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Geometry of the fluid container plays a key role in the shape of acoustic streaming patterns. Inadver-
tent vortices can be troublesome in some cases, but if treated properly, the problem turns into a very
useful parameter in acoustic tweezing or micromixing applications. In this paper, the effects of sinusoidal
boundaries of a microchannel on acoustic streaming patterns are studied. The results show that while
top and bottom sinusoidal walls are vertically actuated at the resonance frequency of basic hypothetical
rectangular microchannel, some repetitive acoustic streaming patterns are recognised in classifiable cases.
Such patterns can never be produced in the rectangular geometry with flat boundaries. Relations between
geometrical parameters and emerging acoustic streaming patterns lead us to propose formulas in order
to predict more cases. Such results and formulations were not trivial at a glance.
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1. Introduction

Ultrasound acoustic standing waves are used to
generate two nonlinear acoustophoretic forces for ma-
nipulation of fluids and particles inside microfluidic
systems (Czyż, 1987a; 1987b; Lewandowski, 1992;
Wiklund et al., 2012; Włoch et al., 2019). The
acoustic radiation force tends to focus particles on
the nodal or anti-nodal plane of the acoustic stand-
ing waves (Doinikov, 1997; Gor’kov, 1962; King,
1934; Yosioka, Kawasima, 1955) while the Stokes
drag force of the acoustic streaming velocity field tends
to defocus and spread out the suspended particles
(Nyborg, 1953; 1958; Rayleigh, 1884; Schlicht-
ing, Gersten, 2017). Critical particle diameter is de-
termined as a crossover from the radiation force dom-
inated region to the acoustic streaming-induced drag
force dominated region (Barnkob et al., 2012; Spen-
gler et al., 2003). Particles with diameters larger than
the critical diameter are enforced with the radiation
force, as this is caused by the scattering of acoustic

waves from the surface of particles. On the other hand,
tiny particles smaller than the critical size are affected
by the acoustic streaming steady fluid flows caused by
viscous stresses in acoustic boundary layers.

The classical theory of Rayleigh streaming was es-
tablished for shallow infinite parallel-plate channels
(Rayleigh, 1884). Schlichting streaming is modelled
mathematically for single planar infinite rigid walls
(Schlichting, Gersten, 2017). Many further stud-
ies have followed the same geometries (Hamilton
et al., 2003; Nyborg, 1958; Rednikov, Sadhal,
2011; Westervelt, 1953). Muller et al. (2013) have
proposed a theoretical analysis of acoustic streaming
with taking the effect of the vertical sidewalls into ac-
count. They published a complete description of mi-
croparticle acoustophoresis combined with wall effects.

For geometries more irregular than rectangular mi-
crochannels, the analytical studies are impossible and
numerical simulations need to be employed. To date,
there has been a large quantity of literature published
on this topic including analytical, numerical, and ex-
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perimental studies. Any changes in the boundary con-
ditions, such as the geometry of the fluid container,
dramatically affect the shape of the acoustic streaming
patterns. Inadvertent vortices can be troublesome in
some cases, but if treated properly, the problem turns
into a very useful parameter in patterning or mix-
ing applications (Evander, Nilsson, 2012; Wiklund
et al., 2012). A microchannel with the sharp edged
sidewalls has been used as a micromixer (Nama et al.,
2014). Same geometry proposes precise rotational ma-
nipulation of cells and other micrometer sized biologi-
cal samples (Feng et al., 2018). Also, additional study
shows that mixing performance varies at different fre-
quencies and tip angles (Huang et al., 2013). Oscil-
lations of tilted sharp edge structures have suggested
a programmable acoustofluidic pump (Huang et al.,
2014). Function of oscillating microbubbles have con-
sidered in some other literatures. Acoustically driven
sidewall trapped microbubbles act as a fast microflu-
idic mixer (Ahmed et al., 2009). Microbubbles inside
a horseshoe structure produce acoustic streaming vor-
tices which are able to trap bacterial aggregations
(Yazdi, Ardekani, 2012). On the other hand, fo-
cusing the sub-micrometer particles and bacteria both
horizontally and vertically in the cross section of a mi-
crochannel is feasible using two dimensional acoustic
streaming phenomena. The single roll streaming flow
is observed experimentally in a nearly square channel,
and acoustophoretic focusing of E. Coli bacteria and
0.6 m particles is achieved (Antfolk et al., 2014).
An ultrasonic device for micro-patterning and preci-
sion manipulation of micrometer scale particles has
been introduced using eight piezoelectric transducers
shaped into an octagonal cavity (Bernassau et al.,
2013). The effects of profiled surfaces on the bound-
ary driven streaming fields in 2D rectangular cham-
bers have been numerically investigated by Lei et al.
(2018). Their models predict that profiles with ampli-
tudes comparable to the viscous boundary layer have
the potential to dramatically enhance (and change the
pattern of) acoustic streaming patterns.

