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An efficiency of the nonsingular meshless method (MLM) was analyzed in an acoustic indoor problem.
The solution was assumed in the form of the series of radial bases functions (RBFs). Three representative
kinds of RBF were chosen: the Hardy’s multiquadratic, inverse multiquadratic, Duchon’s functions. The
room acoustic field with uniform, impedance walls was considered. To achieve the goal, relationships
among physical parameters of the problem and parameters of the approximate solution were first found.
Physical parameters constitute the sound absorption coefficient of the boundary and the frequency of
acoustic vibrations. In turn, parameters of the solution are the kind of RBFs, the number of elements in
the series of the solution and the number and distribution of influence points. Next, it was shown that the
approximate acoustic field can be calculated using MLM with a priori error assumed. All approximate
results, averaged over representative rectangular section of the room, were calculated and then compared
to the corresponding accurate results. This way, it was proved that the MLM, based on RBFs, is efficient
method in description of acoustic boundary problems with impedance boundary conditions and in all
acoustic frequencies.
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tion.

1. Introduction

One of the main aim of the room acoustics is the
description of the acoustic field. The room acoustics
is determined by its geometry and sound absorption
of walls (Kuttruff, 2000; Pilch, Kamisiński, 2011;
Rubacha et al., 2012; Kamisiński, 2012; Kamisiński
et al., 2016). Depending on the acoustic frequency,
there are three groups of methods describing the
room acoustics, i.e.: wave-based methods (WBM)
(Meissner, 2009; 2016b; Kamisiński et al., 2016;
Siltanen et al., 2010), image source methods (ISM)
(Suh, Nelson, 1999; Aretz et al., 2014; Boucher
et al., 2016) and acoustics energy methods (AEM)
(Meissner, 2013). In general, WBM is used for low
frequencies, ISM for the early part of the room re-
sponse for middle and high frequencies and AEM for
the rest of the response for middle and high frequen-
cies. Each method has advantages and disadvantages;
some of them are enumerated in (Brański, Prędka,

2018). These different groups of methods have some
links among them (Rindel, 2010) and in some fre-
quency ranges they can be applied interchangeably.

As can be seen, there is not one method which
may be applied in full range of acoustic frequencies.
Although this gap is partially filled by hybrid meth-
ods, but it is not convenient from a numerical point of
view. So, it is necessary to search of the general method
that would be effective for all acoustic frequencies. This
problem is partially solved by this paper.

Such a method ought to be searched among
WBM; other two methods, i.e. ISM and AEM, are
not suitable for describing the field in full acoustic
frequencies, (Brański, Prędka, 2018) and references
cited therein. The finite element method (FEM)
(Fish, Belytschko, 2007; Dobrucki et al., 2010;
Shojaei et al., 2019), the boundary element method
(BEM) (Sladek et al., 2000; Brański et al., 2012;
Borkowski, 2015; Brański, Borkowska, 2015a;
2015b) and MLM are of great importance among
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WBM. But the number, distribution and construction
of elements both in FEM and BEM is a difficult
problem.

To avoid this problem, researchers are cur-
rently focusing on MLM (Atluri, 2004; Antunesp,
Valtchen, 2010; Chen et al., 2013; Fu et al., 2014;
Majkut, Olszewski, 2014; Shojaei, 2016; Bajko
et al., 2017; Brański, Prędka, 2018). The MLM
bases on the solution of the boundary problem in the
form of series, in which bases are RBFs and unknown
coefficients, which are interpreted as intensities of in-
fluence points. In classical formulation of the prob-
lem, unknown coefficients are obtained by collocation
method. Although the number and distribution of both
influence points and collocation ones play significant
role this problem is not considered in the paper and it
remains an open issues (Shojaei et al., 2019).

The purpose of this study is to apply MLM
and analyze its effectiveness to solve the internal
acoustic problem with impedance boundary condi-
tions imposed on walls (Brański et al., 2017) and
in full range of acoustic frequencies. For this purpose,
three types of RBFS are tested: Hardy multi-square
(Prędka, 2016; Brański, Prędka, 2018), inverse
multiquadratic (Brański, Prędka, 2017), Duchon’s
(Duchon, 1976).

