
ARCHIVES OF ACOUSTICS
Vol. 45, No. 1, pp. 19–27 (2020)
DOI: 10.24425/aoa.2019.129738

Research Paper

Dispersion Curves of Love Waves in Elastic Waveguides Loaded
with a Newtonian Liquid Layer of Finite Thickness

Piotr KIEŁCZYŃSKI∗, Marek SZALEWSKI
Andrzej BALCERZAK, Krzysztof WIEJA

Institute of Fundamental Technological Research
Polish Academy of Sciences

Pawińskiego 5B, 02-106 Warsaw, Poland
∗Corresponding Author e-mail: pkielczy@ippt.pan.pl

(received July 23, 2019; accepted October 14, 2019)

In this paper, the authors analyse the propagation of surface Love waves in an elastic layered waveg-
uide (elastic guiding layer deposited on an elastic substrate) covered on its surface with a Newtonian
liquid layer of finite thickness. By solving the equations of motion in the constituent regions (elastic
substrate, elastic surface layer and Newtonian liquid) and imposing the appropriate boundary conditions,
the authors established an analytical form of the complex dispersion equation for Love surface waves.
Further, decomposition of the complex dispersion equation into its real and imaginary part, enabled for
evaluation of the phase velocity and attenuation dispersion curves of the Love wave. Subsequently, the
influence of the finite thickness of a Newtonian liquid on the dispersion curves was evaluated. Theoretical
(numerical) analysis shows that when the thickness of the Newtonian liquid layer exceeds approximately
four penetration depths 4δ of the wave in a Newtonian liquid, then this Newtonian liquid layer can be
regarded as a semi-infinite half-space. The results obtained in this paper can be important in the design
and optimization of ultrasonic Love wave sensors such as: biosensors, chemosensors and viscosity sensors.
Love wave viscosity sensors can be used to assess the viscosity of various liquids, e.g. liquid polymers.

Keywords: Love waves; ultrasonic sensors; Newtonian liquid; penetration depth; biosensors; chemosen-
sors; viscosity sensors.

1. Introduction

Ultrasonic bulk and surface waves (Achenbach,
1973; Auld, 1990; Royer, Dieulesaint, 2000;
Rose, 2014) are widely used to develop sensors of
physical properties of materials in NDT, biosensors
and chemosensors (Ballantine et al., 1997; Qian
et al., 2010; Rocha Gaso et al., 2013; Liu, 2014;
Kiełczyński et al., 2014a; 2014b; 2014c; Hong
et al., 2014; Goto et al., 2015; Wang et al., 2015).
Love waves are the most promising surface waves
in applications for sensors working in a liquid envi-
ronment (Achenbach, 1973; Royer, Dieulesaint,
2000; Rose, 2014).

Surface waves of the Love type have a number of
unique features, what differentiates them from other
types of waves. Firstly, Love surface waves have only
one shear horizontal SH component of vibrations. As

a result, Love waves are slightly affected by loading
with a viscous liquid and consequently they may prop-
agate long distances without a significant attenuation.
Secondly, the energy of Love waves attains high densi-
ties in a guiding surface layer, deposited on the semi-
infinite substrate. This property is crucial in develop-
ment of Love wave sensors working usually in a con-
tact with liquid environment (investigated analyte).
Thirdly, the analytical formulas describing propaga-
tion of Love waves are relatively compact, what enables
drawing clear physical conclusions.

The main advantage of Love wave sensors is their
ability to operate in a liquid environment. This results
from the fact that the transverse component of the me-
chanical displacement of the Love wave generates, in
the liquid loading the waveguide surface, a bulk trans-
verse wave. This wave penetrates into the liquid at
a small distance (penetration depth) and quickly atte-
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nuates with increasing distance from the surface of the
waveguide.

The ability to operate in a liquid environment is
one of the most important features of any Love wave
biosensor. In fact, Love wave biosensors extract the in-
vestigated analyte from the surrounding liquid, form-
ing a so called coating layer, which properties can be
correlated with phase velocity and attenuation of Love
surface waves.

In this paper we will determine how thick the layer
of a loading viscous liquid should be to be considered
as a layer of an infinite thickness. The knowledge of
this limiting thickness is very important in a design
of stable and accurate Love wave biosensors.

