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Speech enhancement in strong noise condition is a challenging problem. Low-rank and sparse matrix
decomposition (LSMD) theory has been applied to speech enhancement recently and good performance
was obtained. Existing LSMD algorithms consider each frame as an individual observation. However,
real-world speeches usually have a temporal structure, and their acoustic characteristics vary slowly as
a function of time. In this paper, we propose a temporal continuity constrained low-rank sparse matrix
decomposition (TCCLSMD) based speech enhancement method. In this method, speech separation is
formulated as a TCCLSMD problem and temporal continuity constraints are imposed in the LSMD
process. We develop an alternative optimisation algorithm for noisy spectrogram decomposition. By
means of TCCLSMD, the recovery speech spectrogram is more consistent with the structure of the clean
speech spectrogram, and it can lead to more stable and reasonable results than the existing LSMD
algorithm. Experiments with various types of noises show the proposed algorithm can achieve a better
performance than traditional speech enhancement algorithms, in terms of yielding less residual noise and
lower speech distortion.
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1. Introduction

In real-world situations, speeches are generally
mixed with various kinds of noise, such as background
noise, channel noise, competing speakers sounds.
Speech enhancement is an effective approach solv-
ing noise interference problems. Over the past several
decades, people have developed a number of speech
enhancement algorithms (Loizou, 2007). These algo-
rithms can be classified into two categories, namely,
unsupervised and supervised methods. Supervised
methods require training phase to estimate parame-
ters of the models considered for clean speech and
noise using training data. Examples of these meth-
ods include hidden Markov model (HMM) based ap-
proaches (Mohammadiha, Arne, 2013), nonnega-
tive matrix factorisation (NMF) based methods (Sun
et al., 2015), and deep neural network (DNN) based
approaches (Kolbæk et al., 2017). Compared with
supervised methods, unsupervised methods do not
need training stages and only require little noise seg-
ments to estimate the noise-related parameters for

speech enhancement. Examples of these methods in-
clude spectral subtraction (Boll, 1979), Wiener fil-
tering (WF) (Plapous et al., 2006; Wiener, 1949),
Minimum Mean Square Error (MMSE) estimation
(Rugini, Banelli, 2016; Stark, Paliwal, 2011),
subspace method (Ephraim, Van Trees, 1995; Her-
mus et al., 2007; Hu, Loizou, 2003), and low-rank and
sparse matrix decomposition (LSMD) based speech en-
hancement methods (Bando et al., 2018; Li et al.,
2018; Sun et al., 2014).

Spectral subtraction is a typical nonparametric
method in the spectrum domain. This method assumes
that additive noise and clean speech are independent
of each other. Then a relatively clean speech signal
can be obtained by subtracting the spectrum of the
estimated noise from the spectrum of the noisy speech
signal (Boll, 1979). Due to the inaccuracy of noise
spectrum estimation, this approach is mainly plagued
by musical noise problem (Lu, Loizou, 2008; Paliwal
et al., 2010). In contrast, MMSE spectral estimation
is an effective method to solve the problem of exces-
sive residual noise, and it has a better noise suppres-
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sion at the low signal-to-noise-ratio (SNR) (Stark,
Paliwal, 2011). Subspace method is another pop-
ular speech enhancement approach (Ephraim, Van
Trees, 1995; Hermus et al., 2007; Hu, Loizou,
2003). The principle of this method is to perform an or-
thogonal decomposition of the noisy observations into
a signal subspace and a noise subspace. The critical
step of subspace approach is splitting of two invari-
ant subspaces associated with signal and noise via
subspace decomposition, which can be achieved by
Karhunen-Loeve transform or singular value decom-
position (SVD). However, subspace decomposition is
highly sensitive to the presence of strong noise, result-
ing in a large amount of residual noise within enhanced
speech in low SNR situations.

In recent years, there has been an increasing in-
terest in utilisation of LSMD for speech enhance-
ment (Bando et al., 2018; Li et al., 2018). The main
idea behind these kinds of speech enhancement meth-
ods is motivated by the robust principal component
analysis (RPCA) theory (Cai et al., 2010; Candes
et al., 2011; Xu et al., 2012). RPCA was firstly ap-
plied in image processing field for background sepa-
ration (Bouwmans et al., 2017) and impulse noise
removal (Jin, Ye, 2018). However, RPCA is unable
to be modelled directly to solve the speech enhance-
ment problem. In 2014, a constrained LSMD (CLSMD)
based speech enhancement method was proposed (Sun
et al., 2014), which separates speech and noise spec-
trogram by setting constraints on rank and sparsity of
each input audio frame. In this method, noise signal is
regarded as a low-rank component in time-frequency
(T-F) domain because noise spectra within different
time frames are usually highly correlated with each
other, while the speech signal is regarded as a sparse
component since it is relatively sparse in T-F domain.
CLSMD can obtain better performance in strong noise
conditions, and does not need to know the exact dis-
tribution of noise signal. In 2018, Bayesian LSMD
was proposed for multi-channel speech enhancement
(Bando et al., 2018), where multi-channel magnitude
spectrogram can be decomposed into channel-wise low-
rank noise spectrograms and sparse speech spectro-
gram common to all the channels. Then Sun et al.
(2016) proposed a joint LSMD based subspace method
for speech enhancement. In this method, LSMD is
employed in time domain where low-rank component
corresponds to enhanced speech and sparse compo-
nent corresponds to noise signal. Kammi and Mol-
laei (2017) proposed a speech enhancement method
with sparsity regularisation. In this method, speech
enhancement is performed by minimising an appro-
priate objective function composed of a data fidelity
term and sparsity imposing regularisation terms. Al-
ternating direction method of multipliers is adapted
to solve the objective function for speech enhance-
ment.