The first two RBFs depend on the shape parame-
ter. So, in this paper the value of the shape parameter
is analyzed as a function of frequency, sound absorp-
tion coefficient and number of influence points, espe-
cially an influence of frequency on the shape parame-
ter is analyzed. For all RBFs, an influence of frequency
on the number of series elements is analyzed too. In
this way, all parameters of the solution are determined
in the function of physical parameters. It should be
highlighted, that all calculations are performed on an
assumption that the error between an average exact
acoustic field and an average approximate acoustic
field in the domain is less than 5%. Finally, by select-
ing some physical parameters of the boundary prob-
lem, distributions of approximate and accurate acous-
tic fields are compared (Brański et al., 2017).

This way it is proved that MLM can be a powerful
tool for analyzing of the room acoustic with impedance
boundary conditions and it is useful in the full range
of acoustic frequencies.

2. Exact theory of the boundary acoustic
problem

Details of this theory were presented in (Brański,
Prędka, 2018). Here, only necessary equations, fig-
ures and symbols are quoted in order to the article
should be a separate whole and the reader could un-
derstand its content.

The problem is considered in the domain Ω with

the boundary Γ and the mathematical model is de-
scribed by the wave equation and acoustic boundary
conditions. In steady state the problem is described
by the Helmholtz differential equation and acoustic
boundary conditions. The Helmholtz equation is,

Lu(x) = ∆u(x) + k2fu(x) = f(x), x = x′ ∈ Ω, (1)

where u(x) is the acoustic potential, kf – the wave
number, kf = ωf /c, ωf = 2πf – the angular exciting
frequency f , f(x) – the given function; it represents
an acoustic source and in 2D it is given by f(x) =

AH
(2)
0 (kf r), i.e., the 0-order, Hankel function of the

second kind (Mclachlan, 1964), A is an intensity of
the source.

The acoustic pressure described with the acoustic
potential u(x) takes the form

p(x) = i ρω u(x), (2)

where ρ is the air density, i =
√
−1.

Regarding acoustic boundary conditions, for prac-
tical case, the floor is described through the Neumann
boundary condition (N), but walls and ceiling are
modeled through impedance Robin boundary condi-
tions (R), Γ =N∪R; the cross section of this problem
is depicted in Fig. 1, so one has,

Dnu(x) = 0, x ∈N, (3)

Dnu(x) + z0u(x) = 0, x ∈R, (4)

where z0(x) = (ωρ)/z(x).

Fig. 1. Cross section of the acoustic problem.

The z(x) is the acoustic impedance and in fact, it
is the impedance of any material and it is expressed
via the absorption coefficient α(x) (Meissner, 2016a;
Piechowicz, Czajka, 2012). Both α(x) and z(x) are
connected to each other by the formula (Kuttruff,
2000),

z(x) = ρ c
1 + (1 − α(x))1/2

1 − (1 − α(x))1/2
. (5)

3. Discrete theory of the boundary acoustic
problem

The discretization is done by domain-boundary
MLM. The approximate solution of the problem is as-
sumed as the series,

ũ(x′) =∑
ν

aν ,R(r′ν), r′ν = ∣sν − x′∣ , (6)
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where aν are certain coefficients and remain to be
calculated, R(rν) – radial bases functions (RBFS),
sν ∈ Ω = Ω ∪ Γ , x′ ∈ Ω, Fig. 1.

The main advantages and drawbacks of RBFs were
enumerated in (Brański, Prędka, 2018). In the pa-
per, three kinds of RBFS are considered (Figs 2–4):

• Hardy’s multiquadratic (Hardy, 1971; Prędka,
2016; Brańki, Prędka, 2018), Fig. 2,

R(r)=(−1)⌈β⌉(C2
+r2)β , C > 0, β > 0, β ∉ N,

(7)
where ⌈β⌉ means the smallest integer larger
than β.

• Inverse multiquadratic (Brański, Prędka, 2017),
Fig. 3,

R(r) = (C2
+ r2)−β , C > 0, β > 0. (8)

• Duchon’s (Duchon, 1976; Cheng, 2000), Fig. 4,

R(r) = (−1)β+1r2β log r, β ∈ N. (9)

For β = 1 in 2D space these functions are called
thin plate splines (Cheng, 2000).

Fig. 2. Hardy’s multiquadratic RBF for different values
of the shape parameter C.

Fig. 3. Inverse multiquadratic RBF for different values
of the shape parameter C.

As can be seen from Figs 2–4, different shapes of
R(r) are chosen. Furthermore, to make useful the first
two R(r), the shape coefficient C must be determined.

Fig. 4. Duchon’s RBF, β = 1.

