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The most challenging in speech enhancement technique is tracking non-stationary noises for long
speech segments and low Signal-to-Noise Ratio (SNR). Different speech enhancement techniques have
been proposed but, those techniques were inaccurate in tracking highly non-stationary noises. As a result,
Empirical Mode Decomposition and Hurst-based (EMDH) approach is proposed to enhance the signals
corrupted by non-stationary acoustic noises. Hurst exponent statistics was adopted for identifying and
selecting the set of Intrinsic Mode Functions (IMF) that are most affected by the noise components.
Moreover, the speech signal was reconstructed by considering the least corrupted IMF. Though it increases
SNR, the time and resource consumption were high. Also, it requires a significant improvement under non-
stationary noise scenario. Hence, in this article, EMDH approach is enhanced by using Sliding Window
(SW) technique. In this SWEMDH approach, the computation of EMD is performed based on the small
and sliding window along with the time axis. The sliding window depends on the signal frequency band.
The possible discontinuities in IMF between windows are prevented by the total number of modes and
the number of sifting iterations that should be set a priori. For each module, the number of sifting
iterations is determined by decomposition of many signal windows by standard algorithm and calculating
the average number of sifting steps for each module. Based on this approach, the time complexity is
reduced significantly with suitable quality of decomposition. Finally, the experimental results show the
considerable improvements in speech enhancement under non-stationary noise environments.

Keywords: Speech Enhancement; Empirical Mode Decomposition; Intrinsic Mode Functions; Hurst ex-
ponent; Sliding Window EMD.

1. Introduction

In recent years, the suppression of acoustic distor-
tion in noisy speech signals has been mostly required
to enhance the speech signals. Various speech enhance-
ment techniques and algorithms have been proposed
by many researchers to reduce the noise from the
speech signals (Vishari et.al., 2016; Kulkarni et al.,
2016). Typically, in real non-stationary environments,
the major problem in speech enhancement is concerned
with the estimation of the noise statistics precisely.
The conventional estimators are based on Voice Activ-
ity Detectors (VAD) (Kasap, Arslan, 2013; Zhang
et al., 2014). After that, the power spectrum of the
noise components is determined as a smoothed adap-
tation of its previous values obtained during the speech
pauses. These processes offer a reasonable accuracy for
stationary background noises but they cannot accu-
rately estimate time-varying spectra. The complexity

in tracking the non-stationary noises becomes more
obvious for long speech segments and low Signal-to-
Noise Ratio (SNR) (Hawaldar, Dixit, 2011; Mai
et al., 2015). Different power spectrum-based methods
have been proposed to deal with such situations (Zhao
et al., 2014; Jin et al., 2017b).

In the past researches, Time-Frequency-based (TF
based) speech enhancement solutions (Soni et al.,
2018) were proposed based on the Empirical Mode De-
composition (EMD) (Mai et al., 2015; Mert, Akan,
2014). Generally, the EMD is a nonlinear time-domain
adaptive method to decompose the signals into a se-
ries of oscillatory Intrinsic Mode Functions (IMF) and
a residual one (Mandic et al., 2013; Zeileret et al.,
2010). It does not need a set of basic functions for
appropriately analyzing the target signal. In addition,
it does not restrict the stationary signals. To tackle
the challenges in non-stationary noisy atmospheres,
a novel EMD-based speech enhancement technique
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(Zao et al., 2014) was proposed in which the noise
components of each IMF were identified and chosen
by its Hurst exponent statistics. Here, the selection
of IMF and the speech reconstruction were performed
on the frame-by-frame basis by considering both qual-
ity and intelligibility objective measures. However, this
technique consumes a lot of time and computer re-
sources. Also, a significant improvement under Babble
noise scenarios was not achieved effectively.