In this work, we numerically investigate the ef-
fects of different geometrical parameters on two dimen-
sional acoustic streaming patterns inside microchan-
nels with acoustically oscillating sinusoidal walls in
vertical direction. Some special acoustic streaming pat-
terns emerge in the form of repetitive shapes in special
cases that can never be produced in rectangular geom-
etry with flat boundaries using one dimensional oscilla-
tions. We propose a relation between such patterns and
geometrical parameters that lead us to predict much
more cases. Such results for sinusoidal geometry were
not trivial at a glance.

The paper is organized as follows. In Sec. 2 we de-
rive the governing equations that are solved numeri-
cally. This is followed in Sec. 3 by description of the
numerical model and considering boundary conditions.

In Sec. 4 effects of three geometrical parameters are
discussed that are the ratio of the side walls, sym-
metry or asymmetry of sinusoidal walls and geomet-
rical wavelength of them. A formulation is suggested
to make other cases predictable. Finally, an applica-
tion is introduced numerically to trap sub-micron par-
ticles inside a sinusoidal microchannel in single tweez-
ing points. Such trapping was never achieved in two
dimensional cases with only one directionally oscilla-
tion of boundaries. All conclusions stated in this paper
can be leading points to optimise the performance of
acoustofluidic devices.

2. Theory

In the absence of external body forces and heat
sources, there are three important governing equations
in microfluidic systems as (Muller, Bruus, 2014)

∂tρ = ∇ ⋅ [−ρv],

∂t(ρv) = ∇ ⋅ [σ − ρvv],

∂t (ρε +
1

2
ρv2) = ∇ ⋅ [kth∇T + v ⋅σ − ρ(ε + 1

2
v2)v].

(1)

The continuity Eq. (1)1 expresses conservation of mass
where the mass current density is ρ, the Navier-Stokes
Eq. (1)2 expresses conservation of momentum where
momentum current density is ρv, and the Eq. (1)3
expresses conservation of energy where energy cur-
rent density is ρ (ε + 1

2
v2) (Landau, Lifsitz, 1967;

Muller, Bruus, 2014). ε is internal energy per unit
mass, v is velocity of the fluid in the medium, and kth

is the thermal conductivity. Also, σ is the stress tensor
of the fluid (Cauchy stress tensor) as

σ = τ−pI = η[∇v+(∇vT]+[(ηB − 2

3
η)∇ ⋅ v − p] I, (2)

where the viscous stress tensor, τ, is expressed in terms
of dynamic shear viscosity η and bulk viscosity ηB .
Additionally, p is the pressure field and I is the unit
tensor.

Thermal effects will be neglected, because the
thermal boundary layer thickness (thermal diffusion
length), δt, in fluids is much smaller than viscous
boundary layer thickness (viscous penetration depth),
δν that are defined as (Muller et al., 2012)

δt =
√

2Dth

ω
,

δν =
√

2ν

ω
,

(3)

where Dth is the thermal diffusion constant, ω is an-
gular frequency of the acoustic field and ν = η

ρ
is the

dynamic viscosity.



E.A. Jannesar, H. Hamzehpour – Repetitive Acoustic Streaming Patterns in Sinusoidal Shaped Microchannels 37

Considering the external acoustic field as a pertur-
bation of the steady state of a fluid, all the fields can
be expanded as g = g0 + g1 + g2 taking the first and
second order (subscript 1 and 2, respectively) into ac-
count. We expand the non-linear fluid equations to the
second order.