In this paper, we propose a temporal continu-
ity constrained low-rank sparse matrix decomposition
(TCCLSMD) based speech enhancement method. In
general, the TCCLSMD originated from CLSMD. Re-
grettably, the CLSMD method ignores the temporal
continuity between adjacent speech frames in the pro-
cess of speech enhancement, and it generates some iso-
lated discrete points in the sparse matrix by LS de-
composition. To solve these deficiencies and improve
the quality of the speech system, the TCCLSMD-based
method is proposed. Experiments with various types of
noises show the proposed algorithm can achieve better
performance than traditional speech enhancement al-
gorithms, in terms of yielding less residual noise and
lower speech distortion.

The rest of this paper is organised as follows. Sec-
tion 2 simply reviews the related work. The algorithms
of TCCLSMD are introduced in Sec. 3, and speech en-
hancement system is established later. The experimen-
tal results and some conclusions are explained in Secs 4
and 5, respectively.

2. Related work

2.1. Low-rank and sparse matrix decomposition

The main idea behind LSMD-based speech en-
hancement method is motivated by the robust prin-
cipal component analysis (RPCA) theory (Wright
et al., 2009). In the spectrum domain, the noise sig-
nal frames generally have a high degree of correla-
tion, which mainly refers to the low-rank feature of
the noise. Compared with noise signals, speech signals
have a certain degree of sparsity, and they only are
active at several frequency points. Some blind source
separation algorithms are designed by the feature of
speech sparseness, such as Sparse Component Analy-
sis (SCA) (Shi, Song, 2016), and the sparse coding
strategy (Zhen et al., 2017).

Based on the assumption that the noise T-F matrix
contains a low-rank structure and the speech T-F ma-
trix contains a sparse structure, researchers expect to
decompose the noisy speech by the RPCA method to
obtain a sparse matrix corresponding to the speech sig-
nal and a low-rank matrix corresponding to the noise
signal. The experimental results show that the ob-
tained sparse matrix contains more noise interference,
and the low-rank matrix contains more speech infor-
mation. The main reason is that the speech spectrum
matrix has a certain low-rank characteristics except
the sparse characteristics. When the RPCA method is
applied, the decomposition process is not constrained
in advance. It will result in generating more residual
noise information in the sparse matrix and more speech
information in the low-rank matrix. The LS decompo-
sition theory was applied to the speech enhancement
problem (Mavaddaty et al., 2016; Sun, Mu, 2015;
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Sun et al., 2016), and CLSMD algorithm was proposed
to constrain the RPCA decomposition process.

For the T-F domain speech enhancement method,
CLSMD states that speech T-F matrix and noise T-F
matrix have sparse characteristics and low-rank char-
acteristics, respectively. In the T-F domain, since noise
signals within different time-frames are usually corre-
lated with each other, the noise spectrum can be as-
sumed to be in a low-rank subspace. On the other
hand, speech signals can be regarded as relatively
sparse (Sun et al., 2014). Therefore, the enhanced
speech can be obtained by the LS decomposition of
noisy speech matrix.

Let us consider a mathematical model of speech
enhancement based on CLSMD. Assuming that s(t)
is pure speech signal, l(t) is an independent additive
noise signal relative to s(t), the noisy speech signal
y(t) is expressed as follows:

y(t) = s(t) + l(t) (1)

by the short-time Fourier transform (STFT), y(t) is
transformed into

Y (n, k) = S(n, k) +L(n, k), (2)

where n = 1, ...,N and k = 1, ...,K denote the frame and
frequency indexes. Then perform complex conjugate
operation on both sides of Eq. (2)

∣Y (n, k)∣2 = ∣S(n, k)∣2 + ∣L(n, k)∣2

+2∣S(n, k)∣∣L(n, k)∣ cos(∆θ), (3)

where ∆θ denotes the phase difference between S(n, k)
and L(n, k). As mentioned earlier, l(t) is an indepen-
dent additive noise signal relative to s(t), and the for-
mula (3) can be simplified as

∣Y (n, k)∣ ≈ ∣S(n, k)∣ + ∣L(n, k)∣. (4)

According to the conclusion by Zhang and Zhao
(2013), the formula (4) depends on two factors:

1)
∣L(n, k)∣

∣S(n, k)∣
→ 0 or

∣L(n, k)∣

∣S(n, k)∣
→∞;

2) cos(∆θ)→ 1.

