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The goal of this research is to find a set of acoustic parameters that are related to differences between
Polish and Lithuanian language consonants. In order to identify these differences, an acoustic analysis
is performed, and the phoneme sounds are described as the vectors of acoustic parameters. Parameters
known from the speech domain as well as those from the music information retrieval area are employed.
These parameters are time- and frequency-domain descriptors. English language as an auxiliary language
is used in the experiments. In the first part of the experiments, an analysis of Lithuanian and Polish
language samples is carried out, features are extracted, and the most discriminating ones are determined.
In the second part of the experiments, automatic classification of Lithuanian/English, Polish/English,
and Lithuanian/Polish phonemes is performed.
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1. Introduction

The state-of-the-art methods applied to speech
technology are mostly based on the extraction of pa-
rameters and machine learning. Recently, also, deep
learning is applied to automatic speech recognition
(ASR) (Bourlard, 2018; Korvel et al., 2018; Pad-
manabhan, Premkumar, 2015). The acoustic pa-
rameters of the speech signal are widely used for vari-
ous tasks, such as speech or speaker recognition, emo-
tion recognition, phoneme modeling, and speech ana-
lytics. The goal of this research is to determine a vec-
tor of acoustic parameters, that is related to the most
distinctive differences between Polish and Lithuanian
consonants and then compared with English as an aux-
iliary language.

In the literature, we can find a description of var-
ious parameterization techniques and various mod-
ification of standard techniques. The popular im-
plementations of the Mel Frequency Cepstral Co-
efficients (MFCCs), the Linear Prediction Cepstral
Coefficients (LPCCs) and perceptual linear prediction

(PLP) parameters (Chia et al., 2012; Upadhya et al.,
2018; Eringis, Tamulevicius, 2015). The attention
of researches focused on fractal features, pitch, inten-
sity, formants, autocorrelation, noise-to-harmonics ra-
tio, the harmonics-to-noise ratio (Bageshree et al.,
2012; Noroozi et al., 2017; Spangler et al., 2017;
Taylor et al., 2017). Our previous experiments
show that using standard speech parameters along
with parameters from the music area gives better
phoneme recognition accuracy (Korvel, Kostek,
2017a; Korvel et al., 2019). Therefore, we use stan-
dard speech and music domain-derived parameters
for speech parametrization in this research study.
The analyzed speech signal parameters are time- and
frequency-domain features. It should be noted that
there are also approaches without performing param-
eter extraction. For example, this process is discarded
(Badshah et al., 2017; Deng et al., 2010) for Deep
Neural Networks (DNNs). However, in the context of
inter-language research, a thorough analysis of individ-
ual spoken elements needs to be performed as there is
basic knowledge still missing in this context.
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In linguistics, the phoneme is defined as the mini-
mum unit of sound (Gibbon et al., 1997; Gut, 2014).
According to Girdenis (2003), two or more sounds
are considered as separate phonemes if, in substituting
one for the other in at least one position, the meaning
of the word changes. A phoneme may contain several
phones, e.g., phoneme /p/ can be produced with as-
piration or without aspiration in English. Another ex-
ample could be the phoneme /l/, which can be stressed
or not stressed in Lithuanian. These phones are called
allophones. In this research, only the phonemes are
however analyzed, even though allophonic analysis be-
comes of interest recently (Czyżewski et al., 2017;
Kostek et al., 2017; Kozierski et al., 2016; Mit-
terer et al., 2018; Recasens, 2012). This is be-
cause we believe that the analysis of speech sounds
which are acoustically similar to one another and anal-
ysis of those which are not acoustically similar are
two different tasks. The uttered words will be tran-
scribed into phonemes. For this purpose, the phonetic
alphabet is used. One of the widely used phonetic al-
phabets is the International Phonetic Alphabet (IPA)
(Decker, 1999). The IPA is designed to represent
qualities of speech that are distinctive in spoken lan-
guage: phonemes, intonation, and the separation of
words and syllables. Due to the special IPA fonts,
a machine-readable version of this alphabet has been
created. This alphabet, called SAMPA (Gut, 2014;
Howard, Murphy, 2007), contains only the symbols
that are available on a computer keyboard. Therefore,
the symbols of the SAMPA alphabet are used in this
research.

The objective of this research is the consonant
phoneme signal analysis and in particular a compa-
rison of acoustic resemblance and highlighting the
acoustic differences between these chosen languages
based on acoustics parameters and two classifiers
(k-Nearest Neighbors (kNN) and Support Vector Ma-
chine (SVM)).

Generally, the character of vowel phonemes is
periodic. Meanwhile, some of the consonant phonemes
can be considered as quasi-periodic signals in noise,
and others are aperiodic signals. Also, we can divide
consonant phonemes into two sets: voiced and voice-
less sounds (Domagała, 1994; Krynicki, 2006).
The difference between these sets lies in the action
of the vocal folds. For voiced sounds, the vocal folds
vibrate while saying these sounds, for voiceless they
are apart. In general case, the character of consonants
is varying, and the consonant phoneme signals are
more difficult for processing as those of vowel. This
fact is the main reason why broad-spectrum acoustic
features are used in this research.

The literature review reveals that little attention (if
any) has been paid to differences between Polish and
Lithuanian speech acoustical properties even though
there are bilingual Lithuanian and Polish speakers hav-

ing to learn both languages in early childhood (ei-
ther Lithuanian or Polish being the mother tongue,
in some case both languages may be treated as mother
tongue). The goal of the study by Labarre (2011)
was to show differences between Polish and American
English phonology. The study was carried out at the
University of Washington by the author having Po-
lish ancestry. In the study of Krynicki (2006), some
contrasting aspects of Polish and English phonetics
were shown, and adequate examples of such were re-
called. Prior to that study, the phonology of Polish
was described in many sources (e.g., Gussmann, 2007;
Jassem, 2003; Oliver, Szklanny, 2006). It should
also be noted that much effort was performed by sev-
eral Polish and Lithuanian research centers aiming at
speech recognition, a few examples of which are given
in here: (Kłosowski et al., 2014), analysis of acoustics
speech properties (Izydorczyk, Kłosowski, 2001),
adaptation of foreign language speech recognition en-
gines for Lithuanian speech recognition (Rudzionis
et al., 2009; Kasparaitis, 2008), development of
phonemic language corpus for Polish (Kłosowski,
2017) by employing automatic grapheme-to-phoneme
conversion of the source orthographic language cor-
pus, obtained from the National Corpus of Polish
(NCP) (Przepiórkowski et al., 2012), creating Po-
lish phoneme statistics (Ziółko et al., 2009; 2014), etc.

In this research, it is believed that the acoustic
analysis of not closely-related languages let us iden-
tify the most prominent features which can be used to
distinguish differences between languages. Moreover,
the optimized feature vector will serve us as a multi-
dimensional quality assessment applied to the synthe-
sized phonemes. Some preliminary work was already
performed towards this direction (Korvel, Kostek,
2017b; Korvel et al., 2019). Discovering acoustic dif-
ferences in speech is justified by its numerous possi-
ble uses. The following can be named: speech synthe-
sis, speech and speaker recognition, transcription of
sounds, helping with pronunciation and learning for-
eign languages, studies in linguistic, medical field.

