γ+1)v0c0
). In

the case of slow perturbations, ∣D∣zsh jumps at β = 2
γ

from ln(2π) − ln(2π − (γ−1)T0(c
2
0Lp+Lρ)

(γ+1)v0c0
) till 0. The di-
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Fig. 2. Dimensionless distance of the discontinuity formation, ∣D∣zsh at v0c0
T0(c20Lp+Lρ)

= −0.01. Fast magnetosound pertur-
bations (left panel) and slow magnetosound perturbations (right panel).

mensionless distance from a transducer ∣D∣zsh at which
the discontinuity forms for some values of v0c0

T0(c20Lp+Lρ)
,

is shown in Fig. 1. All plots and calculations were made
in Mathematica. The limiting value ensuring formation
of discontinuity for all β, θ and both fast and slow per-
turbations, is v0c0

T0(c20Lp+Lρ)
= − γ−1

2π(γ+1)
(approximately

−0.04 for γ = 5/3). For larger negative values, the do-
mains in the plane β, θ appear where the discontinu-
ity does not form. Figure 2 shows these domains for

v0c0
T0(c20Lp+Lρ)

= −0.01. All plots refer to γ = 5/3.

The approximate solution to Eq. (6) which is si-
nusoidal at z = 0 at distances from a transducer
z > πzsh/2 (obviously, this is the case K > −π), de-
veloped discontinuity and negligible curvature in the
sloping parts of wave form), is

vz(z, τ) =
2v0e

Dz

1 + πK−1(eDz − 1)

∞

∑
n=1

sin(2πnτ/T0)
n

. (9)

There is a domain which is difficult for analytical de-
scription, between zsh and πzsh/2.

3.2. Periodic saw-tooth perturbations at a transducer

We will consider the saw-tooth profile of velocity
at a transducer which is zero on average. One period
of perturbations T0 at a transducer situated at z = 0,
is determined by the formula

V

v0
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−1 − 2
τ

T0
, −T0

2
≤ τ ≤ 0,

1 − 2
τ

T0
, 0 < τ ≤ T0

2
.

(10)

The method of characteristics results in a solution of
Eq. (7) in the form of the series of saw-tooth im-
pulses of the constant period T0 with variable mag-
nitude depending on the distance from a transducer
(Perelomova, 2019):

vz(z, τ) = v0e
Dz

1 +K−1(eDz − 1)

⋅

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−1 − 2
τ

T0
, −T0

2
≤ τ ≤ 0,

1 − 2
τ

T0
, 0 < τ ≤ T0

2
.

(11)

By expanding in a series, it takes the equivalent form

vz(z, τ) =
2v0e

Dz

π(1 +K−1(eDz − 1))

∞

∑
n=1

sin(2πnτ/T0)
n

, (12)

very similar to Eq. (9). The main conclusion is that
once a shock is formed at a transducer, it exists at all
distances from it and remains saw-tooth at anyK. The
scenario at large distances depends on the sign of D:
amplitude of velocity tends to zero if D < 0 and tends
to DC2T0

2ε
in an acoustically active flow. It is remarkable

that the limiting magnitude in an acoustically active
flow does not depend on the initial magnitude of an im-
pulse v0. This has been established by Perelomova
(2019) but is valid also for the harmonic at a trans-
ducer sound with developed discontinuity.

4. Magnetoacoustic heating caused by periodic
at a transducer exciter

We will consider both harmonic (before and after
formation of discontinuity) and saw-tooth at a trans-
ducer magnetosound perturbations as exciters of heat-
ing. In nonlinear acoustics, heating means usually va-
riations of temperature and density in isobaric pro-
cess associating with the entropy mode due to non-
linear losses in energy of the intense sound. In turn,
slow entropy perturbations form a new background of
waves propagation. There are many examples of acous-
tically active flows, where nonlinear interaction of wave
and non wave modes (in particular, acoustic heating)
occurs unusually (Molevich, 2001a; Perelomova,
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2014; Leble, Perelomova, 2018). The medium may
cool down. The equation governing an excess density
in the entropy mode has been obtained by the author
in (Perelomova, 2018a) by use of projecting. We re-
produce one of its forms:

∂ρ7
∂t
+

(γ + 1)Lρ
c20

ρ7 =

− ρ0
4C2c20

⎛
⎝

1

C2
A,x(c20C2

A,z −C4)
(γ − 1)(c60(c20Lp +Lρ)

+C2c20(c20 −C2
A,z(γ − 3) +C4(2c20Lp + (2C2

A −C2
A,z)Lρ

+ c20(C2
A,z(1 − 2γ)Lp + 2(γC2

ALp +Lρ)))))v2z

+2(γ − 1)(c40Lpp + 2c20Lpρ +Lρρ)ρ0v2z

− c∗

c20 +C2
A − 2C2

− d∗

c20 +C2
A − 2C2

), (13)

where

c∗ =2(3C2 − 2c20 −C2
A)(γ − 1)γ(c20Lp +Lρ)

∂vz
∂z

⋅∫ vz(z′, t)dz′ + 2(C2−C2
A)(γ − 1)(c20Lp+Lρ)v2z ,

d∗ =2(C2 −C2
A)(γ − 1)(c20Lp +Lρ)

⋅ (v2z +
∂vz
∂z
∫ vz(z′, t)dz′).