In other words, when the SNR is much larger than
0 dB, and cos(∆θ) is close to 1, the equal sign of the
formula (4) will be established. This is the assumption
of this paper, and the formula (4) can be simplified as
follows:

Y = S +L, (5)

where S is the sparse matrix corresponding to pure
speech, L is the low-rank matrix corresponding to
noise. To recover the matrices S and L, we can obtain
the following optimisation formula:

min
L,S

γ∣∣S∣∣1 + ∣∣L∣∣∗, s.t. Y = S +L, (6)

where ∣∣ ⋅ ∣∣∗ is the nuclear norm, which is the sum of
all singular values (Candes, Plan, 2010). ∣∣ ⋅ ∣∣1 is the
l1-norm of a matrix and γ is a balance parameter. For-
mula (6) is limited with rank and sparse constraints as
follows:

min
L,S

∣∣Y − S −L∣∣
2
F ,

s.t. rank(L) ≤ r, card(S) ≤ h,Sij ≥ 0,
(7)

where card(⋅) represents the number of non-zero ele-
ments of a matrix, that is the l0-norm of the matrix;
∣∣ ⋅ ∣∣F represents the Frobenius norm of a matrix; r re-
presents the rank constraint of the low-rank matrix L,
and h represents the sparse constraint of the sparse
matrix S.

2.2. Sparse matrix reconstruction model

The blind source separation is used for sparse ma-
trix reconstruction. The so-called blind source separa-
tion refers to the method of extracting or separating
each source signal obtained by the array receiving an-
tenna or sensor, and the source signal without know-
ing a little prior knowledge (such as normality, inde-
pendence, and stability). If there is no conditional con-
straint, this will be a multi-solution problem according
to the traditional blind source separation method.

According to the unsupervised sound source sep-
aration (Abdali, NaserSharif, 2017; Virtanen,
2007), the amplitude spectrum of the speech frame is
modelled by the following linear combination of basic
functions:

st =
J

∑
j=1

gj,tbj , (8)

where J is the number of basic functions, gj,t is the
gain of the j-th basic function bj , and t is the frame
sequence. By means of the formula (8), we can realise
the reconstruction of the sparse matrix and obtain the
corresponding matrix pattern as follows:

[S]k,t = [B]k,j[G]j,t, (9)

where k = 1, ...,K and t = 1, ..., T denote the frequency
and frame indexes. It should be noted that the obser-
vation matrix S is the only known, and the elements of
the basic matrix B and the gain matrix G to be esti-
mated must be non-negative. The estimates of B and
G can be obtained by minimising the cost function
c(B,G), which is the weighted sum of the reconstruc-
tion error term cr(B,G), the temporal continuity term
ct(G), and the sparse term cs(G)

c(B,G) = cr(B,G) + αct(G) + βcs(G), (10)

where α and β are the weights of the last two items, re-
spectively. In this paper, the temporal continuity term
ct(G) is constructed by
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ct(G) =
J

∑
j=1

1

σ2
j

T

∑
t=2

(gt,j − gt−1,j)
2
, (11)

where gt,j and gt−1,j denote the adjacent frames of
the gain matrix, σj is the j-th estimated standard de-

viation, and σj =

√

1
T

T

∑
t=1
g2
t,j . Regarding the sparse

term cs(G), we can refer to the MAP source estimate
(Kheder et al., 2017) method and it is defined by

cs(G) =
J

∑
j=1

T

∑
t=1

f (
gt,j

σj
), (12)

where f(⋅) selects the absolute value function f(x) =
∣x∣. The initial values of the matrices B and G can
be initialised by random positive values and then au-
tomatically updated by the multiplication update rule
until the cost function is reduced to within the thresh-
old or the number of iterations is greater than the set
value. The update rule for B is given as follows:

B← B ×

S
BGGT

1GT
, (13)

where A ×B and A/B are the multiplication and di-
vision of the corresponding elements of matrices A
and B, respectively. Then 1 is an all-one matrix with
the same dimension as matrix S. To obtain the update
rule for G, we need to establish the gradients of the
reconstruction error term cr(B,G), the temporal con-
tinuity term ct(G), and the sparse term cs(G), which
are defined as follows:

∇cr(B,G) = BT
(1 −

S
BG

) , (14)