Hence in this article, Sliding Window EMDH
(SWEMDH) is proposed to improve the EMDH ap-
proach. This approach is performed based on the cal-
culation of EMD in a comparatively small window and
sliding this window along with the time axis. Win-
dow size is depending on the signal’s frequency band.
The possible discontinuities in IMF between windows
are prevented by the total number of modes and the
number of sifting iterations that should be set a pri-
ori. The number of sifting steps should be tailored for
each module. This parameter depends on the sampling
frequency and on analyzed signal, its complexity and
spectrum. The number of sifting iterations is deter-
mined by decomposition of many signal windows by
a standard algorithm and calculating the average num-
ber of sifting steps for each module. Thus, the speech
enhancement technique is improved efficiently.

The rest of the article is structured as follows: Sec. 2
presents the literature survey related to the speech
enhancement techniques. Section 3 describes the pro-
posed speech enhancement technique. Section 4 shows
the experimental results of the proposed technique. Fi-
nally, Sec. 5 concludes the research work and presents
the Future Enhancement.

2. Literature survey

A noise reduction algorithm (Taal et al., 2011)
was proposed for the intelligibility prediction of time-
frequency weighted noisy speech. A Short-Time Objec-
tive Intelligibility Measure (STOI) was proposed which
has a strong monotonic relation with the intelligibility
scores of various listening tests where noisy speech was
processed by some type of TF-weighting. This model
has a simple structure in the sense that it was based
on only two free parameters. However, the performance
was not effective.

A colored noise based multi-condition training
technique (Zao, Coelho, 2011) was proposed for ro-
bust speaker identification in unknown noisy environ-
ments. In this technique, the colored noise samples
generation was based on filtering a white Gaussian
sequence. Gaussian Mixture Models (GMM) was ap-
plied for obtaining the speaker models by using the
noisy speech signals with a single SNR. However, the
identification accuracy was less precise.

The variational Bayesian algorithm (wa Maina,
Walsh, 2011) was proposed for joint speech enhance-

ment and speaker identification. This technique was
constructed on the intuition that speaker dependent
priors may operate better than priors that attempt
for capturing global speech properties. An iterative al-
gorithm was derived that exchanges information be-
tween the speech enhancement and speaker identifica-
tion processes. However, the computational complexity
of this algorithm was high.

A novel technique (Gerkmann, Hendriks, 2012)
was proposed to estimate the noise power spectral den-
sity by means of an unbiased Minimum Mean-Square
Error (MMSE) optimal estimation. In this technique,
a VAD-based noise power estimator was used that ne-
glects the bias compensation by a soft Speech Presence
Probability (SPP) with fixed priors. By selecting fixed
priors, decoupling of the noise power estimator was
achieved such as the estimation of the speech power
and the estimation of the clean speech. However, the
processing time was high.

EMD-based Filtering (EMDF) of low-frequency
noise (Chatlani, Soraghan, 2012) was proposed
for speech enhancement. In this technique, an adap-
tive method was developed for selecting the IMF in-
dex to separate the noise components from the speech
according to the second-order IMF statistics. Then,
the low-frequency noise components were separated
by a partial reconstruction from the IMF. Based on
this technique, a residual noise was suppressed from
the speech signals that were enhanced by the conven-
tional optimally modified log-spectral amplitude ap-
proach that utilizes a minimum statistics-based noise
estimate. However, a minor improvement was required
with the non-stationary Babble noise.

The speech enhancement strategy (Khaldi et al.,
2014) was proposed based on time adaptive thresh-
olding of IMF of the signal extracted by EMD. The
denoised signal was reconstructed by the superposi-
tion of its adaptive thresholded IMFs. The adaptive
thresholds were estimated by using the Teager-Kaiser
energy operator (TKEO) of signal IMFs. It was used
to identify the type of frame by expanding differ-
ences between speech and non-speech frames in each
IMF. However, the parameters used for implementing
a compromise between noise removal and speech dis-
tortion were required to optimize for further improve-
ment.