For a medium with the speed of sound c0, the mag-
nitude of the perturbation can be characterised by the
dimensionless acoustic Mach number (Landau, Lif-
shitz, 1967) as

Ma = v1
c0

= ∣ρ1∣
ρ0

≪ 1, (4)

where ρ0 is the unperturbed density of the fluid and ρ1
is the first order perturbation term of density. Ignoring
thermal effects, the first order perturbation approxi-
mations of governing equations in frequency domain
are (Muller, Bruus, 2015)

∇ ⋅ v1 − iωκ0p1 = 0,

∇ ⋅σ1 + iωρ0v1 = 0.
(5)

The acoustic pressure is calculated as p1 = c20ρ1 and
κ0 = 1

ρ
(∂ρ
∂p

)
s
= 1
ρ0c20

is isentropic compressibility where
c0 is the speed of sound in water at rest. Using the
first order approximation of the perturbation theory,
the stress tensor is calculated as

σ1 = τ1 − p1I = η0[∇v1 + (∇v1)T]

+ [(ηB0 − 2

3
η0)∇ ⋅ v1 − p1] I, (6)

where zero indices refer to the properties at the equilib-
rium. The time averaged second order perturbation ap-
proximations of governing equations in frequency do-
main are (Muller, Bruus, 2015)

∇ ⋅ ⟨v2⟩ + κ0 ⟨v1 ⋅∇p1⟩ = 0,

∇ ⋅ [σ2 − ρ0 ⟨v1v1⟩] = 0.
(7)

The stress tensor of the fluid using the second order
perturbation theory is defined as

σ2 = τ2 − p2I = η0[∇v2 + (∇v2)T]

+ [(ηB0 − 2

3
η0) (∇ ⋅ v2) − p2] I, (8)

where ηB1 and η1 are the bulk viscosity and dynamic
shear viscosity of the fluid, respectively. As mentio-
ned above, in adiabatic thermodynamic approxima-
tion, the thermal term is ignored. Resulting expression
for the acoustic radiation force on a spherical particle
with radius of a is obtained by (Muller et al., 2012;
Settnes, Bruus, 2012)

Frad = −πa3[2κ0
3

Re[f∗1 p∗in1 ∇p
in
1 ]

−ρ0Re[f∗2 v∗in1 ⋅∇vin1 ]], (9)

where vin1 and pin1 are the first order pressure and ve-
locity fields of the incident acoustic wave evaluated at
a particle position. Asterisks denote complex conjuga-
tions. The prefactors f1 and f2 are the so called mono-
and dipole scattering coefficients, respectively, that in
viscous fluid are calculated as (Muller et al., 2012;
Settnes, Bruus, 2012)

f1(κ̃) = 1 − κ̃, with κ̃ =
κp

κ0
,

f2(ρ̃, δ̃ν) =
2 [1 − Γ (δ̃ν)] (ρ̃ − 1)

2ρ̃ + 1 − 3Γ (δ̃ν)
, with ρ̃ =

ρp

ρ0
,

Γ (δ̃ν) = −
3

2
[1 + i (1 + δ̃ν)] δ̃ν , with δ̃ν =

δν
a
,

(10)

where κp and ρp are the compressibility and density of
the particles, respectively.

The time averaged streaming induced drag force on
a spherical particle of radius a moving with velocity u,
far from the channel walls in a fluid with time averaged
streaming velocity ⟨v2⟩ is given by (Settnes, Bruus,
2012)

Fdrag = 6πηa(⟨v2⟩ − u). (11)

The nonlinear acoustophoretic forces compete with
each other. The crossover from the dominance of each
force is defined through a critical particle radius. For
a fixed spherical particle inside a rectangular micro-
channel, the crossover diameter is (Muller et al.,
2012)

2ac =
√

12
Ψ

Φ
δν , (12)

where Ψ is a factor related to the channel geometry.
The acoustophoretic contrast factor is calculated as
Φ(κ̃, ρ̃, δ̃ν) = 1

3
f1(κ̃) + 1

2
fr2 (ρ̃, δ̃ν) that contains mate-

rial parameters. The monopole scattering coefficient,
f1, is real valued and depends only on the compress-
ibility ratio between the particle and the fluid, κ̃ but
the viscosity dependent dipole scattering coefficient,
f2, is in general a complex valued number, and its real
value is abbreviated as fr2 (ρ̃, δ̃ν) = Re [f2(ρ̃, δ̃ν)].