[∇ct(G)]j,t = 2T
gj,t − gj,t+1

T

∑
i=1
g2
j,i

−T

2gj,t
T

∑
i=2

(gj,i − gj,i−1)
2

(
T

∑
i=1
g2
j,i)

2
, (15)

[∇cs(G)]j,t =
1

√
1

T

T

∑
i=1
g2
j,i

−
√
T

gj,t
T

∑
i=1
gj,i

(
T

∑
i=1
g2
j,i)

3/2 , (16)

the gradient of c(B,G) is the weighted sum of
∇cr(B,G), ∇ct(B,G), and ∇cs(B,G) as follows:

∇c(B,G) = ∇cr(B,G) + α∇ct(G) + β∇cs(G) (17)

which is rewritten as a subtraction form ∇c(B,G) =

∇c+(B,G) −∇c−(B,G), where

∇c−(B,G) = ∇c−r (B,G) + α∇c−t (G) + β∇c−s(G), (18)

∇c+(B,G) = ∇c+r (B,G) + α∇c+t (G) + β∇c+s(G), (19)

where

∇c−r (B,G) =
BTS
BG

,

∇c+r (B,G) = BT,

∇c−t (B,G) = T

2gj,t
T

∑
i=2

(gj,i − gj,i−1)
2

(
T

∑
i=1
g2
j,i)

2
,

∇c+t (B,G) = 2T
gj,t − gj,t+1

T

∑
i=1
g2
j,i

,

∇c−s(B,G) =
√
T

gj,t
T

∑
i=1
gj,i

(
T

∑
i=1
g2
j,i)

3/2 ,

∇c+s(B,G) =
1

√
1

T

T

∑
i=1
g2
j,i

.

That is to say, ∇c−r (B,G), ∇c−t (B,G), and
∇c−s(B,G) represent the subtractions in Eqs (14), (15)
and (16), respectively, and ∇c+r (B,G), ∇c+t (B,G), and
∇c+s(B,G) represent the subtracted numbers in (14),
(15), and (16), respectively.

Finally, we get the update rule for G as follows:

G←G ×
∇c−(B,G)

∇c+(B,G)
. (20)

3. TCCLSMD-based speech enhancement
method

The speech signal generally exhibits short-term sta-
bility, and the data between the adjacent speech frames
obtained by framing the time-lapse sequence using the
window function has continuity. When the LS decom-
position theory is applied to extract the sparse com-
ponents through the hard threshold function, since
the temporal continuity characteristics of the speech
are not taken into consideration, it will generate
some isolated discrete points in the sparse matrix.
In view of this drawback, the LS decomposition is
constrained by introducing the temporal continuity of
speech (Virtanen, 2007); adding weight adjustment
parameters in the process of constructing mathemat-
ical model; reconstructing the extracted sparse com-
ponents; and reducing isolated discrete points to make
sparse matrices more consistent with the speech spec-
trum distribution.
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3.1. Optimisation algorithm for TCCLSMD

Problem 1 (TCCLSMD). Suppose a noisy sig-
nal matrix is given as Y = S + L + RE , where S
is the sparse matrix corresponding to pure speech,
L is the low-rank matrix corresponding to noise, and
RE is the reconstruction error matrix. Suppose r rep-
resents the rank constraint of the low-rank matrix L,
and h represents the sparse constraint of the sparse
matrix S. To recover the matrices S and L, we refer to
formula (7) to get

min
L,S

∣∣Y − S −L∣∣
2
F ,

s.t. rank(L) ≤ r, card(S) ≤ h,Sij ≥ 0,
(21)

where card(⋅) represents the number of non-zero ele-
ments of a matrix, that is the l0-norm of a matrix;
∣∣ ⋅ ∣∣F represents the Frobenius norm of a matrix. To
solve for S and L, we transform the problem into two
sub-problems as follows (Liu, Peng, 2018):

Lt = arg min
rank(L)≤r

∣∣Y −L − St−1∣∣
2
F ,

St = arg min
∣S∣0≤h,Sij≥0

∣∣Y −Lt − S∣∣
2
F .

(22)

To solve the fixed rank problem of (22)1 by the
SVD-based method (Cai et al., 2010), it is assumed
that the singular value of the matrix Y is decomposed
into

SVD(Y) = U∑VT, (23)

where U and V are the left and right feature vectors
of Y, respectively, and ∑ is the diagonal matrix whose
diagonal is the eigenvalue. Then the low-rank matrix
L is solved as follows:

Li =
r

∑
i

λiUiV
T
i , (24)

where λi is the singular value of ∑, and λ1 ≥ λ2 ≥ ⋯ ≥

λr−1 ≥ λr. Since (22)2 is a non-convex function, it is
unable to be solved by the optimisation theory. Then
the sparse matrix S, can be estimated by introducing
a hard threshold function (Tan et al., 2013), which is
defined as follows:

St = (Y −Lt)⊗ [(Y −Lt) > T], (25)

where ⊗ denotes the element-wise multiplication, and
T > 0. It is worth noting that St obtained by (25) is
nonnegative. To reconstruct St by the sparse matrix
reconstruction model, we use (13) and (20) to obtain

St = Bt ⋅Gt, (26)

where, Bt and Gt denotes the basic matrix and the
gain matrix, respectively. Note that Bt and Gt are

limited to be nonnegative. Then a solution model of
TCCLSMD can be established as follows:

Lt = Un×r∑r×rVT
r×k,

SVD(Y − St−1) = U∑VT,

St = Bt ⋅Gt

(27)

Then, we can obtain the following optimisation al-
gorithm for TCCLSMD in Algorithm 1. Subalgorithm
of reconstruction of the sparse matrix can be seen in
Algorithm 2.

Algorithm 1.
The optimisation algorithm of TCCLSMD.

Given r, T , tmax, µ;
Initialize: Y0 = Y , St = [0]N×K , t = 0

While not converged do
UΛVT

= SVD(Yt);

Lt =
r

∑
i=0
λiUiV

T
i ;

%update of sparse matrix S
Xt = Yt −Lt + St;

St = Xt ⊗ (Xt > T);
St = BtGt (Algorithm 2);

If ∣∣Y −Lt − S∣∣2F /∣∣Y∣∣2F ≤ µ or t == tmax

break;
end
Yt = Lt +Xt − St;
t = t + 1;
end while
output: L = Lt, S = St

Algorithm 2.
Reconstruction of sparse matrix.

Input: M , ε, α, β, max;
Initialize:

t = 1, B0 = randn(K,M), G0 = randn(M,J);
While not converged do
% update of basic matrix B

Bt = Bt−1 ×

S
Bt−1Gt−1

GT
t−1

1GT
t−1

;

% update gain matrix G

Gt = Gt−1 ×
∇c−(Bt−1,Gt−1)

∇c+(Bt−1,Gt−1)
;

If c(B,G) ≤ ε or t == max

break;
end

t = t + 1;
end while
output: B = Bt, G = Gt, S = BG.
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3.2. TCCLSMD-based speech enhancement method

Based on the aforementioned algorithm, we utilise
the analysis-modification-synthesis (AMS) framework
(Paliwal et al., 2010) to build up TCCLSMD-based
speech enhancement system. Figure 1 shows the block
diagram of the TCCLSMD-based speech enhancement
method. First, the amplitude spectrum of the noisy
speech signal is framed by a window function, and each
frame data is used as a matrix column, then the frame
data is transformed into a frequency domain structure
matrix by a STFT.

Fig. 1. Block diagram of the TCCLSMD-based speech en-
hancement method.

Secondly, a three-point median filter is used to
smooth the spectral magnitude of noisy signal:

∣Ŷ (n, k)∣ = (∣Y (n − 1, k)∣ + ∣Y (n, k)∣ + ∣Y (n + 1, k)∣)/3.
(28)

Since the obtained ∣Ŷ (n, k)∣ is going to be stacked
as columns to recover the noisy matrix Y in the T-F
domain, then S and L are restored from Y by the
TCCLSMD algorithm. Moreover, the T-F masking
process needs to be performed. It is worth noting that

phase spectrum has little effect on the enhanced speech
(Shannon, Paliwal, 2006). So we can obtain the en-
hanced speech spectrum as follows:

Ŝ(n, k) = ∣S′(n, k)∣ej∠Y (n,k). (29)

To recover the enhanced speech, we make use of
the inverse Fourier transform and least-squares overlap
add synthesis (Quatieri, 2002) in the last step.

4. Experiments

To compare the proposed method with mainstream
speech enhancement methods, especially the CLSMD
method, we take 30 sentences (sp1 ∼ sp30) from the
NOIZEUS database (Hu, Loizou, 2008). The sen-
tences were affected by several types of noises, such as
street, car, exhibition, train, station, white, hfchannel,
pink, and F16 at 0 dB, 5 dB, 10 dB, and 15 dB, respec-
tively. In addition, the sentences were all sampled at
8 kHz. In this TCCLSMDmethod, a Hamming window
of 300 sample points (37.5 ms) with 40% frame over-
lap is used to segment the input signal into frames,
and the STFT points is 1024 in the frequency do-
main. For the evaluation measures, the segment SNR
measure and Perceptual Evaluation of Speech Quality
(PESQ) measure are proposed.

4.1. Effects of temporal continuity and sparse weight
on performance

Firstly, we check the influence of temporal conti-
nuity weight on the speech enhancement performance.
We used sentences sp1 ∼ sp30 as clean speech data and
white noise as interference noise for every sentence.
All segSNR and PESQ scores were averaged over the
30 test sentences. To eliminate the influence of sparse
weight on the selection of temporal continuity weight
α, β is first set to zero in this experiment, and then
the segSNR and PESQ scores of five different interval
points of 0.001 to 10 are tested respectively.