Enhancement of speech dynamics for VAD (Dwi-
jayanti et al., 2018) was proposed by using Deep Neu-
ral Network (DNN). In this technique, the dynamics
were highlighted by speech period candidates which
are computed based on the heuristic rules for the pat-
terns of the first and second derivatives of the input
signals. Then, these candidates combined with the log
power spectra were given as input to the DNN for ob-
taining VAD decisions. However, the performance of
VAD was degraded while it eliminates the sub bands
F0 and its neighbours.
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A fast and robust VAD (Ghahabi et al., 2018)
was proposed for a real-time Automatic Speech Recog-
nition (ASR) process. The major objective of this
method was filtering the non-speech segments before
processing the speech segments of the audio signal by
the decoder. This method was a hybrid supervised or
unsupervised model based on the zero-order Baum-
Welch statistics obtained from a Universal Background
Model (UBM). During testing, the Baum-Welch statis-
tics of an unknown audio segment was compared with
speech and non-speech VAD vectors. Finally, the deci-
sion was made based on the robust threshold. However,
Equal Error Rate (EER) was high.

3. Proposed methodology

In this section, the proposed SWEMDH approach is
explained in brief. The basic block diagram of the pro-
posed approach is shown in Fig. 1. The enhancement
of speech signals involves the following processes:

• Initially, noisy speech signals are collected from
the database and the extrema are extracted i.e.,
the noisy speech signals are decomposed into a set
of windowed IMFs by using SWEMDH technique.

• Once all windowed IMFs are obtained, the Hurst
exponent is applied to select the most optimal
IMF low-frequency noisy components.

• Finally, the noisy speech signals are reconstructed
by using the selected windowed IMFs efficiently.

Fig. 1. Block diagram for proposed approach.

3.1. Sliding Window Empirical Mode Decomposition
(SWEMD)

Initially, the extrema i.e., maxima and minima are
extracted from the original signal x(t). Then, the up-
per (emax) and lower (emin) envelopes are obtained by
interpolating the local maxima and minima, respec-
tively. The average between these envelopes is com-
puted as:

m(t) = emax(t) + emin(t)
2

. (1)

The obtained average value is subtracted from the orig-
inal signal to obtain imf as:

imf1(t) = x(t) −m(t). (2)

Generally, this process is known as sifting process.
The computed imf1(t) is used as the input for next
sifting process which is applied on the residual as:

imf1(t) ∶= imf1(t) −m(t). (3)

This sifting process is iterated until imf1(t) satis-
fies the conditions of imf signal. The original signal
is reduced by the first mode while the sifting process is
completed

IMF1(t) ∶= imf1(t), (4)

r1(t) = x(t) − IMF(t). (5)

The residue r1(t) is used as input for extracting the
second IMF and this process is looped for extracting
all IMF as follows:

ri(t) = ri−1(t) − imfi(t), (6)

where i refers to the index of current mode. When
residue ri(t) consists of less than three extrema or all
its points are closely equal to zero, the decomposition
process is completed. The original signal is obtained
by sum of all IMF components and the residue as:

rn +
n

∑
i=1

imfi(t) = x(t), (7)

where n refers to the number of all modes.

3.2. Termination criteria for sifting process

The following criteria are used to terminate the sift-
ing process:

• The first one is that the number of extrema and
the number of zero-crossings should vary at most
by 1.

• The second one is that the mean between the up-
per and lower envelopes should equal to zero at
each point of IMF.