2. Review of Lithuanian and Polish phonemes

This section discusses the relationship between
graphemes and phonemes of languages chosen for
our research. The basic units of text are graphemes.
Lithuanian language consists of 32 graphemes: a, ą, b,
c, č, d, e, ę, ė, f, g, h, i, į, y, j, k, l, m, n, o, p, r, s, š,
t, u, ū, ų, v, z, ž and covers 20 consonants. The Pol-
ish language is also based on the set of 32 graphemes:
a, ą, b, c, ć, d, e, ę, f, g, h, i, j, k, l, ł, m, n, ń, o, ó,
p, r, s, ś, t, u, w, y, z, ź, ż, but includes 23 consonants.
Some researchers used graphemes in speech recognition
systems (Lileikytė et al., 2016; Gales et al., 2015).
However, in most studies, grapheme to phoneme con-
version is performed, especially in the text-to-speech
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task. The conversion is made because of the fact the
uttered signal is represented by phonemes. Typically,
lexicons are utilized to map graphemes to phonemes.
Different researchers propose to employ different sets
of phonemes for the same language. It should be noted
that the size of the phoneme set depends on the task
to be solved. For example, a set of phonemes used for
speech synthesis is bigger than the ones used for speech
recognition. Lithuanian language phonemes have been
studied by Girdenis (2003). Lithuanian is described
by the author as having 43 consonant phonemes. All
these phonemes are unstressed. A set of phonemes ap-
pended by stressed phonemes and compound diph-
thongs is given in Kasparaitis’ work (Kasparaitis,
2005). This set was also used in Liepa – Lithuanian
speech corpus (Laurinciukaite et al., 2018). Both
mentioned authors assumed that a phoneme becomes
two new phonemes over time through palatalization.
Lithuanian phoneme sets of different size are given
and tested by Greibus et al. (2017) in the context of
speech recognition. The experiment results show that
the Baseline phoneme set (set without palatalization
and stress) outperformed other sets. The consonant
phonemes of this set appended with the examples of
their usage by the authors of this paper are used in
this research. These phonemes are given in Table 1.

Table 1. Lithuanian consonant phonemes.

SAMPA symbol Example Transcription
b būdas bu:das
ts caras tsaras
tS čarškalas tSarSkalas
x choras xoras
d darbas darbas
dz Dzukija dzukija
dZ džaulis dZaulis
f forma forma
g gamta gamta
G herbas Gerbas
j jūra ju:ra
k katinas katinas
l lapas lapas
m maras maras
n namas namas
p pažymys paZi:mi:s
r ratas ratas
s statiniai statiniai
S šaka Saka
t tapyba tapi:ba
v vasara vasara
z zuikis zuikis
Z žodynas Zodi:nas

In terms of Polish consonants, Labarre (2011)
distinguished 36 contrastive consonant phonemes. The
author only distinguished bilabial palatalized conso-
nants, disregarding the palatalization of non-labial
consonants. The phonetic alphabet described by De-
menko and her collegaues (Demenko et al., 2003) is
commonly used by Polish researchers (Ziółko et al.,
2009; Igras et al., 2013). This alphabet is also used in
this paper (see Table 2).

Table 2. Polish consonant phonemes
(Demenko et al., 2003).

SAMPA symbol Example Transcription
p pik pik
b byt byt
t test test
d dym dym
k kat kat
g gen gen
c kiedy cjedy
J giełda Jjewda
f fan fan
v wilk vilk
s syk syk
z zbir zbir
S szyk Syk
Z żyto Zyto
s’ świt s’fit
z’ źle z’le
x hymn xymn
t∧s cyk t∧syk
d∧z dzwon d∧zvon
t∧S czyn t∧Syn
d∧Z dżem d∧Zem
t∧s’ ćma t∧s’ma
d∧z’ dźwig d∧z’vik
m mysz myS
n nasz naS
n’ koń kon’
N pęk peNk
l luk luk
r ryk ryk
w łyk wyk
j jak jak

As we see from Tables 1 and 2, Lithuanian and Po-
lish languages share many of the same consonants and
spell them similarly. Despite this, the shared phonemes
may have different articulation. A comparison of acous-
tic resemblance and highlighting the acoustic differ-
ences between these languages is the goal of this re-
search.
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For phoneme encoding, the SAMPA symbols were
used (Tables 1 and 2). The application of SAMPA
is extended to 24 languages. Polish and English lan-
guages are also part of them [SAMPA En, SAMPA Pl].
For Lithuanian speech, SAMPA recommendations pro-
posed by Raškinis et al. (2003) were used.

3. Parameters extraction

In order to extract inter-language differences, it is
important to find a suitable parametric description
of the speech signal. We investigate an extensive set
of parameters included time- and frequency-domain
features. These parameters are descriptors from the
speech as well as music domains. Before parameter ex-
traction, signal pre-processing is carried out. Let x =

(x1, x2, ..., xN) be equidistant samples of the speech
signal. These samples are normalized according to the
formula:

yn =
xn

∣max(x1, x2, ..., xN)∣
, (1)

where n = 1, ...,N .
The speech signal is divided into overlapping

frames, length of which – M samples (M is the power
of 2). Let y = (y1, y2, ..., yM) be elements of such an in-
terval. An overlap between successive windows is equal
to 50%.

The time-domain parameters are extracted directly
from the samples of the audio signal. As mentioned be-
fore, the character of the consonant signals is varying.
In order to measure the differences between two lan-
guages, Root Mean Square (RMS) energy is calculated.
This parameter gives a lower value for the unvoiced
segment than that for the voiced segment and can be
expressed as follows:

RMS =

¿
Á
ÁÀ 1

M

M

∑
i=1

(yi)2. (2)

Equation (2) provides the RMS energy of the sig-
nal. We will use this value within the extraction process
of most of the temporal parameters.

Next two temporal parameters that we use in our
research are Temporal Centroid (TC) and Zero Cross-
ing Rate (ZC). First of them (TC) is time average over
signal energy envelope and is given by the following ex-
pression:

TC =

M

∑
i=1

i(yi)
2

M

∑
i=1

(yi)
2

. (3)

The second parameter (ZC) is the number of the
signal crossing the time axis. The formula of this pa-
rameter is as follows:

ZC =

M

∑
i=2

∣si − si−1∣

M − 1
, (4)

where

si =

⎧⎪⎪
⎨
⎪⎪⎩

1, if yi > 0,

0, if yi ≤ 0.
(5)

Also, the so-called ‘dedicated’ parameters proposed
by Kostek and her co-workers (Kostek et al., 2011)
are calculated. The dedicated parameters are based on
the analysis of the distribution of sound sample values
in relation to RMS. The following sets of parameters
are calculated:

• k1, k2, k3 – the number of samples exceeding levels
RMS, 2×RMS, 3×RMS. Parameters contained in
this group are the values resulting from the entire
segment analysis.

• Peak to RMS – calculated as the mean value of
the ratio calculated in 10 sub-frames.

• p1, p2, p3, p4 – the mean value of the signal cross-
ings in relation to zero, RMS, 2×RMS, 3×RMS
averaged for 10 sub-frames.

• q1, q2, q3, q4 – the variance of the signal cross-
ings in relation to zero, RMS, 2×RMS, 3×RMS
averaged for 10 sub-frames.

A graphical representation of levels RMS, 2×RMS,
3×RMS for the /k/ and /g/ phoneme entire segments
is shown in Figs 1 and 2, respectively.

Fig. 1. An example of the phoneme /k/ segment. RMS
of this segment is 0.3107.

Fig. 2. An example of the phoneme /g/ segment. RMS
of this segment is 0.2970.

In order to obtain parameters of the spectrum, we
compute the Discrete Fourier transform of each seg-
ment:

FT(k) =
M

∑
m=1

ymwme
(−2πi)(m−1) (k−1)M , (6)
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where FT(k) (k = 1, ...,MFT) are Fourier transform
coefficients,MFT denotes the number of Fourier trans-
form coefficients (MFT ≥M , MFT is an integer power
of 2), wm is the window function.