Figure 2a shows the segSNR and PESQ score line
graphs for different α in a white noise environment.
It can be seen from the figure that with the gradual
increase of weights, the segSNR and PESQ scores of
the white noise with different SNRs show a trend
of rising first and then decreasing. When α is taken
as 0.01, the best experimental results are obtained.
Therefore, the subsequent experiments will select 0.01
as the weight.

In this case, we tested the influence of different
β on this experiment under white noise environment.
Figure 2b shows the scores of segSNR and PESQ cor-
responding to different β. It can be found that the
segSNR and PESQ scores tend to be stable, so the ef-
fect of sparse weight β on the experimental results has
little effect. This paper selects β = 1 as the weight.
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a)

b)

Fig. 2. Line graphs of segSNR and PESQ scores for different
α and β at white noise: a) the scores for α, b) the scores

for β.

4.2. Performance comparison with other speech
enhancement methods

The proposed method is going to be compared with
mainstream speech enhancement approaches which in-
clude several typical approaches: spectral subtraction

Table 1. TCCLSMD and CLSMD methods for segSNR and PESQ scores for 0 dB, 5 dB SNR noisy speeches.

Measure Noise TCCLSMD (0 dB) CLSMD (0 dB) TCCLSMD (5 dB) CLSMD (5 dB)

segSNR

F16 −0.33 −0.40 1.66 1.51
volvo 0.61 0.56 −0.26 −0.37

exhibition −1.72 −1.73 0.37 0.36
station −1.58 −1.58 −1.58 −1.58

PESQ

F16 1.98 1.98 2.33 2.31
volvo 2.70 2.68 2.82 2.80

exhibition 1.45 1.45 1.94 1.93
station 1.66 1.65 2.11 2.10

(Boll, 1979), subspace method (Moor, 1993), WF
algorithm (Scalart, Vieira-Filho, 1996), minimum
mean-square error (MMSE) method (Cohen, 2004),
and a popular method, maximum a posterior esti-
mator of magnitude-squared spectrum (MSS_MAP)
algorithm (Paliwal et al., 2012). More importantly,
since the proposed method is optimised based on the
CLSMD method (Sun et al., 2014), the focus of this
paper is compared with the CLSMD method.

For the TCCLSMD method, the coefficient of rank
constraint r was set to 1, iteration number was set to
tmax = 100, the coefficient of error control was set
to µ = 0.001; in the sub-algorithm, reconstruction it-
eration number was set to M = 300, the coefficient of
error range precision control was set to ε = 0.0001, the
weight of temporal continuity was set to α = 0.01, and
sparse weight was set to β = 1. For all related methods,
we use MATLAB software to get experimental results
(Sun et al., 2014).

Table 1 shows the segSNR and PESQ scores for
the 0 dB, 5 dB SNR noisy speech processed by the
TCCLSMD method and the CLSMD method. It can
be seen from Table 1 that the TCCLSMD method has
a significantly better speech enhancement effect in the
strong noise environment than the CLSMD method,
except for the PESQ score of the 0 dB SNR in exhibi-
tion and F16 noise cases, which is slightly lower than
the CLSMD method, respectively.

Tables 2 and 3 show respectively the comparison
of segSNR and PESQ scores for seven speech enhance-
ment methods with different SNRs. From the aspect
of segSNR measure, the score of TCCLSMD method
is slightly lower than CLSMD method under the street
noise at 0 dB SNR; it has the highest score in other
strong noise environments, indicating the suppression
ability of TCCLSMD method has a good advantage
over other methods at strong noise. Compared with
the CLSMD method, the scores of the street noise at
0 dB SNR and the pink noise at 5 dB SNR are slightly
lower than that of the CLSMD method. In other cases,
the score is higher than the CLSMD method. By the
PESQ measure, it can be found that the highest PESQ
scores are obtained under most noises of 0 dB and 5 dB
SNR in this proposed method.



688 Archives of Acoustics – Volume 44, Number 4, 2019

Table 2. Comparison of segSNR scores for seven voice enhancement methods for various noisy speeches.