In this proposed approach, the second criterion is
used for terminating the sifting process. In accordance
with the second criteria of IMF, the mean of its enve-
lope is equivalent to zero at each point of IMF. There-
fore, a termination criterion is used for the sifting pro-
cess. In each iteration, the ratio of the mean value of
the envelope of iterated mode and the amplitude of this
envelope is verified

τ(t) = ∣m(t)
a(t)

∣ , (8)

where

a(t) = emax(t) − emin(t)
2

. (9)

There are two thresholds used such as ϑ1 and ϑ2,
where ϑ1 is ensuring globally small fluctuations of the
envelope mean around zero and ϑ2 is locally allowing
higher fluctuations. The sifting process is terminated if
τ(t) < ϑ1 is true for (1−ε) part of the number of signal’s
points and if τ(t) < ϑ2 is true for the remaining points.
The typical values of these parameters are given as:

ε = 0.05; ϑ1 = 0.05; ϑ2 = 10 ⋅ ϑ1. (10)

These values of parameters tolerate a compromise
between quality and speed of the decomposition pro-
cess.
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3.3. Hurst-based IMF selection

Once all IMF are obtained, the Hurst exponent is
applied to decide which IMFs should be chosen for the
speech signal reconstruction. Since those selected IMFs
affect by the noise components. Once all IMF are ob-
tained, the Hurst exponent is applied to select IMF
for speech signal reconstruction. Consider the speech
signal x(t) with the normalized autocorrelation coeffi-
cient function (δ(k)) as:

δ(k) = E[(x(t) − µx)(x(t + k) − µx)]
E[(x(t) − µx)2]

. (11)

In equation (Soni et al., 2018), µx refers the mean
of x(t) and k refers the time lag. For a fractional Gaus-
sian noise, δ(k) is given as:

δ(k) = 1

2
(∣k − 1∣2H − 2 ∣k∣2H + ∣k + 1∣2H) , (12)

a) b)

c) d)

e) f)

Fig. 2. The first five IMFs obtained from the decomposition of a speech signal segment:
a) input speech signal, b)–f) IMF#1–IMF#5 , respectively.

where 0 ≤H ≤ 1 refers the Hurst exponent of x(t). The
value of H is defined by using autocorrelation coeffi-
cient function decaying rate whose asymptotic charac-
teristic is given by,

δ (k)∼H (2H−1)k2(H−1), k→∞. (13)

The Hurst exponent defines the time-dependence or
scaling degree of x(t) and is associated with its spec-
tral characteristics. Within the entire range [0, 1], the
power spectral density Sx(f) is exposed to be propor-
tional to f1−2H when f → 0 (Zhao et al., 2014). For
H = 1

2
, Sx(f) is a constant over the entire frequency

spectrum, where low frequencies are important in the
case where H > 1

2
and H → 1. The Hurst exponent

is estimated from non-overlapping frames of samples
and it is used to enable the identification criteria
for selecting the IMF low-frequency noise compo-
nents. Figure 2 illustrates the first five IMFs obtained
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from decomposing the sample input speech signal
segment of 2500 ms collected from the NOISEX-92
database. It shows that the first IMF is composed of
faster oscillations than the second one which in its turn
has faster fluctuations than the third one and so on.
It implies that, at each time interval, the SWEMD
applies a high-frequency versus low-frequency parti-
tion between IMFs. Therefore, the first mode should
present the high-frequency content of the signal. Also,
the cut-off frequency between consecutive IMFs is
time-varying and signal dependent.

3.4. SWEMDH speech signal reconstruction

The speech signal reconstruction is performed to
validate the decomposition. Normally, the speech sig-
nal reconstruction defines the determination of an orig-
inal speech signal from a sequence of equally spaced
segments i.e., IMFs. It initiates with the decomposition
of the input noisy speech into n modes by using (Mai
et al., 2015). After that, windowed IMF are obtained
by separating each mode into Q non-overlapping short-
time frames

w imfi,q(t) = {
imfi (t + qTd) ,
0,

t ∈ [0, Td] ,
otherwise,

(14)

where q ∈ {0, ...,Q − 1} refers the frame index and Td
refers the fixed time-duration of the frames. Then,
the Hurst exponent is estimated to all the windowed
IMF (w imfi,q(t)) to select the IMF low-frequency
noise components for each frame index q. In the next
step, for each frame, the index Nq of the last windowed
IMF whose value of H is below a given threshold i.e.,
Hq(Nq) < Hth. If x̂(t) is an enhanced speech signal,
then each of it’s x̂q(t) is reconstructed as follows:

x̂q(t) =
Nq

∑
m=1

w imfi,q(t). (15)