Zero CA,x in the denominator corresponds to C = 0
or ∣C ∣ = CA. Both these cases are beyond interest.
The acoustic force in the right hand side of equation
is nonlinear and proportional to the first and second
partial derivatives of L with respect to its variables p
and ρ. Equation (13) is instantaneous and refers to any
heating-cooling function. In this study, we do not con-
sider impact of the second order derivatives of L with
respect to it variables and set them to zero. Evalua-
tions may be simplified by taking average of Eq. (13)
in the case of quasi-periodic exciters. For any quasi-
periodic velocity which is a product of two functions,
one of them (f1) being slowly varying over the wave-
length (this is also the case of Eqs (8), (9), (12), where
∣D∣ ≪ k ensures the wave processes),

vz = f1(Dz)f2(τ),

which is zero on average,

1

T0

τ+T0

∫
τ

vz dτ = 0,

the leading order equality takes place

v2z =
1

T0
(vz ∫ vz dτ) ∣

τ+T0

τ
−∂vz
∂τ
∫ vz dτ

= −∂vz
∂z
∫ vz dz,

where top line denotes the temporal average over pe-
riod of the magnetoacoustic wave. For example, we
consider the average heating over the sound period
and the case where the heating-cooling function de-
pends exclusively on temperature, L = L(T ). Making
use of notation dL

dT ≡ LT and ignoring the second order
derivative d2L

dT 2 , we rearrange Eq. (13) using equalities

Lp =
LT

CV (γ − 1)ρ0
, Lρ = −

c20LT
CV (γ − 1)γρ0

∶

∂ρ7
∂t
− γ + 1

CV (γ − 1)γρ0
LT ρ7 ≡ Fms = αv2z , (14)

where

α = (γ − 1)LT
4γC4c20CA,x(C4 − c20C2

A,z)CV

⋅ (3C8(CA,x +CA,z) − (γ + 1)c60C3
A,z

+ C6c20(CA,x + (γ − 8)CA,z + 3γCA,x)

+ 2(γ − 1)C2c40C
3
A,x

+ C2c40CA,z((γ − 2)c20−(CA,x−2(γ + 1)CA,z)CA,z)

+ C4c20(c20((7 − 2γ)CA,z + (γ − 4)CA,x)

+ (γ + 1)C2
A,z((2γ − 1)CA,x +CA,z))).

The sign of α coincides with the sign of LT for any θ
and plasma-β. The conditions of acoustic and thermal
instabilities are identical and sound

LT > 0.

The characteristic time of variation of ρ7 equals
CV (γ−1)γρ0
(γ+1)LT

and should be much larger than the sound

period. For taking a proper average over the sound pe-
riod, the inequality must take place:

(γ − 1)2

(γ + 1)
≫ LTT0(γ − 1)

CV γρ0
. (15)

Also, magnetosound perturbations weakly vary over
the period to be a wave process. This imposes T0 ≪
(DC)−1, that is,

2(C4 − c20C2
A,z)

C2(C2 −C2
A)

≫ LTT0(γ − 1)
CV γρ0

. (16)

In the solar corona, the value of γ varies from 1
(isothermal case) to 5/3 (adiabatic case), hence (γ−1)

2

(γ+1)

varies from 0 to 0.17. In particular, Doorsselaere
et al. (2011), by use of seismological estimations, found

out γ = 1.1. The ratio 2(C4
−c20C

2
A,z)

C2(C2−C2
A
)

varies from 0.5 to
infinity for all β and θ and both fast and slow modes.
Hence, the condition (15) ensures (16) with a large
margin. The solution to Eq. (14), satisfying zero ini-
tial condition, is
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ρ7 = CV (γ − 1)γρ0
(γ + 1)LT

(exp( (γ + 1)LT
CV (γ − 1)γρ0

t) − 1)Fms,

Fms = αv2z . (17)

Impulsive and aperiodic excitation cannot be treated
by averaging of evolution equation over the sound pe-
riod.

4.1. Heating caused by initially sinusoidal
perturbation

Before formation of discontinuity of the initially si-
nusoidal perturbation, that is, for velocity given by
Eq. (8), the average squared velocity equals

v2z =
1

2
e2Dzv20 .