3. Numerical model and boundary conditions

In the following, a numerical model is presented for
microchannels with actuating sinusoidal top and bot-
tom walls. Finite element method is one of the most
widely used numerical methods in computational sim-
ulations. In this study, the same method is utilised
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considering the weak form of the partial differential
equations.

Two examples of sinusoidal microchannels are
sketched in Fig. 1. Top and bottom walls have sym-
metrical or asymmetrical sinusoidal forms given by the
functions

z = ±(h
2
) ±A sin(2mπy

w
+ φg), m = 1

4
,
1

2
,
3

4
,1, ...,

(13)
where A is the amplitude of the sinusoidal boundaries,
w is the width of the microchannels, h is the height
of corresponding hypothetical rectangular microchan-
nels, which is considered 100 µm in this study, and
φg is a geometrical phase parameter, typically equals
to zero. Noteworthy, first ± sign in Eq. (11) refers to
top or bottom boundaries, and the minus sign in se-
cond ± in the equation belongs to the bottom walls of
asymmetrical microchannels.

The governing Eqs (5), (7) are solved using the fi-
nite element method. We have used the weak-form-
PDE of mathematics for both first and second order
equations. The conducted steps are as follows: First,
the flow equations are written as source free flux for-
mulation, ∇ ⋅ J +F = 0; then they are converted to the
weak form; finally, the weak form equations are solved
by mathematics weak form PDE module. In all cases,
the zero flux boundary condition, J ⋅n = 0, is supposed

a) b)

Fig. 1. Two dimensional schematics of microchannels in yz plane are shown. Top and bottom walls are (a) symmetrically
and (b) asymmetrically sinusoidal. Blue arrows show the oscillation direction of the actuated boundary walls at the
resonance frequency of fv. Hypothetical basic rectangular microchannels are shown by dashed lines with the height of h

and width of w. λg is defined as the geometrical wavelength of sinusoidal shaped boundaries.

a) b) c)

Fig. 2. (a) Sketch of the spatial mesh of the sinusoidal computational domain in the yz plain.
(b) and (c) are two zoom in scales on the mesh in the lower left corner.

where n is the normal vector to the boundary surface.
Also, all boundaries are considered as hard walls.

Top and bottom walls are actuated by an exter-
nal acoustic field at the frequency of fv, which is the
vertical resonance frequency of a hypothetical rectan-
gular microchannel with a height of h. The boundary
conditions of the first order velocity field are:

top–bottom ∶ vy1 = 0, vz1 = vbc sin(ωt),
left–right ∶ vy1 = 0, vz1 = 0,

(14)

where vbc = ωd, ω = 2πf , and d = 0.1 nm. The displace-
ment of the oscillating walls in the z direction, d, is
small enough to use the perturbation theory.

A zero mass flux boundary condition is considered
for the second order velocity field as

top-bottom ∶ vy2 = 0, vz2 = −
⟨ρ1vz1⟩
ρ0

,

left-right ∶ vy2 = 0, vz2 = 0.

(15)

The maximum mesh size in boundaries until 10δν
and bulk are considered 0.5 µm and 5 µm, respectively.
The mesh element growth rate is 1.3 (see Fig. 2).

The fluid inside the microchannel is considered to
be quiescent water. Also, the physical parameters for
water at the temperature of T = 25○C and pressure
p0 = 0.1013 MPa are shown in Table 1.
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Table 1. Physical parameters of water at T = 25○C
and p0 = 0.1013 MPa (Muller, Bruus, 2014).