The power spectrum is given by the following for-
mula:

PS(k) =
1

MFT

√

(FT(k))2
re + (FT(k))2

im, (7)

where k = 1, ...,MFT, re means a real part, and im –
an imaginary part.

The first group of spectrum descriptors is spec-
tral shape parameters. We extracted spectral shape
parameters based on the MPEG-7 audio content de-
scription standard (Kim et al., 2005). By this stan-
dard, the parameters are defined on the log-frequency
power spectrum, and these measures are based on an
octave frequency scale centered at 1 kHz. Our previous
research showed that applying standard speech param-
eters along with descriptors coming from music infor-
mation retrieval (MIR) to the phoneme analysis gives
better results (Korvel et al., 2019). In this research,
the following spectral shape parameters are extracted:

• Audio Spectral Centroid (ASC) – describes the
center of gravity of the log-frequency power spec-
trum;

• Audio Spectral Spread (ASSp) – shows the con-
centration of spectrum around the centroid;

• Audio Spectral Skewness (ASSk) – defines the
spectral symmetry;

• Audio Spectral Kurtosis (ASK) – defines the flat-
ness of spectrum;

• Spectral Entropy – gives a measure of spectrum
irregularity (Wei et al., 2018);

• Spectral RollOff – makes it possible to distinguish
voiced and unvoiced speech;

• Spectral Brightness – gives a measure of sound
timbre.

The parameter ASC is calculated as the first order
central moment and is defined by the formula:

ASC =

MFT/2
∑
i=1

log2 (
f(i)
1000

)PS(i)

MFT/2
∑
i=1

PS(i)

, (8)

where f(i) is the frequency corresponding to bin i,
PS(i) is the power spectrum given by Eq. (7), andMFT

– the number of the Fourier transform coefficients.
The parameter ASSp corresponds to the root

square of the second order central moment of the spec-
trum, ASSk is the third order and ASK is the fourth
order central moments. A more thorough description
of these parameters as well as their formulas is given
in (Korvel et al., 2019).

Spectral Entropy can be expressed by the following
formula:

Entropy = −

MFT/2
∑
i=1

wi log2wi

log2MFT/2
, (9)

where
wi =

PS(i)
MFT/2
∑
i=1

PS(i)

. (10)

The spectral RollOff is calculated as a frequency
below which 85% of the magnitude distribution is con-
centrated. The formula of Spectral Brightness is given
below:

Brightness =

MFT/2
∑
i=fc

PS(i)

MFT/2
∑
i=1

PS(i)

, (11)

where fc is cut-off frequency. This frequency was set
to 1500 Hz in the experimental part of this research
study.

In order to estimate the spectrum representation,
Audio Spectrum Envelope (ASE) is calculated. For
that, the frequency range is divided into sub-frames.
The bands are logarithmically distributed, correspond-
ing to a specific octave frequency (Kim et al., 2005;
Korvel et al., 2019). ASE parameters are calculated
by the following formula:

ASE(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1

∑
i=0

PS(i), k = 1,

Pk

∑
i=Pk−1

PS(i), 2 ≤ k <K + 1,

fs/2
∑

i=Pk+1
PS(i), k =K + 2,

(12)

where PS(i) is the power spectral density of the seg-
ments of the phoneme, k is the frequency band number
(1 ≤ k <K +1). In this research, the frequency range is
divided into 30 sub-frames, which consequently gives
29 AES parameters.

Due to the fact that formants play major role
in most speech applications, the first four formants
(F1–F4) are also included in our parameter set. Unlike
the frequency parameters described above, formants
are not based on the Fourier spectrum. They are cal-
culated as the roots of the LPC polynomial.

The last group of analyzed parameters is Mel-
Frequency Cepstral Coefficients (MFCCs). The MFCC
feature extraction begins with calculating the power
spectrum of the speech segment (see Eq. (7)). Then we
triangle bandpass filters are constructed over the fre-
quency range. The scale of the first 13 filters is linear;
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for the rest of filters, the scale becomes logarithmic.
The width of the linear filter is 66.67 Hz. The MFCCs
are obtained by the following formula:

cj =
L−1

∑
i=0

mi cos(
πj(i − 1/2)

L
) , (13)

where mi are filterbank amplitudes, L – number of
filters, j = 0, ...,K (K – the number of cepstral coeffi-
cients).

We use 20 first coefficients of MFCC in this re-
search.

Overall, we have 75 extracted parameters for each
segment. In order to extract the parameters for the
whole speech signal, statistical properties are com-
puted based on these parameters obtained from all
short-term segments. The used statistics are mean and
variance.

Consequently, the resulting is the 150-dimensional
feature vector.

4. Optimizing feature vector

Our goal is to determine acoustic speech parame-
ters that let us distinguish interlanguage differences.
For this purpose, the three-step algorithm is proposed:
Step 1. Phoneme parameter extraction.
Step 2. Rejection of parameters high-correlated with

each other.
Step 3. Set the optimal number of features.
Step 4. Rejection of parameters which have the small-

est differences of the averaged values between
features of different languages.

The first step of the algorithm is parameterization
of all audio samples. For this purpose, the features
given in Sec. 2 are extracted. Then the features vec-
tors are normalized. The normalization to the inter-
val [0 1] is used. After parameter extraction, the rejec-
tion of high-correlated parameters is performed. For
this purpose, the matrix of correlation coefficients is
calculated. The parameters, for which correlation co-
efficients are larger than 0.75, are rejected. The rest
of the parameters are used for the separability analy-
sis in the interlanguage differences recognition process.
For this purpose, the distances between the features of
Lithuanian and Polish phonemes are calculated for all
features separately. This process can be described by
the following formula:

Dist(i) = Lithuanian_feature(i)

−Polish_feature(i). (14)

In order to set the optimal number of parame-
ters, the cross-validation check is performed. This pro-
cess starts with creating a machine learning model
based on one parameter. Then parameter one by one

is added to the model. Parameters with highest dis-
tances (Eq. (14)) are used first. The model accuracy
is calculated after adding each feature. This process is
repeating until the accuracy starts to decrease.

For examining the extracted features, the two
widely used classifiers, namely k-Nearest Neighbors
(kNN) and Support Vector Machine (SVM) (Duda,
2000) are employed in this research.

5. Experiment results

The experiment consists of two parts. In the
first part of the experiment, a comparative analy-
sis of Lithuanian and Polish phonemes is performed.
For the analysis, the consonant phonemes extracted
from the recordings of Polish and Lithuanian speak-
ers were used. These recordings consist of utterances
of eight speakers (four females and four males) for
each language. These utterances were recorded to the
.wav file of the audio format with the following pa-
rameters: 48 kHz; 32 bit; mono. The recording sce-
nario included only read sentences. These sentences
have been segmented at phoneme units. The annota-
tion was conducted manually using PRAAT program.
The list of these phonemes used for the analysis is given
in Fig. 3.

Fig. 3. Consonant phoneme used in the experiment.

The goal of this part of the experiment is to find
vectors of acoustic parameters, that are related to dif-
ferences between Polish and Lithuanian consonants.
For that, we extracted parameters for all phonemes
given in Fig. 3. Before the parameter extraction, the
signal pre-processing is carried out. The frame length
is equal to 512 samples; an overlap constitutes 50%
of the segment length. To determine inter-language
differences, we analyze the relation between particu-
lar vectors of parameters and speech phonemes. The
analysis was performed for each phoneme separately.
Evaluation of parameter suitability is based on calcu-
lation distances between parameters. As an example,
the distances for parameters of phoneme /k/ arranged
in descending numerical order are shown in Tables 3
and 4.