To date, the theory of Love wave propagation has
been developed for elastic waveguide structures loaded
on the surface with the semi-infinite layer of Newto-
nian liquid (Kiełczyński et al., 2012). In the present
work, we investigate a more realistic (general) situ-
ation, i.e. we consider a case in which the layer of
a Newtonian liquid has finite thickness. To this end,
the authors formulated and solved the coupled differ-
ential problem (Sturm-Liouville Problem), which de-
scribes the propagation of the Love wave in the analy-
zed waveguide structure shown in Fig. 1.

Fig. 1. Cross-section of the analyzed lossless Love wave
waveguide loaded with a lossy Newtonian liquid. Love sur-
face waves propagate along the x1 axis. Shear horizontal
(SH) mechanical displacement u3 of the Love wave is di-

rected along the x3 axis.

The influence of thickness of the layer of a Newto-
nian liquid on the dispersion curves (phase velocity and
attenuation) of the Love wave has been estimated. The
results of this work may find application in the design
and optimization of ultrasonic Love wave sensors such
as: biosensors, chemosensors and viscosity sensors.

Love wave viscosity sensors can be employed to
evaluate the viscosity of various liquids (e.g. liquid
polymers) processed in the chemical and plastics in-
dustries. Furthermore, the analysis performed in this
study can be employed in nondestructive (NDT) in-
vestigations of composite materials in order to process
the obtained experimental data.

2. Structure and material parameters
of the surface Love wave waveguide

The propagation of Love surface waves in layered
waveguides, given their material and geometric param-
eters, can be formulated in terms of the Direct Sturm-
Liouville Problem (Kiełczyński, 2018). A solution to
this Direct Sturm-Liouville Problem is in a form of dis-
crete eigenvalue-eigenvector pairs. An eigenvalue deter-
mines the complex wave vector (i.e. the phase velocity
and attenuation) of the Love wave and the correspond-
ing eigenvector is a function describing distribution of
the mechanical displacement of the Love as a function
of depth, i.e. the distance from the guiding surface.

Since, the layered waveguide structure is lossy
(Newtonian liquid), the wave number k of the Love
wave is a complex quantity:

k = k0 + jα, (1)

where: j =
√
−1 is the imaginary unit.

The real part (k0) of the wave number k determines
the phase velocity of the Love wave: vp = ω/k0, where:
ω is the angular frequency of the wave, and the imagi-
nary part α is the coefficient of attenuation of the Love
wave.

2.1. Geometry and material parameters of the lossy
Love wave waveguide

The layered elastic composite waveguide analyzed
in this paper is shown in Fig. 1. The waveguide is de-
signed to support shear horizontal (SH) surface waves
of the Love type. The composite waveguide consists
of a lossless elastic surface layer (h2 > x2 > 0), which
is rigidly bonded to a lossless infinite elastic substrate
occupying the lower half-space (x2 > h2). In addition,
top of the surface layer of the waveguide (x2 = 0)
is loaded with a layer of viscous (Newtonian) liquid
(0 > x2 > −h1) of finite thickness h1. The Newtonian
liquid is characterized by its viscosity η and density ρ1
as well as by the quasi shear modulus c(1)44 = −jωη.

The surface layer is a lossless elastic material with
a real shear modulus of elasticity c

(2)
44 , such as gold

(Au). The elastic substrate is a semi-infinite elastic
medium with a real shear modulus of elasticity equal to
c
(3)
44 , such as ST-cut Quartz material supporting pure
SH bulk waves. The x2 axis is directed into the bulk
of the substrate. All material parameters of the com-
posite waveguide change only along the x2 axis but are
homogeneous along the x1 and x3 axes. Love surface
waves have only one non-zero shear-horizontal (SH)
component of the mechanical displacement u3, which
is directed along the x3 axis, parallel to the surface
(x2 = 0) of the waveguide and perpendicular to the
direction of the Love wave propagation along the x1
axis.
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3. Mathematical statement of the problem

3.1. Equations of motion

3.1.1. Lossy layer (−h1 < x2 < 0) of a Newtonian liquid
with a finite thickness h1

The mechanical displacement of the Love wave
inside the lossy layer (−h1< x2 < 0) of a Newto-
nian liquid, of finite thickness h1, is in the form
of a bulk transverse wave. The mechanical displace-
ment u(1)3 of the bulk SH wave is governed by the
following Navier-Stokes partial differential equation
(Kiełczyński et al., 2012):

∂2u
(1)
3

∂t2
= (−jωη

ρ1
)
⎛
⎝
∂2u

(1)
3

∂x21
+
∂2u

(1)
3

∂x22

⎞
⎠
, (2)

where ρ1 is the liquid density, η its viscosity and ω is
the angular frequency of the Love surface wave.