SNR [dB] Noise TCCLSMD CLSMD MSS SS Subspace MMSE Wiener96

0

White 2.18 2.15 0.36 −1.00 0.47 −0.76 −0.46
Hfchannel 0.73 0.71 0.06 −1.00 −1.49 −0.88 −0.43

Pink 0.17 0.09 0.07 −0.70 −3.23 −0.70 −0.22
Train −0.16 −0.18 −1.58 −1.45 −2.45 −2.49 −1.06
Street −1.39 −1.39 −1.71 −0.98 −2.62 −2.07 −0.84
Car −0.43 −0.51 −0.79 −0.73 −2.40 −1.29 −0.29

5

White 3.71 3.69 2.63 0.60 3.00 0.47 0.79
Hfchannel 2.62 2.60 2.31 0.95 1.12 0.37 0.83

Pink 2.00 1.73 2.44 1.20 −0.61 0.63 1.07
Train 1.68 1.65 0.93 0.86 0.16 −0.70 0.42
Street 0.92 0.92 0.54 0.71 −0.22 −0.80 0.22
Car 1.43 1.30 1.31 1.19 −0.20 0.08 0.96

10

White 4.87 4.86 5.14 3.14 5.53 1.51 2.12
Hfchannel 4.22 4.22 4.80 3.32 3.78 1.85 2.26

Pink 3.40 3.05 5.09 3.48 2.21 1.97 2.39
Train 3.40 3.36 3.59 3.12 2.73 0.87 1.91
Street 2.56 2.55 3.51 3.26 2.37 0.89 1.80
Car 3.27 3.12 3.89 3.36 2.44 1.56 2.36

15

White 5.61 5.64 7.83 5.30 8.00 3.10 3.37
Hfchannel 5.25 5.24 7.54 5.44 6.42 2.99 3.30

Pink 4.32 4.02 8.03 5.63 5.06 3.13 3.35
Train 4.59 4.47 6.73 5.38 5.36 2.34 2.94
Street 3.70 3.68 6.25 5.07 5.29 2.22 2.80
Car 4.42 4.31 6.84 5.76 5.42 2.81 3.40

Table 3. Comparison of PESQ scores for seven voice enhancement methods for various noisy speeches.

SNR [dB] Noise TCCLSMD CLSMD MSS SS Subspace MMSE Wiener96

0

White 2.02 2.01 1.99 1.63 1.72 1.87 1.46
Hfchannel 1.96 1.93 1.93 1.62 1.66 1.86 1.51

Pink 2.10 2.09 2.08 1.70 1.68 1.99 1.58
Train 1.68 1.67 1.61 1.40 1.31 1.56 1.43
Street 1.64 1.63 1.67 1.66 1.38 1.76 1.51
Car 1.77 1.76 1.85 1.67 1.46 1.84 1.55

5

White 2.39 2.38 2.32 1.85 2.19 2.16 1.71
Hfchannel 2.32 2.30 2.28 1.93 2.07 2.15 1.73

Pink 2.42 2.41 2.40 2.06 2.05 2.30 1.88
Train 2.10 2.09 2.02 1.94 1.72 1.99 1.82
Street 2.04 2.04 2.04 2.03 1.76 2.07 1.83
Car 2.15 2.14 2.14 2.04 1.72 2.17 1.87

10

White 2.59 2.59 2.65 2.33 2.60 2.49 2.14
Hfchannel 2.58 2.56 2.63 2.37 2.43 2.49 2.15

Pink 2.63 2.63 2.74 2.48 2.38 2.57 2.27
Train 2.43 2.41 2.38 2.33 2.10 2.36 2.22
Street 2.37 2.35 2.41 2.41 2.11 2.41 2.21
Car 2.44 2.43 2.55 2.45 2.04 2.50 2.27

15

White 2.72 2.72 2.961 2.71 2.97 2.73 2.50
Hfchannel 2.72 2.70 2.93 2.73 2.78 2.73 2.49

Pink 2.76 2.76 3.06 2.82 2.69 2.79 2.53
Train 2.69 2.66 2.79 2.71 2.51 2.68 2.51
Street 2.59 2.56 2.73 2.69 2.47 2.64 2.46
Car 2.66 2.65 2.88 2.84 2.39 2.75 2.58
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To solve the significant difference between the pro-
posed algorithm and other traditional algorithms, we
use the significance test. First, we make a hypothe-
sis that there is no significant difference between the
scores of the proposed algorithm and a traditional al-
gorithm (including the CLSMD, MSS, SS, Subspace,
MMSE, Wiener96). Then we set the value of the signif-
icance level to α = 0.05, and the probability p obtained
by the significance test has two cases:

1) if p > 0.05, we accept the null hypothesis, i.e.
there is no significant difference between the scores of
the proposed algorithm and a traditional algorithm;

2) or p < 0.05, we reject the null hypothesis, i.e.
there is a significant difference between the scores of
the proposed algorithm and a traditional algorithm.

Through the data in Tables 2 and 3 of this paper,
we obtain the significance test results (value of p) of
the segSNR and the PESQ scores as shown in Tables 4
and 5. The bold numbers indicate p < 0.05.