To calculate aν in Eq. (6), the solution ũ(x′) sub-
stitutes to equations describing the problem Eqs (1),
(3), and (4). Hence, instead of Eq. (1) is

∑
ν

aν (D
2
xR(r′νµ)+D

2
yR(r′νµ)+k

2R(r′νµ))=f(x
′
µ). (10)

DerivativesD2
x(⋅) and need explanation; since r′νµ =

∣sν − x′µ∣, then inD2
x(⋅), the derivative with respect to x

should be understand as derivative with respect to x′µ
and so on. The intensity A is chosen, so that Lm takes
the same value for different values of the absorption
coefficient α and frequency f .

The Neumann, Eq. (3), and the Robin, Eq. (4),
boundary conditions are given respectively by

∑
ν

aνDnR(rνµ) = 0, xµ ∈N, (11)

∑
ν

aν (DnR(rνµ) + z0(xµ)R(rνµ)) = 0, xµ ∈R. (12)

In Eqs (11) and (12), the versor n is defined at xµ,
it is perpendicular to the boundary Γ and is directed
outside the domain Ω, for example, if xµ ∈N, Dn(⋅) =

−Dy(⋅) and so on.

4. Relationships among physical parameters
and parameters of the approximate solution

First, the acoustic pressure is calculated via Eq. (2)
and next, the value of the sound pressure level at point
x = x′ ∈ Ω is calculated by

L(x) = 10 log(
p(x)

p0
)

2

, (13)

where p0 = 2 ⋅ 10−5 Pa.
To notice quantitative change of L(x) in the do-

main Ω, the mean value ought to be calculated based
on the equation,

pm =
1

ni
∑
i

p(xi), Lm = 10 log (
pm
p0

)
2

, (14)
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where i = 1,2, ..., ni is the number of calculated points
xi = x′i ∈ Ω.

Hereunder all calculations are made on the basis of
the formula

ε = ∣
(Lm − L̃m)

Lm
∣ ⋅ 100%, (15)

where L̃m is an approximate solution, Lm – the exact
one (Brański et al., 2017).

The intensity of the source A is chosen, so that
Lm takes the same value for different values of the
absorption coefficient α and the frequency f .

Following global values and symbols are assumed:
ρ = 1.205 kg/m3, c = 344 m/s, {ax, bx} = {0, 5} m,
{ay, by} = {0, 2.5} m. The source is placed at the point
x0 = {x0, y0} = {2.5, 1.25} m. Furthermore, based on
Eqs (3) and (4), the acoustic values z0(ax) ≡ z0(bx) ≡
z0(by) = Z and z0(ay) = 0 are imposed on the bound-
aries. Influence points are marked by “○” and colloca-
tion points are marked by “●”. Both kinds of points
cover each other; the rest of symbols are depicted in
Fig. 5.

Fig. 5. Distribution of all points in the Ω.

Below, details of numerical calculations are pre-
sented for discrete values of the full scope of the ab-
sorption coefficient, i.e. {α} = {0.1, step 0.1, 0.9} and
full range of the acoustic frequency, represented by
octave frequencies, namely {f} = {125, 250, 500, 1000
2000, 4000, 8000, 16000} Hz.

To attain the aim of the paper, three kinds of cal-
culations are carried out.

1) First, the relationship between the parameter C
and the absorption coefficient α is found for dif-
ferent values of frequency f and different number
of elements n of the series; results are shown be-
low:

• Hardy’s multiquadratic RBF (Fig. 6),

• inverse multiquadratic RBF (Fig. 7).

From analysis of Figs 6 and 7 follows that the
parameter C does not depend on the coefficient
α. But it strongly depends on frequency f ; it is
analyzed in the next step.

2) An influence of frequency f on the shape param-
eter C is analyzed:

Fig. 6. Shape parameter C as the function of the absorption
coefficient α for Hardy’s multiquadratic RBF.

Fig. 7. Shape parameter C as the function of the absorption
coefficient α for inverse multiquadratic RBF.

• Hardy’s multiquadratic RBF; points marked
as “○” are the arithmetic average calculated
for C corresponding to different values of the
number of influence pointsn; the red curve is
the approximation of the mean values by the
function: C = a1 + a2/f where a1 = 1.9753,
a2 = 388.0844. Results are given belowm

• inverse multiquadratic RBF – quite similar
as in the previous case, mean values of the
parameter Cis approximated by the function:
C = a1 + a2/f where a1 = 1.5019 and a2 =

465.4814; see results below.