3.1.2. Lossless elastic surface layer (h2 > x2 > 0)

The mechanical displacement u(2)3 of the Love wave
in the elastic surface layer is governed by the following
equation of motion (Kiełczyński et al., 2012):

1

v22

∂2u
(2)
3

∂t2
=
∂2u

(2)
3

∂x21
+
∂2u

(2)
3

∂x22
, (3)

where v2 = (c(2)44 /ρ2)
1/2

is bulk SH wave velocity in

the lossless surface layer, c(2)44 its storage modulus of
elasticity, ρ2 is the density of the lossless elastic surface
layer. Since c(2)44 and ρ2 are real, the phase velocity v2
is a real quantity as well.

3.1.3. Semi-infinitive elastic substrate (x2 > h2)

The mechanical displacement u
(3)
3 of the Love

wave in the elastic substrate satisfies the follow-
ing partial differential equation (equation of motion)
(Kiełczyński et al., 2012):

1

v23

∂2u
(3)
3

∂t2
=
∂2u

(3)
3

∂x21
+
∂2u

(3)
3

∂x22
, (4)

where v3 = (c(3)44 /ρ3)
1/2

is the velocity of the bulk SH

wave in the elastic substrate, c(3)44 its storage modulus
of elasticity, and ρ3 is the density in the elastic sub-
strate. Since c(3)44 and ρ3 are real, the phase velocity v3
is a real quantity as well.

3.2. Analytical solutions

A general form of the solution for the equations
of motion (Eqs (2)–(4)) corresponding to a time-
harmonic Love surface wave is sought in the following
form:

u3 (x1, x2, t) = f(x2) ⋅ exp [j(kx1 − ωt)] , (5)

where f(x2) is the transverse distribution of the me-
chanical displacement u3 of the Love surface wave as
a function of depth x2. The angular frequency is de-
noted by ω. The complex wave number k of the Love
wave is given by k = k0 + jα, where k0 determines the
phase velocity vp = ω/k0, and α is the wave attenua-
tion.

3.2.1. Finite thickness layer of a Newtonian liquid
(0 > x2 > −h1)

According to Eq. (5) the mechanical displacement
u
(1)
3 in the finite thickness layer of a Newtonian liquid,

satisfying Eq. (2), can be written as:

u
(1)
3 = U (x2) ⋅ exp [j (k ⋅ x1 − ωt)] . (6)

Substitution of Eq. (6) into Eq. (2) gives rise to the
following Helmholtz type ordinary differential equation
of the second order:

U ′′(x2) + (k21 − k2) ⋅U(x2) = 0, (7)

where k21 = jωρ1
η

is the complex bulk SH wave num-
ber in the loading Newtonian liquid, the complex wave
number k of the Love surface wave is given by Eq. (1),
ρ1 is the liquid density, and η its viscosity.

We will seek the solution to Eq. (7) in the following
form:

U(x2) = C1 ⋅ sin (q1 ⋅ x2) +C2 ⋅ cos (q1 ⋅ x2), (8)

where the complex transverse wave number is equal to
q1 = (k21 − k2)1/2, and C1 and C2 are arbitrary con-
stants.

The shear stress component τ (1)23 associated with
the mechanical displacement u(1)3 is given by:

τ
(1)
23 = c(1)44

∂u
(1)
3

∂x2
= (C1 ⋅ c(1)44 ⋅ q1 ⋅ cos (q1 ⋅ x2)

−C2 ⋅ c(1)44 ⋅ q1 ⋅ sin (q1 ⋅ x2)) exp [j(kx1 − ωt)]. (9)

The shear stress τ (1)23 will enter into the appropriate
boundary conditions at interfaces x2 = −h1 and x2 = 0
(see Eqs (21) and (23) in Subsec. 3.4).