From the results shown in Tables 3 and 4, we see
that some of the parameters are distinctly different.
For example, the mean values of Audio Spectral Cen-
troid (ASC) and Spectral Entropy have the biggest
distances (see Table 3). An example of a graphical rep-
resentation of separation based on these parameters is
given in Fig. 4.
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Table 3. Differences between parameters of Lithuanian and Polish phoneme /k/ based on the mean value (µ).

µ(ASC) µ(p2) µ(p3) µ(p4) µ(q1) µ(q2) µ(q3) µ(q4)
0.2829 0.2829 0.2829 0.2829 0.2829 0.2829 0.2829 0.2829

µ(Entropy) µ(ASE3) µ(RollOff) µ(MFCC12) µ(ASSp) µ(k3) µ(ASE5) µ(ASSk)
0.2766 0.2438 0.1886 0.1475 0.1465 0.1348 0.125 0.1215

µ(RMS) µ(ASE4) µ(Peak to RMS) µ(k1) µ(MFCC13) µ(p1) µ(MFCC5) µ(Brightness)
0.0997 0.0963 0.0934 0.082 0.0802 0.0798 0.0733 0.0698

µ(MFCC11) µ(ASK) µ(MFCC16) µ(MFCC14) µ(ASE10) µ(ASE11) µ(MFCC9) µ(TC)
0.0696 0.0655 0.0596 0.059 0.0568 0.0552 0.0543 0.0523

µ(ASE2) µ(MFCC18) µ(MFCC15) µ(MFCC17) µ(MFCC10) µ(k2) µ(ASE27) µ(MFCC7)
0.0497 0.0469 0.0461 0.045 0.0446 0.0414 0.0407 0.0398

µ(ASE23) µ(ASE18) µ(MFCC1) µ(ASE22) µ(ASE21) µ(ASE24) µ(ASE12) µ(MFCC20)
0.0384 0.0314 0.0289 0.0285 0.0263 0.0262 0.0239 0.0231

µ(ASE16) µ(ASE28) µ(ASE26) µ(MFCC8) µ(MFCC6) µ(F1) µ(ASE17) µ(ASE25)
0.0229 0.0229 0.0228 0.0199 0.0189 0.0178 0.0177 0.0176

µ(MFCC4) µ(ZC) µ(ASE1) µ(ASE20) µ(F2) µ(ASE19) µ(MFCC19) µ(MFCC2)
0.0175 0.0174 0.0173 0.0162 0.0158 0.0139 0.0118 0.0093

µ(MFCC3) µ(ASE14) µ(ASE29) µ(ASE13) µ(F4) µ(F3) µ(ASE6) µ(ASE7)
0.0079 0.0059 0.0051 0.0045 0.0029 0.0003 0.0002 0.0001

µ(ASE8) µ(ASE9) µ(ASE15)
0.0001 0.0001 0

Table 4. Differences between parameters of Lithuanian and Polish phoneme /k/ based on the variance (σ2).

σ2(MFCC20) σ2(ASE3) σ2(MFCC18) σ2(MFCC19) σ2(MFCC15) σ2(MFCC14) σ2(MFCC17) σ2(MFCC16)
0.2353 0.2305 0.2148 0.2038 0.1723 0.165 0.1411 0.1353

σ2(MFCC11) σ2(MFCC6) σ2(MFCC7) σ2(MFCC10) σ2(MFCC9) σ2(MFCC13) σ2(RollOff) σ2(Entropy)
0.1296 0.1159 0.1117 0.1039 0.0949 0.0934 0.0822 0.082

σ2(ASC) σ2(ASE8) σ2(MFCC2) σ2(MFCC4) σ2(ASK) σ2(MFCC1) σ2(ASSp) σ2(ASE9)
0.0772 0.0752 0.0687 0.0599 0.0584 0.0536 0.0533 0.0526

σ2(Peak to RMS) σ2(MFCC8) σ2(ASE10) σ2(q1) σ2(ASE6) σ2(Brightness) σ2(ASE11) σ2(MFCC5)
0.0515 0.0512 0.0492 0.0481 0.0358 0.0356 0.0326 0.0308

σ2(ASE5) σ2(ASSk) σ2(ASE18) σ2(q2) σ2(ASE12) σ2(ASE25) σ2(ASE23) σ2(ASE27)
0.0305 0.0254 0.0245 0.0209 0.0197 0.0188 0.0184 0.0178

σ2(ASE22) σ2(F2) σ2(ASE21) σ2(ASE26) σ2(ASE4) σ2(ASE20) σ2(ASE2) σ2(ASE24)
0.0171 0.0152 0.0148 0.0137 0.0135 0.0133 0.0127 0.0127

σ2(ASE15) σ2(ASE14) σ2(ASE7) σ2(ASE1) σ2(ASE19) σ2(MFCC3) σ2(F1) σ2(ASE17)
0.0124 0.0116 0.0115 0.0113 0.0109 0.0107 0.0099 0.0089

σ2(ASE16) σ2(ASE13) σ2(F3) σ2(F4) σ2(RMS) σ2(k1) σ2(ASE28) σ2(ZC)
0.0088 0.0086 0.0071 0.0062 0.0061 0.0059 0.0032 0.0016

σ2(TC) σ2(q3) σ2(p1) σ2(p3) σ2(MFCC12) σ2(ASE29) σ2(k2) σ2(k3)
0.0009 0.0009 0.0008 0.0008 0.0004 0.0003 0.0001 0

σ2(p2) σ2(p4) σ2(q4)
0 0 0

The set of most suitable parameters in terms of
phoneme separation is obtained by performing the
cross-validation check. The machine learning model
based on subsets of the initial feature set is tested.

The model accuracy is the average accuracy of kNN
and SVM methods. The obtained results are given in
Table 5. As seen from Table 5 most of the listed para-
meters appear for the specific phoneme in various con-
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Fig. 4. Separation of Lithuanian and Polish phoneme /k/
(the circle denotes the Lithuanian phoneme; × – mark is

used for the Polish phoneme).

Table 5. The most suitable parameters for showing interlanguage differences.

/p/ µ(Entropy), µ(MFCC5), µ(ASE3), µ(ASC), µ(MFCC4), σ2(ASE3), µ(q4), µ(MFCC9), µ(MFCC13),
µ(MFCC2), σ2(MFCC20), µ(MFCC3), µ(MFCC16), µ(ASSk), µ(MFCC10), µ(MFCC11), σ2(MFCC6),
µ(ASE2) σ2(RollOff), µ(ASE6), σ2(MFCC10), µ(RollOff), µ(ASE4) µ(MFCC12), µ(MFCC14), σ2(k2)

/t/ µ(Entropy), µ(ASC), µ(ASE3), µ(MFCC5), µ(MFCC4), µ(MFCC9), µ(RollOff), µ(q4), µ(MFCC11),
µ(MFCC2), µ(MFCC14), σ2(k1), µ(MFCC13), σ2(ASE3), σ2(MFCC10), µ(ASSk), µ(MFCC18), µ(ASE4)
σ2(Entropy) µ(MFCC3), µ(MFCC17), σ2(MFCC18), µ(MFCC15), σ2(ASC) σ2(RollOff) µ(ASE5)
µ(MFCC16), σ2(MFCC20), σ2(Peak to RMS) µ(ASE2) µ(MFCC10), µ(MFCC12), σ2(MFCC12), σ2(ASE2)