Finally, x̂(t) is given as follows:

x̂(t) =
Q−1

∑
q=0

x̂q(t − qTd). (16)

Thus, based on this proposed SWEMDH, the sud-
den changes in the power spectrum of non-stationary
noises are avoided and the selection of IMF for entire
speech signal is achieved efficiently.

4. Results and discussions

In this section, performance effectiveness of the pro-
posed SWEMDH is evaluated and compared with the
existing EMDH approaches by using MATLAB 2014a.
In this experiment, a subset of 12 speakers including
7 male and 5 female is randomly chosen that provides
a total of 420 speech data segments, 10 per speaker

with sampling rate of 16 kHz and average time dura-
tion of 2 seconds. Also, acoustic noises such as Air-
port, Babble, Car, Exhibition, Restaurant, Station,
Street and Train are used for corrupting the speech sig-
nals considering different SNR values like 0 dB, 5 dB,
10 dB and 15 dB. The noises are collected from the
NOISEX-92 database. The following are the perfor-
mance metrics used to evaluate the effectiveness of the
proposed technique:

• Signal-to-Noise Ratio (SNR): It is defined as
the fraction of the speech signal power to the cor-
rupting noise power. It is computed as:

SNR [dB] = 10 log10 (
Psignal

Pnoise
) . (17)

In Eq. (17), Psignal is the average power of speech
signal and Pnoise is the average power of noise. It
can be rewritten as:

SNR [dB] = 20 log10 (
Asignal

Anoise
) . (18)

In equation (Taal et al., 2011), Asignal and Anoise
are the Root Mean Square (RMS) amplitude of
signal and noise, respectively.

• Mean Square Error (MSE): It represents
the cumulative squared error between the recon-
structed and original speech signal. The MSE is
calculated as:

MSE = 1

l

n

∑
i=1

e2
i , where e = x̂(t) − x(t). (19)

In equation (Zao, Coelho, 2011), l refers the sig-
nal length and e refers the error between the ori-
ginal signal x(t) and reconstructed signal x̂(t).

• Peak Signal-to-Noise Ratio (PSNR): It is de-
fined as the fraction of maximum possible signal
power to the corrupting noise power. Generally, it
is computed by using MSE as:

PSNR [dB] = 10 log10

2552

MSE
. (20)

• Mean Absolute Error (MAE): It is defined
as the absolute error between the reconstructed
speech signal and original signal. It is compu-
ted as:

MAE = 1

l

n

∑
i=1

ei. (21)

• Perceptual Evaluation of Speech Quality
(PESQ): It can be applied to provide an end-
to-end quality assessment for characterizing the
listening quality as perceived by users.

PESQ = α0 − α1 ⋅D − α2 ⋅A, (22)

where α0 = 0.1, α1 = 0.1, and α2 = 0.0309.
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Table 1. MSE comparison.

Noise EMDH
0 dB

SWEMDH
0 dB

EMDH
5 dB

SWEMDH
5 dB

EMDH
10 dB

SWEMDH
10 dB

EMDH
15 dB

SWEMDH
15 dB

Airport 0.005775 0.001500 0.003425 0.000574 0.003703 0.000245 0.002460 0.000175

Babble 0.005829 0.001506 0.003546 0.000572 0.002682 0.002489 0.002428 0.000178

Car 0.005574 0.001521 0.003438 0.000567 0.002683 0.001901 0.002434 0.000179

Exhibition 0.004849 0.001501 0.002967 0.000576 0.002607 0.000226 0.004142 0.000305

Restaurant 0.006223 0.001478 0.003437 0.000568 0.002693 0.001444 0.002452 0.000176

Station 0.005827 0.001502 0.003167 0.000568 0.002629 0.001429 0.002411 0.000303

Street 0.004502 0.001495 0.003227 0.000569 0.002607 0.000398 0.002392 0.000308

Train 0.004846 0.001501 0.003074 0.000571 0.002567 0.001027 0.002388 0.000309

Fig. 3. MSE comparison.