3.2.2. Lossless elastic surface layer (h2 > x2 > 0)

According to Eq. (5) the mechanical displacement
u
(2)
3 in the elastic surface layer, satisfying Eq. (3), can

be written as:

u
(3)
3 = V (x2) ⋅ exp [j(k ⋅ x1 − ωt)], (10)

where V (x2) is the transverse distribution of the me-
chanical displacement of the Love wave in the surface
elastic layer.
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Substitution of Eq. (10) into Eq. (3) results in:

V ′′(x2) + (k22 − k2) ⋅ V (x2) = 0, (11)

where the superscript prime ′ denotes the differentia-
tion with respect to the spatial variable x2.

The solution to Eq. (11) can be expressed as:

V (x2) = C3 ⋅ sin (q2 ⋅ x2) +C4 ⋅ cos (q2 ⋅ x2), (12)

where the transverse wave number q2 = (k22−k2)1/2, the
bulk wavenumber in the elastic surface layer k2 = ω

v2
,

and C3 and C4 are arbitrary constants.
The shear stress component τ (2)23 that will be used

later in boundary conditions is given by:

τ
(2)
23 = c(2)44

∂u
(2)
3

∂x2
= (C3 ⋅ c(2)44 ⋅ q2 ⋅ cos (q2 ⋅ x2)

−C4 ⋅ c(2)44 ⋅ q2 ⋅ sin (q2 ⋅ x2)) exp [j(kx1 − ωt)]. (13)

3.2.3. Semi-infinitive elastic substrate (x2 > h2)

According to Eq. (5) the solution of Eq. (4) for
the mechanical displacement u(3)3 of the Love wave in
the elastic substrate can be written as:

u
(3)
3 =W (x2) ⋅ exp [j(k ⋅ x1 − ωt)], (14)

where W (x2) is the transverse distribution of the me-
chanical displacement u(3)3 of the Love wave in the elas-
tic substrate in the direction of axis x2.

Substituting Eq. (14) into Eq. (4) yields:

W ′′(x2) − (k2 − k23) ⋅W (x2) = 0. (15)

Since the amplitude of Love surface waves must
tend to zero for x2 →∞, we chose as a solution of Eq.
(15) the following exponential expression:

W (x2) = C5 ⋅ exp (−b ⋅ x2), (16)

where the transverse wave number is b = (k2 − k23)1/2
and Re (b) > 0. The bulk wavenumber is k3 = ω

v3
, and

C5 is an arbitrary constant.
The shear stress component τ (3)23 required later in

the boundary condition is given correspondingly by:

τ
(3)
23 = c(3)44

∂u
(3)
3

∂x2
= C5 ⋅ c(3)44 ⋅ (−b)

⋅ exp (−b ⋅ x2) ⋅ exp [j(kx1 − ωt)]. (17)

3.3. Propagation of Love surface waves in lossless
elastic waveguides loaded with a lossy Newtonian

liquid as a Direct Sturm-Liouville Problem

A set of 3 functions {U(x2), V (x2), W (x2)}, given
respectively by Eqs (8), (12), and (16) in Subsec. 3.2,
which correspond to the transverse distribution of the

mechanical displacement of the Love wave as a function
of depth x2, can be written in the following form:

f(x2) =

⎡⎢⎢⎢⎢⎢⎢⎣

U (x2)
V (x2)
W (x2)

⎤⎥⎥⎥⎥⎥⎥⎦

. (18)

Three Helmholtz differential equations given by
Eqs (7), (11), and (15) can be represented jointly with
one compact matrix formula, as:

⎡⎢⎢⎢⎢⎢⎢⎣

a∗ + k21 0 0

0 a∗ + k22 0

0 0 a∗ + k23

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

U(x2)
V (x2)
W (x2)

⎤⎥⎥⎥⎥⎥⎥⎦

=k2
⎡⎢⎢⎢⎢⎢⎢⎣

U(x2)
V (x2)
W (x2)

⎤⎥⎥⎥⎥⎥⎥⎦

, (19)

where

a∗ = d2

dx22
Proceeding one step further, Eq. (19) can be written
in a more abstract form as:

Lf(x2) = βf(x2), (20)

where f(x2) = [U(x2), V (x2), W (x2)]T is the eigen-
vector, and β = k2 is the eigenvalue of the second order
differential operator L, written in a matrix form, see
Eq. (19).