/d/ µ(Entropy), µ(MFCC5), µ(ASE3), µ(MFCC4), µ(ASC), µ(RollOff), µ(MFCC9), µ(MFCC2), µ(q4),
µ(MFCC11), σ2(MFCC10), σ2(k1), µ(MFCC14), µ(MFCC13), σ2(MFCC20), µ(MFCC3), σ2(ASE3),
σ2(Entropy), σ2(Peak to RMS), µ(ASE5), σ2(ASC), σ2(MFCC12), σ2(MFCC18), σ2(MFCC17), µ(ASSk),
µ(ASE4) µ(MFCC18), σ2(RollOff), σ2(MFCC8), µ(MFCC15), σ2(MFCC9), µ(MFCC10), σ2(MFCC16),
σ2(MFCC11), µ(ASE6)

/k/ µ(ASC), µ(MFCC5), µ(Entropy), µ(ASE3), µ(RollOff), µ(MFCC4), σ2(MFCC20), σ2(ASE3),
µ(MFCC13), µ(MFCC16), σ2(MFCC10), µ(q4), µ(ASSk), µ(MFCC17), µ(MFCC14), µ(MFCC18),
µ(MFCC9), µ(MFCC2), σ2(MFCC18), σ2(MFCC14), µ(MFCC11), µ(MFCC15), µ(ASK), µ(MFCC10),
σ2(MFCC17), µ(MFCC12), σ2(MFCC16), µ(k3), σ2(MFCC11), µ(ASE5), σ2(MFCC15), µ(MFCC1),
σ2(MFCC6), σ2(MFCC12)

/g/ µ(MFCC5), µ(Entropy), µ(ASE3), µ(ASC), σ2(ASE3), µ(MFCC4), σ2(MFCC20), σ2(MFCC10),
µ(MFCC9), µ(MFCC13), µ(MFCC2), σ2(MFCC18), µ(MFCC16), µ(q4)

/tS/ µ(ASC), µ(MFCC5), σ2(ASE3), µ(MFCC4), µ(MFCC9), µ(ASE3), µ(Entropy), µ(q4), σ2(MFCC20),
µ(ASSk), µ(MFCC13), µ(MFCC2), µ(RollOff), µ(ASK), σ2(MFCC10), µ(MFCC16), µ(MFCC14),
σ2(MFCC14), µ(MFCC17), µ(MFCC18), µ(MFCC15), µ(MFCC12), σ2(MFCC18), σ2(MFCC6),
σ2(MFCC17), µ(MFCC10), σ2(MFCC11)

/f/ µ(Entropy), µ(MFCC5), µ(ASE3), µ(ASC), µ(ASE4) µ(MFCC4), µ(ASE5), σ2(MFCC10), µ(MFCC13),
σ2(MFCC20), µ(MFCC9), µ(MFCC14), σ2(ASE3), µ(ASE2) µ(MFCC10), µ(MFCC16), σ2(MFCC17),
µ(MFCC17), σ2(MFCC18), µ(MFCC2), µ(MFCC3), σ2(MFCC14), σ2(MFCC13), µ(MFCC11), σ2(k2)

/v/ µ(MFCC5), µ(Entropy), µ(ASE3), σ2(MFCC20), σ2(MFCC18), σ2(MFCC10), µ(MFCC4), σ2(ASE3),
µ(MFCC13), σ2(MFCC11), µ(MFCC2), σ2(MFCC15), µ(ASC), σ2(MFCC17), σ2(MFCC13),
σ2(MFCC16), σ2(MFCC14), σ2(MFCC7)

/s/ µ(ZC), µ(p1), µ(p3) µ(q1), µ(q3), µ(ASC), µ(ASK), µ(MFCC9), µ(MFCC2), σ2(MFCC10), µ(RollOff),
σ2(MFCC11), µ(ASSk), µ(MFCC4), µ(MFCC18), σ2(MFCC20), µ(MFCC5), σ2(MFCC15),
σ2(MFCC18), σ2(MFCC16), µ(MFCC13), µ(q4), µ(MFCC15), σ2(RollOff), σ2(MFCC9), µ(MFCC10),
σ2(MFCC14), µ(MFCC12), σ2(MFCC6), µ(MFCC14), σ2(MFCC13), σ2(MFCC12), σ2(MFCC8)

/z/ µ(ZC), µ(p1), µ(p3), µ(q1), µ(q3), µ(ASC), µ(MFCC9), µ(ASK), µ(MFCC2), σ2(MFCC10), µ(RollOff),
µ(ASSk), σ2(MFCC11), σ2(MFCC15), σ2(MFCC20), µ(MFCC4), µ(MFCC18), µ(MFCC5), µ(q4),
µ(MFCC13), σ2(MFCC6), σ2(MFCC16), σ2(MFCC18), µ(MFCC15), σ2(MFCC14), σ2(MFCC9),
µ(MFCC10), σ2(MFCC13), σ2(MFCC8), µ(MFCC12), µ(MFCC14), σ2(RollOff), σ2(MFCC12)

/S/ µ(ASC), σ2(MFCC15), µ(q4), µ(MFCC5), µ(TC), σ2(MFCC10), µ(p1), µ(p3), µ(q1), µ(q3), µ(MFCC2),
µ(MFCC15), µ(MFCC13), µ(MFCC9), σ2(MFCC11), µ(MFCC18), σ2(MFCC16), µ(MFCC4),
σ2(MFCC13), σ2(MFCC14), µ(MFCC11), σ2(MFCC20), σ2(MFCC12), µ(ASK), µ(ASSk), σ2(MFCC9),
σ2(MFCC8), σ2(MFCC6), σ2(MFCC18), σ2(ASC), σ2(MFCC5), µ(MFCC1), µ(Peak to RMS)

figurations, but interestingly Audio Spectral Spread
(ASSp), which shows the concentration of spectrum
around the centroid is rarely visible. Parameters that
occur in half or more phonemes are highlighted in bold
font (see Table 5). Parameters, on the basis of which
it is possible to separate all Lithuanian and Polish
phonemes, are µ(MFCC5) and µ(MFCC2). Parame-
ters that are useful for separation all phonemes except
/l/ are σ2(MFCC20), σ2(MFCC10). The most com-
mon parameters also include µ(ASC), σ2(MFCC11),
µ(Entropy).
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Table 5. [Cont.]

/Z/ µ(ASC), σ2(MFCC15), µ(q4), σ2(MFCC10), µ(MFCC5), µ(MFCC9), µ(TC), µ(MFCC2), µ(p1) µ(p3)
µ(q1), µ(q3), σ2(MFCC11), µ(MFCC4), µ(MFCC13), µ(MFCC15), µ(MFCC18), µ(MFCC11),
σ2(MFCC16), σ2(MFCC20), σ2(MFCC13), σ2(MFCC14), σ2(MFCC6), σ2(MFCC12), µ(ASSk),
σ2(MFCC9), σ2(MFCC8), µ(MFCC1), µ(ASK)

/m/ µ(Entropy), µ(MFCC5), σ2(MFCC6), µ(RollOff), σ2(MFCC10), µ(MFCC1), µ(MFCC2), µ(MFCC4),
µ(ASE3), σ2(MFCC8), σ2(MFCC11), σ2(MFCC12), µ(ASE5) µ(MFCC3), µ(Brightness), σ2(MFCC14),
σ2(MFCC7), σ2(MFCC15), µ(ASE8), σ2(MFCC18), µ(ASE7), σ2(MFCC9), σ2(MFCC20), µ(ASE8)
µ(MFCC9), µ(MFCC14), σ2(MFCC13)