Table 2. MAE comparison.

Noise EMDH
0 dB

SWEMDH
0 dB

EMDH
5 dB

SWEMDH
5 dB

EMDH
10 dB

SWEMDH
10 dB

EMDH
15 dB

SWEMDH
15 dB

Airport 0.058149 0.030742 0.041596 0.018812 0.034674 0.010447 0.028804 0.010411

Babble 0.058241 0.030531 0.040286 0.017854 0.032865 0.039863 0.028596 0.010397

Car 0.056816 0.031154 0.041438 0.018981 0.031981 0.002595 0.028534 0.010331

Exhibition 0.052171 0.030548 0.036580 0.018083 0.031631 0.006500 0.037259 0.013411

Restaurant 0.056832 0.028862 0.039627 0.018559 0.032467 0.024235 0.028333 0.010201

Station 0.052369 0.028160 0.038677 0.019042 0.032034 0.024235 0.027558 0.013685

Street 0.049660 0.030168 0.038047 0.018010 0.030643 0.024285 0.027848 0.014016

Train 0.050743 0.029732 0.037712 0.018608 0.030818 0.024272 0.027511 0.013279

Fig. 4. MAE comparison.



S. Poovarasan, E. Chandra – Speech Enhancement Using Sliding Window EMD and Hurst-based Technique 435

The following Table 1 and Fig. 3 give the compar-
ison results of MSE for both EMDH and SWEMDH
using different acoustic noises that corrupt the speech
signal during transmission.

The following Table 2 and Fig. 4 gives the compar-
ison results of MAE for both EMDH and SWEMDH
using different acoustic noises that corrupt the speech
signal during transmission.

The following Table 3 and Fig. 5 gives the compar-
ison results of SNR for both EMDH and SWEMDH

Table 3. SNR comparison [dB].

Noise EMDH
0 dB

SWEMDH
0 dB

EMDH
5 dB

SWEMDH
5 dB

EMDH
10 dB

SWEMDH
10 dB

EMDH
15 dB

SWEMDH
15 dB

Airport 3.659574 2.195915 3.334045 4.426647 3.302368 6.338962 3.066095 8.405252

Babble 3.605948 2.271026 3.453267 4.469029 3.123635 2.434380 3.018528 8.323599

Car 3.437381 2.204023 3.324013 4.502377 3.074241 1.192139 3.018716 8.306291

Exhibition 2.820614 2.272402 2.689272 4.427774 2.976287 5.929496 2.789780 8.534318

Restaurant 3.833914 2.408575 3.272254 4.545853 3.165528 4.058466 3.035596 8.396639

Station 3.628947 2.258953 2.941313 4.522969 3.003922 4.058466 2.994448 8.369053

Street 2.550461 2.237160 3.068816 4.466179 3.022369 7.058466 2.948060 8.295345

Train 2.812100 2.276606 2.851648 4.458775 2.901905 6.008366 2.955278 8.257501

Fig. 5. SNR comparison.

Table 4. PSNR comparison [dB].