A half of the average square velocity is in fact wave ki-
netic energy per unit mass of a plasma. It is constant
if D = 0. Once discontinuity is formed, the dynamics of
kinetic energy depends on two effects: nonlinear atten-
uation at the shock front and non adiabaticity which

Fig. 3. Ratio v2z
v2
0
=
Fms
αv2

0
. Top row: K = 5 (left panel) and K = π (right panel), middle row: K = 2 (left panel) and K = 0

(right panel, this is a limiting case described by Eqs (21), (22)), bottom row: K = −π/3 (left panel) and any K < −π (right
panel). Solid lines relate to the distances before the formation of a discontinuity, and the dashed lines relate to the wave

forms with shock fronts.

taken alone may enlarge the gas velocity. The average
square velocity after formation of discontinuity follows
from Eq. (9):

v2z =
π2 exp(2Dz)

3(1 + πK−1(exp(Dz) − 1))2
v20 . (18)

It tends to a quantity independent from the initial
magnitude

1

3
K2v20 =

D2C4T 2
0

12ε2

when z tends to infinity if D > 0 and to 0 if D < 0. The
case

K = π (19)

is special. It results in the stationary wave forming
after formation of discontinuity and constant aver-
age squared velocity independent on the distance from
a transducer,

v2z =
π2

3
v20 .

The dependence of the magnetosound force Fms on z
is determined by D and K. Figure 3 shows v2z

v20
= Fms

αv20
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before and after formation of a discontinuity. K > 0
is the acoustically active case of a flow. Equation (7)
describes also the neutral flows with K = 0, D = 0, and
Z = z. In this case, the solution to Eq. (6) which is
sinusoidal at z = 0, reads

vz = v0
∞

∑
n=1

2Jn(2nπzεv0/C2T0) sin(2πnτ/T0)
2nπzεv0/C2T0

, (20)

and, hence, the kinetic energy per unit mass remains
constant before formation of discontinuity:

v2z =
1

2
v20 . (21)

It is valid if

0 < z < zsh =
C2T0
2πεv0

.

After formation of the shock front, at z≥zsh, the av-
erage square velocity equals (Rudenko, Soluyan,
1977)

v2z =
π2v20

3 (1 + z
zsh

)
2
. (22)

4.2. Heating caused by initially saw-tooth perturbation

The case with already formed at a transducer dis-
continuity differs from the previous one: the disconti-
nuity remains at all distances from a transducer inde-
pendent from acoustical activity. Equation (11) results
in the average squared velocity as

v2z =
1

3
( v0e

Dz

1 +K−1(eDz − 1)
)
2

.

This result also readily follows from the squared series
(12) averaged over the sound period. The limiting value
of average squared velocity when z tends to infinity,
equals

v2z =
1

3
K2v20 =

D2C4T 2
0

12ε2

Fig. 4. Values CV ρ0v0
c0LT

ensuring stationary wave form and magnetosound force of heating independent on a distance from
a transducer. Acoustically active flow. Fast magnetosound perturbations (left panel) and slow magnetosound perturbations

(right panel).

if D > 0 and 0 if D < 0. The character of variation of
v2z with z in an acoustically active flow depends on K:
if it is smaller than one, the average square velocity
decreases, and if K is larger than one, it enlarges with
z tending to the limit at infinite z. The case

K = 1 (23)

yields the stationary wave form and constant average
squared velocity is independent from the distance from
a transducer,

v2z =
1

3
v20 .

The special case conditioned by Eq. (23) fits the equa-
lity

CV ρ0v0
c0LT

=
(γ − 1)C3(C2 −C2

A)(2C2 − c20 −C2
A)

e∗
,

where

e∗ = 2γc0(c20C2
A,z −C4)(3c20 +C2

A + γ(C2
A −C2) − 4C2).

Figure 4 shows values CV ρ0v0
c0LT

ensuring stationary wave
form and magnetosound force independent from the
distance from the transducer as functions of plasma-β
and θ.

The conclusions based on Fig. 4 are valid also
for initially sinusoidal perturbations with developed
discontinuities. The magnetoacoustic force of heating
(Fig. 3, thin lines) is analogous to the case of har-
monic initially perturbations, with substitution of K
from Subsec. 4.1 with K/π. The difference is in the de-
scription of the wave form and nonlinear effects before
formation of discontinuity which does not always form
in the first case. An excess density and temperature in
the isobaric entropy mode are related in the following
manner ρ7

ρ0
= −T7

T0
.