Parameter Symbol Value Unit
Mass density ρ0 9.970 ⋅ 102 kg/m3

Speed of sound c0 1.497 ⋅ 103 m/s
Shear viscosity η0 8.900 ⋅ 10−4 Pa ⋅ s
Bulk viscosity ηB0 2.485 ⋅ 10−3 Pa ⋅ s

4. Results and discussion

Acoustic streaming vortices can be troublesome in
some cases, but if controlled and treated properly, the
problem turns into a beneficial parameter in acoustic
tweezing or micromixing applications. Concerning the
fact that the acoustic streaming patterns are extremely
sensitive to the geometry of the fluid container, exten-
sive numerical calculations were carried out to study
such effects on acoustic streaming patterns in two di-
mensions. In what follows we present the results and
discuss their implications.

4.1. Effective parameters on acoustic streaming
patterns of sinusoidal microchannels

The parameters which can affect streaming pat-
terns in a microchannel with sinusoidal boundaries

Fig. 3. First order pressure fields (left column) and time averaged second order velocity fields (right column) in cross
section of sinusoidal microchannels where geometrical wavelengths of symmetrical top and bottom walls remain fixed as

λg = 2w and the microchannel’s width to height ratio, n, varies from 1 to 5.

are the applied frequency, f , microchannel’s width to
height ratio, n = w/h, amplitude of the sinusoidal walls,
A, symmetry or asymmetry of the sinusoidal walls, and
geometrical wavelength, λg. In this study, fv and A
are considered constant equal to c/2h and h/50 respec-
tively, where c is the speed of sound in water. Effects
of other parameters are investigated in details as fol-
lows.

4.1.1. Effects of the microchannel’s width to height
ratio, n

Figures 3 and 4 illustrate examples for two fixed
geometrical wavelengths, λg = 2w and λg = w, but dif-
ferent values of n from 1 to 5 for each case. The re-
sults show that in some various microchannel’s width
to height ratios the streaming patterns are completely
different from the flat geometry streaming patterns.
Dominant repetitive vortices or twisting-like patterns
are discoverable. For λg = 2w and odd numbers of n,
streaming patterns tend to flat geometry. For λg = w
and even numbers of n the same results are achieved.

Acoustic streaming patterns for other geometri-
cal wavelengths with variable ratios have been stud-
ied numerically and the same pattern sequences have
been extracted. The details will be discussed further to
classify and formulate such appearing streaming pat-
terns.
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Fig. 4. First order pressure fields (left column) and time averaged second order velocity fields (right column) in cross
section of sinusoidal microchannels where geometrical wavelengths of symmetrical top and bottom walls remain fixed as

λg = w and the microchannel’s width to height ratio, n, varies from 1 to 5.

4.1.2. Effects of geometrical wavelength
on acoustic streaming patterns

Another investigation was carried out with fo-
cusing on the different values of λg but fixed n.
The results show that λg definitely affects stream-
ing patterns in some cases. Dominant repetitive vor-
tices and twisting-like patterns are discoverable sim-
ilar to the cases with fixed λg but changing n. In
some repetitive cases patterns resemble flat geome-
try pattern. Figure 5 shows the results for n = 6
and definitive magnitudes of λg. As depicted, acous-
tic standing waves rotate in some cases from verti-
cal into horizontal. Noteworthy, the frequency of ac-
tuation and the direction of oscillations are vertical
in all cases. Further investigation shows that the pat-
terns in n = 6 are achievable in other channel widths
with classifiable values of λg. As a result, some for-
mulations are proposed in Subsec. 4.2 to make acous-
tic streaming patterns predictable as much as pos-
sible.

4.1.3. Effects of asymmetrical sinusoidal top
and bottom walls

The same simulations as above were repeated for
asymmetrical sinusoidal boundaries. Figure 6 indicates

cases with different values of n but fixed λg and Fig. 7
shows selected simulations for different values of λg but
fixed n. The results declare that in asymmetrical cases
previous patterns, as in symmetrical boundaries, are
not achievable. The generating standing waves typi-
cally resemble flat geometry and streaming patterns
carry less deviation from a rectangular case as com-
pared to the symmetrical cases. However, some consid-
erable patterns exist. At the geometrical wavelength
of λg = 2w but high numbers of n four additional
boundary layers generate around the sinusoidal curved
boundaries. As a result, four bulk streaming flows
emerge in the bulk of the microchannel. In addition, at
λg = w, some stretched fluid circles are generated as in
Fig. 7d. As such, fluid molecules or tiny particles trans-
fer from one side to another side just through implying
acoustical oscillations.