Noise EMDH
0 dB

SWEMDH
0 dB

EMDH
5 dB

SWEMDH
5 dB

EMDH
10 dB

SWEMDH
10 dB

EMDH
15 dB

SWEMDH
15 dB

Airport 12.68316 18.53865 15.53044 23.29113 17.46393 25.73540 17.05465 28.52600

Babble 14.24706 20.12404 14.66708 22.58938 16.51313 24.83623 16.52640 27.86852

Car 13.46210 19.10351 15.31891 23.14530 16.24344 26.74035 16.67701 28.00202

Exhibition 14.91570 20.00872 16.27362 23.39067 16.46082 17.14640 14.22290 25.54700

Restaurant 13.38445 19.62694 15.19231 23.01042 16.19545 18.90165 16.82320 28.25544

Station 15.36787 21.25577 16.04403 23.50831 16.30616 26.90765 16.93355 27.09873

Street 15.32990 20.11752 15.48762 23.02262 16.82815 24.90065 16.81731 27.29751

Train 15.67256 20.76127 15.70213 23.01255 16.75199 25.90235 16.71708 27.32014

using different acoustic noises that corrupt the speech
signal during transmission.

The following Table 4 and Fig. 6 give the compar-
ison results of PSNR for both EMDH and SWEMDH
using different acoustic noises that corrupt the speech
signal during transmission.

The following Table 5 and Fig. 7 give the compar-
ison results of PESQ for both EMDH and SWEMDH
using different acoustic noises that corrupt the speech
signal during transmission.
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Fig. 6. PSNR comparison.

Table 5. PESQ comparison.

Noise EMDH
0 dB

SWEMDH
0 dB

EMDH
5 dB

SWEMDH
5 dB

EMDH
10 dB

SWEMDH
10 dB

EMDH
15 dB

SWEMDH
15 dB

Airport 3.546681 3.772296 3.663083 3.671065 3.590500 3.927475 3.689458 4.023654

Babble 3.671733 3.849439 3.718452 3.822388 3.581719 3.943854 3.839045 3.867399

Car 3.334989 3.828398 3.765506 3.962600 3.716819 4.043255 3.598346 3.847243

Exhibition 3.658974 3.725694 3.629111 4.037867 3.446903 3.807430 3.681904 4.090796

Restaurant 3.023658 3.698754 3.763355 3.837838 3.882143 3.805933 3.881704 4.042269

Station 3.159864 3.897642 3.400217 3.837912 3.780931 3.888985 3.658974 4.042365

Street 3.451811 3.979580 3.473544 4.041857 3.867542 3.945786 3.708424 3.843790

Train 3.285802 3.800800 3.309595 3.873858 3.595872 4.025271 3.577204 4.006613

Fig. 7. PESQ comparison.

From this analysis, it is observed that SWEMDH
approach achieves higher performance than the exist-
ing EMDH based speech enhancement. For example,
consider the Babble noise environment with SNR is
15dB. For this case, the MSE of SWEMDH is 92.67%
reduced differently than the EMDH technique. The
MAE of SWEMDH is 63.64% less than the EMDH.
Similarly, the PSNR value for the proposed SWEMDH
technique is 68.63% increased than the existing tech-
nique. In addition, the PESQ of proposed technique

is 0.74% higher than the existing EMDH technique.
Thus, the proposed SWEMDH technique achieves
high PSNR, SNR and PESQ with less MSE and MAE
compared to the EMDH technique.

5. Conclusions

In this article, a Sliding Window-based EMDH ap-
proach (SWEMDH) is proposed to improve the speech
enhancement under non-stationary acoustic noise envi-
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ronments. In this proposed approach, the EMD com-
putation is performed that estimates IMF according
to the small and sliding window that depends on the
signal’s time frequency. To compute consecutive IMFs
for each frame, the number of sifting iterations is deter-
mined by decomposition of many signal’s windows by
a standard algorithm and calculating the average num-
ber of sifting steps. After that, the Hurst exponent is
applied on all IMFs to select the IMF low frequency
components which are used to reconstruct the origi-
nal speech signal. Thus, the time complexity of speech
enhancement is reduced with an appropriate decompo-
sition quality. Finally, the experimental results prove
that the proposed SWEMDH approach has better per-
formance than the existing EMDH in speech enhance-
ment under non-stationary noise scenarios.
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