The eigenvalue k2 of the differential operator L
is a complex number (Eq. (20)) in order to include
the attenuation of the Love wave. Equation (20)
together with the appropriate boundary conditions
(Kiełczyński et al., 2012), form a Direct Sturm-
Liouville Problem for Love surface waves propagating
in lossy waveguides (Kiełczyński, 2018). In general,
solutions to the Direct Sturm-Liouville Problem form
an infinite set of pairs {λn, fn(x2)}, where n = 0, 1, 2
is the number of the wave mode. In this paper, we
restricted our analysis to the propagation of the fun-
damental mode (n = 0) of the Love wave.

3.4. Boundary conditions

Boundary conditions at the interfaces between con-
stituent layers shown in Fig. 1 are as follows:

1) At the free surface (x2 = −h1) of the Newtonian
liquid layer, shear stress equals zero (Achenbach,
1973):

τ
(1)
23 ∣

x2=−h1

= 0. (21)

2) On the surface (x2 = 0), i.e. at the interface be-
tween the surface of the elastic layer and a viscous
(Newtonian) liquid, continuity conditions for the
mechanical displacement and shear stress should
be provided, hence (Achenbach, 1973):

u
(1)
3 ∣

x2=0
= u(2)3 ∣

x2=0
, (22)
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τ
(1)
23 ∣

x2=0
= c

(1)
44

∂u
(1)
3

∂x2

RRRRRRRRRRRx2=0

= τ (2)23 ∣
x2=0

= c
(2)
44

∂u
(2)
3

∂x2

RRRRRRRRRRRx2=0

. (23)

3) At the interface between the elastic surface layer
and the elastic substrate (x2 = h2) the mechanical
displacement u3 and the shear stress τ23 must ful-
fill the conditions of continuity, i.e. (Achenbach,
1973):

u
(2)
3 ∣

x2=h2

= u
(3)
3 ∣

x2=h2

, (24)

τ
(2)
23 ∣

x2=h2

= c
(2)
44

∂u
(2)
3

∂x2

RRRRRRRRRRRx2=h2

= τ (3)23 ∣
x2=h2

= c
(3)
44

∂u
(3)
3

∂x2

RRRRRRRRRRRx2=h2

. (25)

4) The mechanical displacement u(3)3 of the surface
Love wave, in the substrate (x2 ≥ h2), must vanish
for large distances from the interface (x2 = h2),
i.e., u(3)3 → 0 for x2 →∞.

4. Complex dispersion equation of the Love wave

After substitution of Eqs (8), (9), (12), (13), (16)
and (17) into boundary conditions (Eqs (21)–(25)), the
set of five linear and homogeneous equations for un-
known coefficients C1, C2, C3, C4 and C5 is obtained.
For a nontrivial solution, the determinant of this set of
linear algebraic equations must be equal to zero (nec-
essary condition), namely:

det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b∗ c∗ 0 0 0

0 1 0 −1 0

c
(1)
44 q1 0 −c(2)44 q2 0 0

0 0 d∗ e∗ −f∗

0 0 (c(2)44 q2) e∗ (c(2)44 q2)d∗ (c(3)44 b) f∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0,

(26)
where

b∗ = cos (q1 ⋅ h1), c∗ = sin (q1 ⋅ h1),

d∗ = sin (q2 ⋅ h2), e∗ = cos (q2 ⋅ h2),

f∗ = exp (−b ⋅ h2).