By the segSNR and PESQ scores, TCCLSMD al-
gorithm is positively significant compared to all con-
ventional algorithms at 0 dB SNR; and TCCLSMD al-
gorithm is more significant than MMSE and Wiener96
for all SNRs. Only by the segSNR scores and compared
with the CLSMD algorithm, TCCLSMD algorithm is
only positively significant at 0 dB SNR, indicating that
it performs better in low SNR scenarios. Only by the
PESQ scores and compared with the CLSMD algo-
rithm, TCCLSMD algorithm is positively significant
at 0 dB, 10 dB, and 15 dB SNR, indicating that it per-
forms better in most SNR scenarios.

In summary, the ability of the proposed method to
improve speech quality is more significant and stable
than that of the traditional methods, especially in the
case of a low SNR. It is worth emphasising that the
TCCLSMD method has a better performance in im-
proving speech quality and suppressing noise as com-
pared with the CLSMD method.

Table 4. Significance test between the TCCLSMD and a traditional algorithm for the seg-SNR scores.

SNR [dB] CLSMD MSS SS Subspace MMSE Wiener96
0 0.0387 0.0384 0.0408 0.0008 0.0092 0.0425
5 0.1260 0.1469 0.0518 0.0020 0.0010 0.0145
10 0.1573 0.0240 0.3770 0.1499 0.0007 0.0051
15 0.1293 0.0001 0.0418 0.0042 0.0003 0.0015

Table 5. Significance test between the TCCLSMD and a traditional algorithm for the PESQ scores.

PESQ [dB] CLSMD MSS SS Subspace MMSE Wiener96
0 0.0113 0.0004 9.8740e–07 0.0007 3.8174e–05 1.4480e–06
5 0.5178 0.1249 7.4463e–05 0.0226 8.0606e–05 1.5736e–05
10 0.0252 0.0010 4.0430e–05 0.2421 0.0010 0.0049
15 0.0014 0.0001 7.1446e–07 0.0008 8.0606e–05 0.0025

Figure 3 shows the segSNR and PESQ score incre-
ments for the evaluation criteria values based on the
TCCLSMD method minus the corresponding evalua-
tion criteria values for the CLSMD method. It can
be seen from the histogram that the most of the
PESQ and segSNR incremental score values are posi-
tive.

From the aspect of PESQ measure, the proposed
method has a better performance in the process of im-
proving the speech quality of other noisy speech except
for the pink noise at 15 dB SNR. From the aspect of
segSNR measure, the noise suppression ability based
on TCCLSMD method is greatly improved under the
three noise environments of pink, train, and car, and
also has a better performance under other noise envi-
ronments.

Figure 4a shows the time-domain waveform com-
parison of enhanced speech and pure speech after dif-
ferent speech enhancement methods are used to pro-
cess the “sp01” sampled speech signal, which is a noisy
speech formed by superimposing high-frequency chan-
nel noise with 0 dB SNR. Through the visual compar-
ison of the eight waveforms, it can be clearly seen that
the spectral waveforms enhanced by the spectral sub-
traction (SS), MMSE, WF, and subspace method con-
tain more burrs and have significant speech distortion.
In contrast, the enhanced waveform of the TCCLSMD-
based method contains few burrs, so it has a bet-
ter effect in suppressing residual noise and preventing
speech distortion. On the other hand, Fig. 4b shows the
comparison of the speech spectrum of the pure speech,
the noisy speech and the enhanced speech obtained
by the TCCLSMD method. It can be clearly seen from
the spectrogram that the TCCLSMD method signif-
icantly eliminates more noise information and retains
more speech information. The spectral map of this pro-
posed method is very close to the “clean speech” signal
spectrogram.
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a) b)

Fig. 3. TCCLSMD vs. CLSMD for segSNR and PESQ incremental scores:
a) the scores for segSNR, b) the scores for PESQ.

a) b)

Fig. 4. Waveform and Spectral comparisons of speech corrupted by noise at 0 dB SNR: a) waveform comparison of speech
(“sp01”) corrupted by hfchannel, b) spectral comparison of speech (“sp02”) corrupted by f16.

5. Conclusions

In this paper, we propose a temporal continu-
ity constrained low-rank sparse matrix decomposi-
tion (TCCLSMD) based speech enhancement method.
First, we introduce temporal continuity restriction and
sparse matrix reconstruction model, and describe the
algorithms based on the TCCLSMD method. Then, we
build up the TCCLSMD speech enhancement system
based on the AMS framework. Finally, we compare the
proposed method with the traditional speech enhance-
ment methods, and find that the ability of the proposed
method to improve speech quality is more significant
and stable than that of the traditional methods, espe-
cially in the case of low SNR. Moreover, the presented
method can directly obtain noise and speech signal in-
formation through matrix decomposition, and does not

need pre-voice detection processing. It can make good
use of the long-term statistical characteristics of back-
ground noise signals, and it is easy to obtain stable
noise reduction effect. In summary, increasing the tem-
poral continuity constraint can better achieve the pur-
pose of speech enhancement.
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