/n/ µ(MFCC5), µ(ASC), µ(MFCC3), µ(Entropy), σ2(MFCC12), µ(ASK), µ(MFCC2), σ2(MFCC15),
µ(ASE7), σ2(MFCC13), µ(F4) µ(Brightness), σ2(MFCC10), σ2(MFCC11), µ(ASE5), σ2(ASE7),
σ2(MFCC9), µ(MFCC1)

/r/ µ(k3), µ(Peak to RMS), σ2(ZC) µ(Brightness), µ(Entropy), µ(MFCC5), µ(ASE1) σ2(MFCC6),
µ(RollOff), σ2(MFCC17), µ(MFCC4), σ2(k2), σ2(MFCC9), µ(MFCC2), µ(ASE7) µ(k1), σ2(MFCC15),
σ2(MFCC12), µ(MFCC3), σ2(MFCC10), σ2(MFCC13), µ(MFCC20), µ(ASE2), σ2(MFCC4),
σ2(MFCC2), µ(ASE3), σ2(MFCC14), σ2(MFCC11), σ2(ASSK), µ(ASE8), σ2(MFCC20),
σ2(MFCC16), µ(p2)

/l/ µ(ASE1) µ(Brightness), µ(MFCC5), µ(Entropy), µ(ASE7) µ(RollOff), σ2(MFCC7), µ(Peak to RMS), µ(F4)
µ(ASC), σ2(MFCC6), µ(MFCC2), σ2(MFCC13), σ2(MFCC20)

/j/ µ(Brightness), µ(ASE1) µ(MFCC5), µ(ASE7) µ(Entropy), µ(Peak to RMS), µ(F4) µ(RollOff),
σ2(MFCC15), σ2(MFCC7), σ2(MFCC6), µ(ASE14), σ2(MFCC13), σ2(MFCC12), σ2(MFCC10),
σ2(k2), µ(MFCC2), µ(k3), µ(ASE8), σ2(MFCC14), µ(ASE13), σ2(MFCC20), σ2(ASE1), σ2(MFCC16),
σ2(MFCC11), µ(ASE2) µ(ASC), µ(MFCC4), σ2(MFCC4), σ2(MFCC8), σ2(ZC), µ(MFCC20),
µ(MFCC3), µ(ASE5)

In the second part of the experiment, we test
the effectiveness of the selected features in the con-
text of automatic phoneme recognition. In addition,
the English language, as an auxiliary language, is
used. The recordings of Lithuanian and Polish speak-
ers used are the same as in the first part of the experi-
ment. For the English language, the well-known TIMIT
Acoustic-Phonetic Continuous Speech Corpus is used
(Garofolo et al., 1993). This corpus contains record-
ings of 630 speakers of 8 major dialects of American
English. In our research study recordings of a dialect
named New York City were used. Recordings from 16
speakers (eight females and eight males) were used.

We extracted parameters for all the phonemes. The
classification based on the most suitable parameters

Table 6. The results of classification based on the optimized feature vector (given in Table 5).

Samples
kNN SVM

Accuracy Precision Recall F1 Accuracy Precision Recall F1
Phoneme /p/ (54)

All 0.978 0.985 0.970 0.977 0.948 0.941 0.955 0.948
A Female 0.975 0.952 1.000 0.976 0.975 1.000 0.950 0.974

Male 0.946 1.000 0.893 0.943 1.000 1.000 1.000 1.000
All 0.925 0.890 0.970 0.929 0.993 0.985 1.000 0.993

B Female 0.863 0.809 0.950 0.874 0.988 0.976 1.000 0.988
Male 0.893 0.824 1.000 0.903 0.661 0.596 1.000 0.747
All 0.985 0.971 1.000 0.985 1.000 1.000 1.000 1.000

C Female 0.963 0.951 0.975 0.963 0.975 0.975 0.975 0.975
Male 0.946 0.903 1.000 0.949 0.893 0.824 1.000 0.903

(given in Table 5) was performed. The feature set of
each phoneme is divided into two parts: features for
which the class labels are known (training dataset)
and features for which class labels need to be deter-
mined (testing dataset). For the class determination
SVM and kNN classifiers are used. The classifiers were
used without parameter tuning. The obtained results
are compared with the correct class labels of the data.
In order to evaluate the classifier performance, the con-
fusion matrix CM is calculated. Based on this matrix
overall accuracy and three class-specific measures, i.e.,
class recall, class precision and F1-measure, are deter-
mined. The obtained results (averaged for all speakers,
males and females separately) are given in Table 6,
where A refers to the samples of Lithuanian and
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Samples
kNN SVM

Accuracy Precision Recall F1 Accuracy Precision Recall F1
Phoneme /t/ (92)

All 0.963 0.970 0.955 0.962 0.881 0.823 0.970 0.890
A Female 0.938 0.973 0.900 0.935 0.913 0.971 0.850 0.907

Male 0.964 1.000 0.929 0.963 0.964 1.000 0.929 0.963
All 0.896 0.884 0.910 0.897 0.866 0.845 0.896 0.870

B Female 0.838 0.829 0.850 0.840 0.888 0.970 0.800 0.877
Male 0.875 0.800 1.000 0.889 0.946 0.903 1.000 0.949
All 0.955 0.918 1.000 0.957 0.970 0.944 1.000 0.971

C Female 0.950 0.929 0.975 0.951 0.963 0.930 1.000 0.964
Male 0.946 0.903 1.000 0.949 0.964 0.933 1.000 0.966

Phoneme /d/ (21)
All 0.955 0.942 0.970 0.956 0.910 0.867 0.970 0.916

A Female 0.975 0.975 0.975 0.975 0.938 1.000 0.875 0.933
Male 1.000 1.000 1.000 1.000 0.929 0.962 0.893 0.926
All 0.813 0.763 0.910 0.830 0.858 0.843 0.881 0.861

B Female 0.675 0.675 0.675 0.675 0.875 0.895 0.850 0.872
Male 0.768 0.703 0.929 0.800 0.786 0.735 0.893 0.807
All 0.970 0.957 0.985 0.971 0.985 0.971 1.000 0.985

C Female 0.950 0.950 0.950 0.950 0.963 0.930 1.000 0.964
Male 0.946 0.903 1.000 0.949 0.964 0.933 1.000 0.966

Phoneme /k/ (122)
All 0.955 0.930 0.985 0.957 0.925 0.880 0.985 0.930

A Female 0.750 0.667 1.000 0.800 0.738 0.732 0.750 0.741
Male 0.929 0.962 0.893 0.926 0.946 1.000 0.893 0.943
All 0.761 0.706 0.896 0.790 0.806 0.781 0.851 0.814

B Female 0.675 0.652 0.750 0.698 0.713 0.774 0.600 0.676
Male 0.768 0.703 0.929 0.800 0.821 0.750 0.964 0.844
All 0.963 0.956 0.970 0.963 0.993 0.985 1.000 0.993

C Female 0.825 0.964 0.675 0.794 0.838 0.846 0.825 0.835
Male 0.911 0.849 1.000 0.918 0.929 0.962 0.893 0.926

Phoneme /g/ (28)
All 0.955 0.930 0.985 0.957 0.888 0.833 0.970 0.897

A Female 0.950 0.909 1.000 0.952 0.850 0.967 0.725 0.829
Male 0.946 1.000 0.893 0.943 0.893 0.923 0.857 0.889
All 0.769 0.700 0.940 0.803 0.881 0.870 0.896 0.882

B Female 0.738 0.686 0.875 0.769 0.900 0.900 0.900 0.900
Male 0.768 0.683 1.000 0.812 0.982 0.966 1.000 0.983
All 0.955 0.930 0.985 0.957 0.970 0.957 0.985 0.971