Equation (26) leads to the following complex dis-
persion equation for Love waves propagating in the
composite layered waveguide (see Fig. 1):

− tan (q1 ⋅ h1) ⋅ tan (q2 ⋅ h2)
⎧⎪⎪⎨⎪⎪⎩

c
(1)
44 ⋅ q1
c
(2)
44 ⋅ q2

⎫⎪⎪⎬⎪⎪⎭

− tan (q1⋅h1)
⎧⎪⎪⎨⎪⎪⎩

c
(1)
44 ⋅ q1
c
(3)
44 ⋅ b

⎫⎪⎪⎬⎪⎪⎭

− tan (q2 ⋅ h2)
⎧⎪⎪⎨⎪⎪⎩

c
(2)
44 ⋅ q2
c
(3)
44 ⋅ b

⎫⎪⎪⎬⎪⎪⎭
+ 1 = 0, (27)

where the transverse wave number in Newtonian liq-
uid q1 =

√
ω2⋅ρ1

c
(1)
44

− k2; the transverse wave number in

elastic surface layer q2 =
√

ω2⋅ρ2

c
(2)
44

− k2; k = k0+jα is the

complex wave number of the Love wave; c(1)44 = −jωη
(in a Newtonian liquid); b = (k2 − k23)

1/2; k3 = ω
v3

(in
the substrate), h1 and h2 are the thicknesses of the
Newtonian liquid layer and the elastic surface layer,
respectively.

The complex dispersion equation (Eq. (27)) con-
tains two real-valued unknowns, i.e. the real part k0 of
the complex wave number k of the Love wave and its
attenuation α (i.e. the imaginary part of k).

The material parameters of the Newtonian liquid,
elastic surface layer, and elastic substrate as well as the
frequency f of the Love wave and the thicknesses h1
and h2 of the Newtonian liquid and the elastic surface
layer are embedded in the dispersion Eq. (27) and are
regarded as parameters of this equation.

The complex dispersion equation (Eq. (27)) can be
written in a more abstract form as

F (c(1)44 , ρ1, c
(2)
44 , ρ2, c

(3)
44 , ρ3, η, h1, h2, ω; k0, α) = 0,

(28)
where bolded symbol F denotes that the equation is
defined in the complex domain.

The complex dispersion equation (Eq. (29)) was
subsequently split into its real and imaginary parts
ReF and ImF, which were further equated to zero,
namely

ReF(c(1)44 , ρ1, c
(2)
44 , ρ2, c

(3)
44 , ρ3, η, h1, h2, ω; k0, α)=0,

(29)
ImF(c(1)44 , ρ1, c

(2)
44 , ρ2, c

(3)
44 , ρ3, η, h1, h2, ω; k0, α)=0.

(30)
Equations (29) and (30) constitute a system

of two nonlinear transcendental algebraic equations
for two unknowns k0 and α. The parameters in
Eqs (29), (30) are the following c(1)44 , ρ1, c

(2)
44 , ρ2, c

(3)
44 ,

ρ3, η, h1, h2, and ω. It is rather unrealistic to expect
that any closed form solution for the system of two
algebraic Eqs (29) and (30) would emerge. Therefore,
the nonlinear system of two algebraic Eqs (29) and (30)
have to be solved numerically.

The system of two nonlinear algebraic Eqs (29)
and (30) was solved numerically using specialized pro-
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cedures from the computer package Scilab. For the val-
ues of k0, α found, the phase velocity of the Love sur-
face wave was calculated from the following elementary
formula vp = ω/k0.

5. Results of numerical calculations

Numerical calculations were performed for Love
waves propagating in the composite waveguide struc-
ture (see Fig. 1), consisting of (1) gold elastic surface
layer and (2) Quartz elastic substrate. Top of the gold
surface layer is loaded with a lossy Newtonian liquid.
Numerical values for the material and geometrical pa-
rameters of the layered composite waveguide, used in
the numerical calculations, are given below in Table 1.

For this set of material and geometric parameters
of the Love wave waveguide and operating frequency
f = 1 MHz, the maximum layer thickness (h2max) for
monomode operation equals h2max = 0.6 mm (Auld,
1990). Therefore, only the fundamental Love wave
mode is present in the considered waveguide structure.
So that, in this paper we restricted our analysis to ul-
trasonic sensors that employ the fundamental mode of
the Love wave.

5.1. Phase velocity and attenuation of the Love wave
as a function of frequency for the Newtonian

liquid of an infinite thickness

The dispersion curves of phase velocity and atten-
uation of the Love wave (i.e. the dependence of phase
velocity vp and attenuation α on frequency) are pre-
sented in Figs 2 and 3, respectively. Here, the Newto-
nian liquid, which loads the surface of the waveguide,
is assumed to fill a semi-infinite half-space (x2 < 0).