In and acoustically active flow, T7 is unusually nega-
tive, and ρ7 is positive.
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5. Concluding remarks

The starting point is the conservation system of
PDE in ideal MHD equations. Ideal magnetohydrody-
namics is valid if temporal and spatial scales of a flow
are much larger than gyro-kinetic scales. It refers to
the single fluid model dealing with macroscopic equi-
librium quantities and equal temperatures of electrons
and ions. MHD system does not consider relativistic,
quantum effects and displacement current in the Am-
pere’s law (Krall, Trivelpiece, 1973; Freidberg,
1987). It approximates well the majority of astrophys-
ical gases, such as magnetospheres of Earth, neutron
stars, and solar atmosphere. The equation of state for
an ideal gas is valid in the majority of astrophysi-
cal applications. We do not discuss effects connected
with mechanical viscosity and thermal conduction of
a plasma. The impact of thermal conduction on the
magnetosound wave propagation has been considered
by Nakariakov et al. (2000). The damping mecha-
nisms may alter conditions of acoustical activity and
influence magnetoacoustic heating.

Previous results by the author concerned magne-
toacoustic heating associating with the harmonic in the
all space perturbations (Perelomova, 2018a; 2018b).
In this study, we consider nonlinear distortions of wave
perturbations and nonlinear phenomena associating
with non adiabaticity of magnetosound waves before
and after formation of discontinuities. A plasma is an
open system. Some generic function L is responsible for
inflow of external energy and radiation losses. The sce-
nario depends actually on the balance between the de-
gree of deviation from adiabaticity described by L, and
nonlinear distortions, which in turn depend on a mag-
nitude of wave perturbations, parameter of nonlinear-
ity and the wave speed. These two latter quantities
are functions of plasma-β and θ. This makes analysis
of propagation of periodic initially wave forms fairly
difficult. A discontinuity may form even in the case of
out coming energy in a weakly damping plasma (Sub-
sec. 3.1). When the inflow of energy outweighs damp-
ing, discontinuity forms, and nonlinear attenuation
at the shock front takes place. The analysis reveals that
the harmonic at a transducer perturbation of velocity
may evolve in different ways: the discontinuity may not
form at all; the discontinuity forms and the magnitude
of velocity achieves some limiting value (zero or posi-
tive which does not depend on initial magnitude) far
from transducer or remains constant. The limiting val-
ues also depend on the plasma-β and an angle between
the equilibrium magnetic field and the wave vector.
The distance of discontinuity formation in initially pe-
riodic perturbations depends on plasma-β and θ as well
as on the initial amplitude and period of perturbations.
The average magnetosound force of heating is propor-
tional to v2z and hence also tends to some limiting value
far from the transducer. The conditions of thermal and

adiabatic instabilities are identical in the case L(T ),
which is considered as an example in this study, but in
general they differ. The magnetoacoustic heating ex-
cited by the harmonic in all space perturbations in the
particular cases L(p) and Lρ has been considered by
the author in the article (Perelomova, 2018).

An average excess density in the entropy mode
which equals zero at t = 0 is generally governed by
equation

ρ7 = c20
(γ+1)Lρ

(1−exp(−
(γ+1)Lρ

c20
t))Fms, Lρ ≠ 0,

ρ7 = Fmst, Lρ = 0. (24)

Equation (24) is valid for periodic exciters with the
magnetosound force Fms(z) and quasiperiodic exciters
with Fms which depends on z and weakly on t. While
the sign of ρ7 is determined by the sign of Fms (co-
inciding with the sign of c20Lp + Lρ), the character of
its dynamics depends on the sign of Lρ. In thermally
stable flows Lρ > 0, ρ7 tends to c20

(γ+1)Lρ
Fms and grows

infinitely in thermally active flows. Figure 5 roughly
represents the dynamics of ρ7 at any z. It remains pos-
itive in isentropically unstable flows corresponding to
negative excess temperature.

Fig. 5. Schematic dynamics of ρ7 at any distance from
a transducer z. Fms is positive in acoustically active flows
c20Lp +Lρ > 0 and negative if c20Lp +Lρ < 0. The sign of Lρ
responses for thermal stability (Lρ is negative in thermally

unstable flows).

The results may be addressed to different kinds
of a plasma, including cold molecular intersellar gas
and hot atomic plasma, to various magnitudes of
the equilibrium magnetic field, and to different kinds
of the function L(p, ρ) which is zero in equilibrium
(Rosner et al., 1978;Vesecky et al., 1979;Nakaria-
kov et al., 2000). They may be useful in remote studies
of plasma’s features and processes in it. Magnetosound
heating is a slow process suited very well for long ob-
servations. This compares favorably with wave pertur-
bations during remote observations. We focus on the
particular case L depending linearly on temperature T .
Other kinds of L(p, ρ) may be readily considered. The
only difference is that they yield different coefficients in
dynamic equations for wave perturbations and appro-
priate The main features of heating depend on whether
the flow is thermally and/or isentropically stable or
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not. Inclusion of the second order derivatives of L(p, ρ)
would allow to consider the features of heating close to
and at extrema of L. In the case of periodic exciters,
the second order derivatives contribute in the mag-
nitude of the average magnetosound force of heating
which is proportional to the average squared velocity
in the MHD wave.
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