4.2. Classification of streaming patterns
in symmetrical sinusoidal microchannels

This work aims to characterise the effect of sinu-
soidal boundaries on the acoustic streaming patterns
in microfluidic systems. Focusing on natural values of
the microchannel’s width to height ratio from 1 to 10,
and geometrical length-widths of λg = 4w/2p, where
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Fig. 5. First order pressure fields (left column) and time averaged second order velocity fields (right column) in cross
section of sinusoidal microchannels where the microchannel’s width to height ratio remains fixed as n = 6 and geometrical

wavelengths of symmetrical top and bottom walls are λg = 4w/2p where p = 1,2, ...,7.
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Fig. 6. First order pressure fields (left column) and time averaged second order velocity fields (right column) in cross
section of sinusoidal microchannels where geometrical wavelengths of asymmetrical top and bottom walls remain fixed as

λg = 2w and the microchannel’s width to height ratio, n, varies from 1 to 5.

p = 1,2, ...,10, leads to a 10× 10 matrix which contains
numerical results. A classification is proposed to pre-
dict patterns with larger values of λg and n through
an inductive reasoning.

The first formula is declared for fast streaming pat-
terns like Fig. 5d. It resembles a chain with n numbers
of rings

λg =
4

2n − 10
w, (16)

where n ≥ 6 ∈ R.
The next formula is proposed for the patterns like

Fig. 5l where n numbers of dominant vortices are rec-
ognizable

λg =
4

2n − 2
w, (17)

where n ≥ 2 ∈ R.
Similar patterns, with a one vortex forward shift,

exist, as shown in Fig. 5p. The formulation is

λg =
4

2n + 2
w, (18)

where n ≥ 1 ∈ R.

Another series of similar patterns could be defined
considering that two corresponding vortices are gener-
ated instead of one dominant vortex as in two previous
classes

λg =
4

2n − 6
w, (19)

where n ≥ 4 ∈ R.
The next formula is defined for identical patterns

imposing a shift of one vortex forward, ssee Fig. 5t

λg =
4

2n + 6
w, (20)

where n ≥ 1 ∈ R.
For the cases very similar to flat geometry, a general

relation can be proposed as

λg =
4

2p − 1
w, (21)1

where p ≥ 1 ∈ R for odd numbers of n;

λg =
4

2p
w, (21)2

where p ≥ 1 ∈ R for even numbers of n.
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Fig. 7. First order pressure fields (left column) and time averaged second order velocity fields (right column) in cross
section of sinusoidal microchannels where the microchannel’s width to height ratio remains fixed as n = 6 and geometrical

wavelengths of assymetrical top and bottom walls are λg = 4w/2p, where p = 1,2, ...,8.

Figure 8 validates Eq. (15) of acoustic streaming
classified patterns. A single vortex is accessible when
n = 1 and λg = 4w in addition to the proposed for-
mula.

Noteworthy, other cases with half numbers of n
or geometrical wavelengths of λg = 4w/(2p − 1) with
p = 1,2, ...,10, could be investigated. The same classi-
fication could be defined but be ignored in this study.

4.3. Investigation of microchannel’s building blocks

It might be supposed that repetitive patterns could
be generated when some building blocks with a single

vortex pattern are joined to make a long sinusoidal mi-
crochannel. In this section, it is clarified that the repe-
tition of acoustic streaming patterns happens in a non
trivial manner. See Fig. 9 where a microchannel with
n = 4 and λg = w is separated into four microchannels
with n = 1 and λg = 4w.

Figure 10 shows the results when two blocks are
joined. The patterns are satisfying in this case and two
dominant vortices function normally with the same or-
der of magnitude. As the third block is added, each
dominant vortex separates into two vortices. Adding
the fourth block destructs all the patterns and the re-
sulting pattern becomes the same as in the rectangular



44 Archives of Acoustics – Volume 45, Number 1, 2020

Fig. 8. Example of repetitive acoustic streaming patterns inside sinusoidal microchannels when the relation between
geometrical wavelengths λg and the microchannel’s width to height ratio is defined as λg = 4w/(2n − 2), where n ≥ 2 ∈ R.

case. Surprisingly, adding the fifth block, makes bulk
vortices emerge again, see Fig. 11.