The impact of the finite thickness h1 of a viscous
Newtonian liquid layer on the phase velocity of the
Love wave for various frequencies will be presented
next in Figs 4–6.

5.2. Phase velocity and attenuation of the Love wave
as a function of thickness h1 of a Newtonian

liquid layer

Plot of Love wave phase velocity vp versus thick-
ness h1 of a Newtonian liquid layer, for f = 0.2 MHz is
shown in Fig. 4.

Table 1. Material and geometrical parameters of the layered Love wave waveguide (Fig. 1), used in numerical calculations.

Material Thickness
[mm]

Density
[kg/m3]

Storage shear modulus
[GPa]

SH wave velocity
[m/s]

Viscosity
[Pa ⋅ s]

Newtonian liquid h1 = 0 − 1 ρ1 = 1000 0 NA η = 10

Gold surface layer h2 = 0.1 ρ2 = 19 300 c
(2)
44 = 27.52 v2 = 1194 0

ST – cut Quartz substrate semi-infinite ρ3 = 2650 c
(3)
44 = 67.85 v3 = 5060 0

Fig. 2. Dispersion curve of the phase velocity of the Love
wave propagating in the layered waveguide of Fig.1. Thick-
ness of surface gold layer h2 = 0.1 mm. Newtonian liquid
of viscosity η = 10 Pa ⋅ s that loads the upper surface of the

gold surface layer is a semi-infinite half space.

Fig. 3. Attenuation of the Love wave propagating in the
layered waveguide of Fig. 1. Thickness of surface gold layer
h2 = 0.1 mm. Newtonian liquid of viscosity η = 10 Pa ⋅ s
that loads the upper surface of the gold surface layer is

a semi-infinite half space.

Figure 5 exhibits the plot of Love wave phase ve-
locity vp as a function of thickness h1 of a Newtonian
liquid layer, for f = 0.5 MHz.
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Fig. 4. Phase velocity vp of the Love wave versus finite
thickness (h1) of the Newtonian liquid layer, that loads
the waveguide surface. f = 0.2 MHz. δ is the penetration

depth of the bulk SH wave into a Newtonian liquid.

Fig. 5. Phase velocity vp of the Love wave versus finite
thickness (h1) of the Newtonian liquid layer, that loads
the waveguide surface. f = 0.5 MHz. δ is the penetration

depth of the bulk SH wave into a Newtonian liquid.

Curve in the Fig. 6 presents the Love wave phase
velocity vp as a function of thickness h1 of a Newtonian
liquid layer, for f = 1 MHz.

Attenuation α of the Love wave propagating in
waveguides loaded with a Newtonian liquid as a func-
tion of h1, for frequencies f = 0.2, 0.5 and 1 MHz, is
shown in Fig. 7.

6. Discussion

If thickness h1 of the loading Newtonian liquid is
finite, we observe a strong dependence of the phase
velocity vp and attenuation α on the actual value of
h1 (see Figs 4–7). Initially, for the thickness h1 of the

Fig. 6. Phase velocity vp of the Love wave versus finite
thickness (h1) of the Newtonian liquid layer, that loads the
waveguide surface. f = 1 MHz. δ is the penetration depth

of the bulk SH wave into a Newtonian liquid.

Fig. 7. Attenuation α of the Love wave as a function of New-
tonian liquid layer thickness h1. f = 0.2, 0.5 and 1 MHz.
δ is the penetration depth of the bulk SH wave into a New-

tonian liquid.

loading Newtonian liquid growing from zero the phase
velocity vp drops monotonically and reaches a mini-
mum for the thickness h1 equaled approximatelly to
the penetration depth δ (h1 ≈ δ). Increasing further
the thickness h1 > δ, we observe that the phase velocity
vp grows monotonically and attains a local maximum
at h1 ≈ 2δ. Next, (for h1 > 2δ) the phase velocity vp
slightly drops and enters a plateau for h1 > 4δ.