C Female 0.975 0.975 0.975 0.975 0.963 0.951 0.975 0.963
Male 0.893 0.824 1.000 0.903 0.946 0.903 1.000 0.949

Phoneme /tS/ (25)
All 0.940 0.904 0.985 0.943 0.866 0.803 0.970 0.878

A Female 0.838 0.755 1.000 0.860 0.725 0.846 0.550 0.667
Male 0.893 0.958 0.821 0.885 0.911 1.000 0.821 0.902
All 0.761 0.706 0.896 0.790 0.791 0.747 0.881 0.808

B Female 0.613 0.592 0.725 0.652 0.738 0.788 0.650 0.712
Male 0.679 0.609 1.000 0.757 0.750 0.667 1.000 0.800
All 0.948 0.941 0.955 0.948 0.985 0.971 1.000 0.985

C Female 0.888 0.897 0.875 0.886 0.875 0.826 0.950 0.884
Male 0.768 0.683 1.000 0.812 0.893 0.893 0.893 0.893
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Samples
kNN SVM

Accuracy Precision Recall F1 Accuracy Precision Recall F1
Phoneme /f/ (52)

All 0.896 0.863 0.940 0.900 0.918 0.889 0.955 0.921
A Female 0.863 0.796 0.975 0.876 0.888 0.861 0.925 0.892

Male 0.893 1.000 0.786 0.880 0.786 0.808 0.750 0.778
All 0.784 0.726 0.910 0.808 0.851 0.805 0.925 0.861

B Female 0.825 0.771 0.925 0.841 0.750 0.738 0.775 0.756
Male 0.821 0.781 0.893 0.833 0.679 0.625 0.893 0.735
All 0.940 0.893 1.000 0.944 0.948 0.929 0.970 0.949

C Female 0.825 0.861 0.775 0.816 0.875 0.895 0.850 0.872
Male 0.786 0.700 1.000 0.824 0.625 0.578 0.929 0.712

Phoneme /v/ (49)
All 0.940 0.928 0.955 0.941 0.918 0.924 0.910 0.917

A Female 0.988 1.000 0.975 0.987 0.950 0.974 0.925 0.949
Male 0.911 1.000 0.821 0.902 0.946 0.963 0.929 0.946
All 0.776 0.718 0.910 0.803 0.813 0.792 0.851 0.820

B Female 0.750 0.794 0.675 0.730 0.800 0.875 0.700 0.778
Male 0.875 0.862 0.893 0.877 0.875 0.862 0.893 0.877
All 0.940 0.904 0.985 0.943 0.963 0.931 1.000 0.964

C Female 0.925 0.905 0.950 0.927 0.950 0.909 1.000 0.952
Male 0.875 0.800 1.000 0.889 0.911 0.849 1.000 0.918

Phoneme /s/ (86)
All 0.970 0.970 0.970 0.970 0.925 0.952 0.896 0.923

A Female 0.750 0.672 0.975 0.796 0.700 0.667 0.800 0.727
Male 0.875 0.957 0.786 0.863 0.750 0.733 0.786 0.759
All 0.910 0.887 0.940 0.913 0.873 0.891 0.851 0.870

B Female 0.738 0.732 0.750 0.741 0.838 0.909 0.750 0.822
Male 0.696 1.000 0.393 0.564 0.893 0.923 0.857 0.889
All 0.985 0.971 1.000 0.985 0.963 0.931 1.000 0.964

C Female 0.850 1.000 0.700 0.824 0.888 1.000 0.775 0.873
Male 0.875 1.000 0.750 0.857 0.875 1.000 0.750 0.857

Phoneme /z/ (17)
All 0.970 0.985 0.955 0.970 0.918 0.878 0.970 0.922

A Female 0.775 0.704 0.950 0.809 0.763 0.733 0.825 0.777
Male 0.911 1.000 0.821 0.902 0.696 0.790 0.536 0.638
All 0.896 0.853 0.955 0.901 0.851 0.822 0.896 0.857

B Female 0.688 0.683 0.700 0.691 0.713 0.718 0.700 0.709
Male 0.679 1.000 0.357 0.526 0.679 0.708 0.607 0.654
All 0.963 0.931 1.000 0.964 0.955 0.930 0.985 0.957

C Female 0.850 0.889 0.800 0.842 0.900 1.000 0.800 0.889
Male 0.839 1.000 0.679 0.809 0.750 0.889 0.571 0.696

Phoneme /S/ (83)
All 0.978 0.985 0.970 0.977 0.985 0.985 0.985 0.985

A Female 0.750 0.672 0.975 0.796 0.900 0.864 0.950 0.905
Male 0.893 1.000 0.786 0.880 0.804 0.743 0.929 0.825
All 0.896 0.863 0.940 0.900 0.866 0.866 0.866 0.866

B Female 0.713 0.667 0.850 0.747 0.700 0.750 0.600 0.667
Male 0.804 1.000 0.607 0.756 0.607 1.000 0.214 0.353
All 0.955 0.918 1.000 0.957 0.970 0.944 1.000 0.971

C Female 0.913 1.000 0.825 0.904 0.963 0.974 0.950 0.962
Male 0.964 1.000 0.929 0.963 0.857 0.857 0.857 0.857
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Samples
kNN SVM

Accuracy Precision Recall F1 Accuracy Precision Recall F1
Phoneme /Z/ (17)

All 0.978 0.985 0.970 0.977 0.970 0.985 0.955 0.970
S Female 0.763 0.691 0.950 0.800 0.913 0.884 0.950 0.916

Male 0.893 1.000 0.786 0.880 0.786 0.722 0.929 0.813
All 0.903 0.875 0.940 0.907 0.866 0.866 0.866 0.866

B Female 0.713 0.667 0.850 0.747 0.763 0.889 0.600 0.716
Male 0.804 1.000 0.607 0.756 0.589 1.000 0.179 0.303
All 0.978 0.957 1.000 0.978 0.978 0.957 1.000 0.978

C Female 0.900 1.000 0.800 0.889 0.975 1.000 0.950 0.974
Male 0.964 1.000 0.929 0.963 0.893 0.893 0.893 0.893

Phoneme /m/ (78)
All 0.978 0.957 1.000 0.978 0.903 0.846 0.985 0.910

A Female 0.975 0.952 1.000 0.976 0.988 1.000 0.975 0.987
Male 0.946 1.000 0.893 0.943 0.964 1.000 0.929 0.963
All 0.866 0.877 0.851 0.864 0.851 0.873 0.821 0.846

B Female 0.838 0.846 0.825 0.835 0.863 0.968 0.750 0.845
Male 0.839 0.788 0.929 0.853 0.911 0.871 0.964 0.915
All 0.985 0.971 1.000 0.985 0.955 0.984 0.925 0.954

C Female 0.963 0.974 0.950 0.962 0.925 0.870 1.000 0.930
Male 0.929 0.875 1.000 0.933 0.964 0.933 1.000 0.966

Phoneme /n/ (223)
All 0.978 0.957 1.000 0.978 1.000 1.000 1.000 1.000

A Female 0.950 0.909 1.000 0.952 0.975 0.952 1.000 0.976
Male 0.982 0.966 1.000 0.983 1.000 1.000 1.000 1.000
All 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

B Female 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Male 0.982 1.000 0.964 0.982 1.000 1.000 1.000 1.000
All 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

C Female 0.988 1.000 0.975 0.987 1.000 1.000 1.000 1.000
Male 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Phoneme /r/ (203)
All 0.970 0.985 0.955 0.970 0.978 0.971 0.985 0.978