One other example for different behaviour of joined
building blocks as compared with separated ones is
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Fig. 9. First order pressure field, p1, and acoustic streaming velocity fields, ⟨v2⟩, for building blocks of a symmetrical
sinusoidal microchannel with n = 4 and λg = w. Each block has microchannel’s width to height ratio of n = 1 and

geometrical wavelength of λg = 4w. Geometrical phases for Block 1 to Block 4 are φg = 0, π/2, π,3π/2, respectively.

Fig. 10. First order pressure field, p1, and acoustic streaming velocity field, ⟨v2⟩, for two adjacent building blocks of
a symmetrical sinusoidal microchannel. The final blocks have microchannel’s width to height ratio of n = 2 and geometrical

wavelength of λg = 2w.

shown in Fig. 12, where each block has n = 1 and
λg = w.

4.4. Trapping submicrometer particles inside
symmetrical sinusoidal microchannels

Novel acoustic streaming repetitive patterns have
been introduced numerically earlier in this paper. Pat-
terns with repetitive single dominant vortices are capa-
ble of trapping submicron particles inside a sinusoidal
microchannel in tweezing points. The most important
finding is that such a trapping is now possible through
modification of the geometry of the boundaries in-
stead of adding more oscillating boundaries. Several
attempts have been made to create such patterns us-
ing multiple actuators with flat geometry (Antfolk
et al., 2014; Bernassau et al., 2013). A two dimen-
sional cross section of a sinusoidal microchannel with
1 mm width and geometrical wavelength of 2w/9 is
shown in Fig. 13. The top and bottom sinusoidal walls
are actuated at the frequency of fv = c/2h.

The snapshots after 10 seconds for simulation of
particles with the radius of a = 0.25 µm inside the mi-

crochannel indicate that submicrometer particles tend
to focus being affected by acoustic streaming fluid
flows, see Fig. 13d.

5. Conclusion

In this paper, we aimed at numerically characteris-
ing two dimensional acoustic streaming patterns gener-
ated in the fluid inside the microchannels with acousti-
cally oscillating sinusoidal boundaries. Considering the
fact that the acoustic streaming patterns are extremely
sensitive to the geometry, some geometrical parame-
ters have been investigated such as the microchannel’s
width to height ratio, symmetry or asymmetry of sinu-
soidal walls, and geometrical wavelength of sinusoidal
boundaries. The results indicate that while the top and
bottom sinusoidal boundaries had been actuated ver-
tically at the resonance frequency of a basic hypothet-
ical rectangular microchannel, some repetitive acous-
tic streaming patterns were generated. Such patterns
could have never been produced in the rectangular ge-
ometry with flat boundaries with only one directional



46 Archives of Acoustics – Volume 45, Number 1, 2020

Fig. 11. Examples of p1 and ⟨v2⟩ when adding building blocks of Fig. 9 one by one from n = 1 to n = 8. Each block has
geometrical wavelength of λg = 4w.

Fig. 12. Examples of p1 and ⟨v2⟩ when adding building blocks one by one from n = 1 to n = 5. Each block has geometrical
wavelength of λg = w.
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Fig. 13. a) First order pressure field, b) time-averaged second order velocity field, c) snapshot of movement of particles
with the radius of a = 0.25 µm at t = 0, and d) the snapshot at t = 10 s for a symmetrical sinusoidal microchannel with
the geometrical wavelength of λg = 2w/9 and microchannel’s width to height ratio of n = 10. Trapping of tiny particles

become possible by manipulation of boundary geometries in a defined manner.

oscillation of boundaries. The relations between geo-
metrical parameters and emerging acoustic streaming
patterns led us to suggest some formulas in order to
predict more cases. The results and formulations were
not trivial at a glance. Consequently, an application
has been proposed numerically to trap sub-micron par-
ticles inside a sinusoidal microchannel in some tweezing
points. All conclusions stated in this paper can be lead-
ing points to optimise the performance of acoustoflu-
idic devices.
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