It means that if thickness of the loading Newto-
nian liquid h1 > 4δ, we can consider practically such
a layer of Newtonian liquid as infinitive. This discovery
is of crucial importance in design of Love wave sensors
working in a liquid environment, such as biosensors,
chemosensors etc.
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Changes in the attenuation α, as a function of
thickness h1 (see Fig. 7), are strictly correlated with
the corresponding changes in the phase velocity vp as
a function of h1. In fact, the changes in α are mir-
ror like with respect to changes in vp, i.e. for grow-
ing phase velocity vp the attenuation is a decreasing
function of h1. If vp reaches a minimum (h1 ≈ δ), the
attenuation attains a maximum etc.

In general, a layer of a Newtonian liquid of any
thickness, different from zero (h1 > 0), will de-
crease phase velocity vp of the Love surface wave (see
Figs 4–6). Assuming that thickness of the Newtonian
liquid is larger than h1 > 4δ (infinite-like thickness), the
phase velocity vp changes from 3781 m/s (for h1 = 0) to
3765 m/s (for f = 0.2 MHz), from 1971 m/s (for h1 = 0)
to 1959 m/s (for f = 0.5 MHz) and from 1383 m/s (for
h1 = 0) to 1379 m/s (for f = 1 MHz).

The penetration depth of the Love surface wave
into a loading Newtonian liquid requires some expla-
nations. It is a known fact that for bulk SH waves the
penetration depth δ into a Newtonian liquid can be ex-
pressed by the following exact formula (Ballantine
et al., 1997):

δ = (2η/ωρ)1/2 , (31)

where η is the viscosity of the liquid, ρ is the density
of the liquid, and ω is the wave angular frequency.

Although the penetration depth δ, given by
Eq. (31), is strictly valid only for bulk SH waves, it
approximately equals (with a high accuracy) the pene-
tration depth of the Love surface wave, for the New-
tonian liquid of viscosity η = 10 Pa ⋅ s and density
ρ = 103 kg/m3 at frequencies 0.2–1 MHz. Therefore,
in this paper we use Eq. (31) to evaluate the penetra-
tion depth of the Love surface wave, into the loading
Newtonian liquid with parameters given in Table 1.

For the Newtonian liquid of viscosity η = 10 Pa ⋅ s
and density ρ = 103 kg/m3, the penetration depth δ
as a function of frequency f of the Love wave equals,
respectively, to: δ = 0.126 mm, for f = 0.2 MHz; δ =
0.08 mm, for f = 0.5 MHz; and δ = 0.056 mm, for
f = 1 MHz.

7. Conclusions

The authors established the complex dispersion
equation (Eq. (27)) for Love waves propagating in the
layered waveguide structure from Fig. 1. Using this
complex dispersion equation, the dispersion curves of
phase velocity and attenuation have been evaluated.

From these dispersion curves for phase velocity and
attenuation (see Figs 4–7) of Love surface waves, prop-
agating in waveguides loaded with a Newtonian liquid
of a finite thickness h1, we can draw the following con-
clusions:

1) The change of the phase velocity vp of the Love
wave as a function of thickness h1 of the load-

ing Newtonian liquid has character of a damped
sinusoid, for small initial values of the thickness
h1, e.g., for f = 1 MHz (h1 < 0.3 mm), see Fig. 6.
After exceeding the thickness h1 ≈ 0.3 mm (for
f = 1 MHz) we can treat the Newtonian liquid as
semi-infinite.

2) In general, the dispersion curves of the phase ve-
locity vp as a function of thickness h1, for fre-
quencies 0.2, 0.5, and 1 MHz, see Figs 4–6, show
that the limiting thickness beyond which a New-
tonian liquid can be treated as a semi-infinite can
be safely assumed as 4δ (four penetration depths
into the liquid for a given frequency).

3) The variation of the Love wave attenuation α
as a function of thickness h1 has also character
of a damped sinusoid in the range of small va-
lues of thickness h1, see Fig. 7.

4) Figure 7 shows that, similarly as in the case of the
phase velocity vp dependence on the thickness h1,
Newtonian liquid layer having a thickness of ap-
proximately greater than four penetration depth
4δ can be safely regarded as a semi-infinite half
space.

The results presented in this work have not been
yet published in the scientific literature. We believe
that this work will allow for a more accurate analy-
sis of physical phenomena occurring in ultrasonic Love
wave sensors. This will enable more precise design and
optimization of the Love wave ultrasonic sensors (e.g.
viscosity sensors, biosensors and chemosensors).
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