A Female 0.938 0.927 0.950 0.938 0.975 1.000 0.950 0.974
Male 0.982 1.000 0.964 0.982 1.000 1.000 1.000 1.000
All 0.910 0.887 0.940 0.913 0.881 0.849 0.925 0.886

B Female 0.825 0.771 0.925 0.841 0.788 0.926 0.625 0.746
Male 1.000 1.000 1.000 1.000 0.982 1.000 0.964 0.982
All 0.970 0.944 1.000 0.971 0.985 0.971 1.000 0.985

C Female 0.950 0.909 1.000 0.952 0.950 0.909 1.000 0.952
Male 0.982 0.966 1.000 0.983 1.000 1.000 1.000 1.000

Phoneme /l/ (143)
All 0.970 0.957 0.985 0.971 0.948 0.917 0.985 0.950

A Female 0.929 0.900 0.964 0.931 0.982 0.966 1.000 0.983
Male 0.881 0.881 0.881 0.881 0.993 0.985 1.000 0.993
All 0.850 0.769 1.000 0.870 0.950 0.909 1.000 0.952

B Female 0.661 0.596 1.000 0.747 0.536 0.519 1.000 0.683
Male 0.970 0.944 1.000 0.971 1.000 1.000 1.000 1.000
All 0.950 0.909 1.000 0.952 0.988 0.976 1.000 0.988

C Female 0.911 0.871 0.964 0.915 0.946 0.903 1.000 0.949
Male 0.982 0.966 1.000 0.983 1.000 1.000 1.000 1.000
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Table 6. [Cont.]

Samples
kNN SVM

Accuracy Precision Recall F1 Accuracy Precision Recall F1
Phoneme /j/ (48)

All 0.963 0.984 0.940 0.962 0.970 0.957 0.985 0.971
A Female 0.988 0.976 1.000 0.988 0.975 1.000 0.950 0.974

Male 0.946 1.000 0.893 0.943 0.982 0.966 1.000 0.983
All 0.881 0.881 0.881 0.881 0.963 0.943 0.985 0.964

B Female 0.875 0.826 0.950 0.884 0.950 0.950 0.950 0.950
Male 0.821 0.737 1.000 0.849 0.661 0.596 1.000 0.747
All 0.978 0.957 1.000 0.978 1.000 1.000 1.000 1.000

C Female 0.950 0.909 1.000 0.952 0.975 0.952 1.000 0.976
Male 0.964 0.933 1.000 0.966 0.929 0.875 1.000 0.933

Polish languages, while B – samples of Lithuanian and
English languages, and C – samples of Polish and En-
glish languages. The numbers in brackets (see Table 6)
show how many phoneme samples were used in the
experiment for each language.

The are several conclusions that may be derived
from the results obtained. First of all, the accuracies
obtained for “All” are very high regardless of the lan-
guage. In most cases, kNN returns higher accuracy
than the SVM classifier, but differences are not al-
ways statistically significant. It should be remembered
that F1-measure may be more useful in this analy-
sis as there is an uneven class distribution, but we
can see that overall, it also gets very high values.
When looking at the pairs of languages, it may be ob-
served that in all but for the phoneme /n/ statistical
measures obtained for the B case (Lithuanian-English
phonemes) are lower than for A and C cases. This
may be caused by the fact that feature vectors were
parametrized for Lithuanian and Polish and not for
the English language, but C case disproves such a hy-
pothesis. Contrarily, we cannot say that Polish and En-
glish phonemes are better separated than Lithuanian-
English, for such a conclusion bigger corpora should
be utilized. Moreover, when analyzing Table 4, we can-
not say that higher values of measures are more often
obtained in the case of female- or male- pronounced
phonemes regardless of the language used.

6. Conclusions

A comparison analysis based on acoustic param-
eters between Lithuanian and Polish language conso-
nants has been performed. A set of acoustic param-
eters, optimized by the separability analysis, related
to differences between Polish and Lithuanian language
consonants has been obtained for each consonant. In
order to evaluate the classification accuracy, two meth-
ods, namely kNN and SVM, were used. The analyses
were performed for the whole group of speakers, and

male and female speakers separately. High classifica-
tion accuracies show that the proposed and optimized
parameters are useful in the process of determination
of inter-language differences.

An interesting observation may be made when
comparing the pairs of languages: Lithuanian-Polish,
Lithuanian-English, and Polish-English, namely, it is
clearly seen that Lithuanian-English phonemes are
more difficult to separate. In the future experiments,
a bigger corpus will be used to observe whether this
trend remained true. Moreover, a larger set of acous-
tics features will be chosen and optimized for these
three languages, as well as other machine learning al-
gorithms will be employed.

Finally, we worked on the optimization of the fea-
ture vector to utilize it in the multidimensional quality
assessment of the synthesized phonemes.
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SAMPA (speech assessment methods phonetic alpha-

bet) for encoding transcriptions of Lithuanian speech
corpora, Information Technology and Control, 29, 4,
50–56, https://hdl.handle.net/20.500.12259/55530.

42. Recasens D. (2012), A cross-language acoustic study
of initial and final allophones of /l/, Speech Com-
munication, 54, 3, 368–383, doi: 10.1016/j.specom.
2011.10.001.

43. Rudzionis V., Maskeliunas R., Rudzionis A.,
Ratkevicius K. (2009), On the adaptation of fo-
reign language speech recognition engines for Lithua-
nian speech recognition, [in:] Abramowicz W., Flej-
ter D. [Eds], Business Information Systems Workshops.
BIS 2009. Lecture Notes in Business Information Pro-
cessing, Vol. 37, pp. 113–118, Springer, Berlin, Heidel-
berg, doi: 10.1007/978-3-642-03424-4_13.

44. SAMPA En, https://www.phon.ucl.ac.uk/home/sampa/
english.htm.

45. SAMPA Pl, https://www.phon.ucl.ac.uk/home/sampa/
polish.htm.

46. Sathe-Pathak B.V., Panat A.R. (2012), Extraction
of pitch and formants and its analysis to identify 3 dif-
ferent emotional states of a person, International Jour-
nal of Computer Science Issues, Vol. 9, Issue 4, No 1,
http://www.ijcsi.org/papers/IJCSI-9-4-1-296-299.pdf.

47. Spangler T., Vinodchandran N.V., Samal A.,
Green J.R. (2017), Fractal features for automatic de-
tection of dysarthria, 2017 IEEE EMBS International
Conference on Biomedical & Health Informatics (BHI),
pp. 437–440, doi: 10.1109/BHI.2017.7897299.

48. Upadhya S.S., Cheeran A.N., Nirmal J.H. (2018),
Thomson Multitaper MFCC and PLP voice features
for early detection of Parkinson disease, Biomedi-
cal Signal Processing and Control, 46, 293–301, doi:
10.1016/j.bspc.2018.07.019.

49. Wei Y., Zeng Y., Li C. (2018), Single-Channel
Speech Enhancement Based on Sub-Band Spectral En-
tropy, J. Audio Eng. Soc., 66, 3, 100–113, doi:
10.17743/jaes.2018.000.

50. Ziółko B., Gałka J., Ziółko M. (2009), Pol-
ish phoneme statistics obtained on large set of writ-
ten texts, Computer Science, 10, 3, 97–106, doi:
10.7494/csci.2009.10.3.97.

51. Ziółko B., Żelasko P., Skurzok D. (2014),
Statistics of diphones and triphones presence on the
word boundaries in the Polish language. Applica-
tions to ASR, XXII Annual Pacific Voice Confer-
ence (PVC), Krakow, 2014, pp. 1–6, doi: 10.1109/
PVC.2014.6845418.