Figures 8 and 9 show possibility of reading the
value of the shape parameter C for given fre-
quency f . However, this approximation does not
take into account an influence of frequency f on
the number of elements of the series n. This prob-
lem is investigated in the next point.

3) An influence of frequency f on the number of el-
ements of the series n is analyzed for all three
RBFs; results are shown below:

• Hardy’s multiquadratic RBF (Fig. 10),

• inverse multiquadratic RBF (Fig. 11),

• Duchon’s RBF (Fig. 12).
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Fig. 8. Shape parameter C as the function of frequency f
for Hardy’s multiquadratic RBF.

Fig. 9. Shape parameter C as the function of frequency f
for inverse multiquadratic RBF.

Fig. 10. Number of elements n as the function of fre-
quency f for Hardy’s multiquadratic RBF.

Fig. 11. Number of elements n as the function of fre-
quency f for inverse multiquadratic RBF.

Fig. 12. Number of elements n as the function of frequency
f for Duchon’s RBF.

Analyzing Figs 10–12, it can be seen that for all
tested RBFs and for n = 15, results are achieved
with the assumed accuracy ε ≤ 5%. However, the
different number of points n is also possible. But
then, in the case of parameterized RBFS, change
of the parameter C should be included; this prob-
lem will be solved in the separate article.

Below, to confirm previous research results, some
numerical examples are joined.

5. Numerical calculations, results, conclusions

Numerical calculations concern the distribution of
the acoustical field, in L(x) [dB], Eq. (13), in the cross
section of the domain, Fig. 5. Results presented below
are only for extreme values of physical parameters, i.e.
250 Hz, α = 0.1 and 2000 Hz, α = 0.9. Exact results
are depicted on the left side, but approximation ones
(RBFS solutions), are on the right side. Results are
presented only for Duchon’s RBF. This is because, in
the case of other two RBFS functions similar results
are obtained.

As can be seen from Figs 13 and 14, for low fre-
quencies and low absorption coefficients, approximated
MLM solution provides only the same average Lm in
the cross section domain. However, for higher frequen-
cies and higher absorption coefficients, in addition to
the previous conclusion, shapes of acoustic fields are
similar.

6. Conclusions

The paper proposes MLM, based on three represen-
tative RBFs, to the solution of the acoustic boundary
problem with uniform impedance boundary conditions
imposed on walls. First, for Hardy’s multiquadratic
RBF and inverse multiquadratic RBF, the relationship
between the shape parameter C and the absorption co-
efficient α is found for different values of frequency f
and the different number of elements n in the series.
It has been demonstrate, that coefficient C does not
depend on the absorption coefficient α, but it strongly
depends on the frequency f .
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a) b)

Fig. 13. Distribution of the acoustical field for 250 Hz, α = 0.1 (LHS – exact, RHS – approximated):
a) Lm = 75.00 dB, b) Lm = 75.61 dB.

a) b)

Fig. 14. Distribution of the acoustical field for 2000 Hz, α = 0.9 (LHS – exact, RHS – approximated):
a) Lm = 74.77 dB, b) Lm = 73.22 dB.

So, an influence of frequency f on the shape pa-
rameter C is analyzed. It has been proved, that this
influence is hyperbolic, but different for Hardy’s mul-
tiquadratic RBF and inverse multiquadratic RBF. In
this calculation, the course of the hyperbolic curve does
not take into account the influence of frequency f on
the number of elements n in the series.

Then, this problem is analyzed for all three RBFs.
It has been proved that, for all tested RBFs, even 15
elements of the series ensure results with assumed ac-
curacy ε ≤ 5%.

To verify an efficiency of MLM, the acoustic field
in the cross section of the domain has been also calcu-
lated. It has been noted, that for all acoustic frequen-
cies and all absorption coefficients, MLM ensures the
correct average value of the acoustic field; this conclu-
sion ought to be very useful in the architectural acous-
tic. Furthermore, for higher frequencies and higher ab-
sorption coefficients, MLM properly also describes the
distribution of the acoustic field in the domain.

In the future, based on average value of the acous-
tic field in the domain and minimizing accuracy ε, an
efficiency of MLM will be further analyzed especially
at low frequencies and low absorption coefficients. Par-
ticular attention will also be paid to the distribution
of the acoustic field in the domain.
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