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The aim of the study study was to model, with the use of a neural network algorithm, the significance
of a variety of factors influencing the development of hearing loss among industry workers. The workers
were categorized into three groups, according to the A-weighted equivalent sound pressure level of noise
exposure: Group 1 (LAeq < 70 dB), Group 2 (LAeq 70–80 dB), and Group 3 (LAeq > 85 dB). The results
obtained for Group 1 indicate that the hearing thresholds at the frequencies of 8 kHz and 1 kHz had the
maximum effect on the development of hearing loss. In Group 2, the factors with maximum weight were
the hearing threshold at 4 kHz and the worker’s age. In Group 3, maximum weight was found for the
factors of hearing threshold at a frequency of 4 kHz and duration of work experience. The article also
reports the results of hearing loss modeling on combined data from the three groups. The study shows
that neural data mining classification algorithms can be an effective tool for the identification of hearing
hazards and greatly help in designing and conducting hearing conservation programs in the industry.
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1. Introduction

Exposure to noise is a largely prevalent occupa-
tional health risk factor. Occupational noise exposure
is usually characterized by frequency-weighted sound
level, normalized to an 8-hour working day (LEX,8h).
It is estimated that over 60 million of people around
the world are exposed to noise exceeding the 85 dB
permissible limit in the workplace, for an eight-hour
working day (Zare et al., 2019). Exposure to excessive
noise levels affect the workers’ health and causes vari-

ous occupational safety hazards (Nassiri et al., 2016;
Safari Variani et al., 2018). One of the most adverse
health effects of noise exposure is noise-induced hear-
ing loss (NIHL).

Worldwide, NIHL is a largely prevalent occupa-
tional hearing hazard. The World Health Organiza-
tion (WHO) has estimated that over 12% of the world
population are affected by NIHL and NIHL is the sec-
ond most common cause of hearing loss among older
adults (Zare et al., 2019). In the USA, 7.4–10.2 mil-
lion industrial workers are at risk of NIHL. In Sweden,
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100 million US dollars is annually spent on compensa-
tion for the hearing-impaired (Ahmed et al., 2001). In
Malasya, 26.9% of industry workers have a hearing loss
in a frequency range of 3000–6000 Hz (Leong, 2003)
and in Iran, at least 1 million workers are subjected
to excessive noise exposure (Golmohammadi et al.,
2006).

In the industry, noise pollution control is mainly
based on the measurement of LEX,8h (Golmo-
hammadi et al., 2006). The estimation of occupational
health hazards caused by noise exposure includes a va-
riety of factors, such as the worker’s age and the du-
ration of work experience, the type of noise, the noise
exposure duration, the noise frequency spectrum, the
number of workers affected by noise, and the dura-
tion of the working shift (Zamanian et al., 2012; 2013;
Tajic et al., 2008). The knowledge of the interrelation-
ships between individual hearing risk factors greatly
helps in designing and undertaking hearing protection
activities in the workplace. The present study had the
following main objectives: (1) to identify the predic-
tor factors of hearing loss in the industry, (2) to de-
termine the hearing loss of workers across both ears,
(3) to model and predict the changes of hearing loss
with the use of neural network algorithms, (4) to assess
the accuracy and error rates of the hearing loss models
developed in the study.

The study was conducted with the use of data min-
ing and artificial neural network modelling. Data mi-
ning (DM) is the process of extracting valid, reliable in-
formation from databases and transforming the infor-
mation of interest into a form suitable for use in a given
application or activity. Data mining is the analysis
step of the Knowledge Discovery in Databases (KDD)
process (Badr et al., 2009). Artificial neural networks
are computational, information processing paradigms
modeled after the human brain, designed to recog-
nize patterns and the relationships between the com-
ponents and parameters of the system under investiga-
tion (Kohzadi et al., 1995). The advantage of artificial
neural networks is direct learning from the data with-
out any need to estimate their statistical characteris-
tics. Neural networks make it possible to uncover the
relationship between the set of inputs and outputs, to
predict every output corresponding to a desired input
with no need of any initial assumptions and knowledge
about the relationships between the studied parame-
ters (Golabi et al., 2013).

2. Method

2.1. Objective of the study

The study was a cross-sectional investigation aimed
at monitoring and predicting – with the use of an ar-
tificial neural network modeling – the development of
hearing loss of workers in a mineral and in an indus-

trial company. After determining the factors influenc-
ing the hearing loss we sought to determine the impact
and the weight of each individual factor. The succes-
sive stages of the study were as follows:

1) selection of predictor factors for hearing loss mod-
eling,

2) audiometric testing of both ears,
3) calculation of permanent threshold shift (PTS) in

each ear,
4) calculation of total PTS across both ears,
5) classification of hearing loss degrees,
6) modeling the hearing loss changes with the use of

an artificial neural network algorithm,
7) estimation of the error rate and the accuracy

of the model (ISO 1999, 2013; Ramos-Miguel
et al., 2015).

2.2. Predictor factors

The workers tested in the study were assigned into
three groups: one control group and two case groups,
classified according to the noise exposure level. The
factors of age, duration of work experience, A-weighted
equivalent sound pressure level related to an 8-hour
working day (LEX,8h) and frequency were used to
model the development of hearing loss (Nawi et al.,
2011; Ramos-Miguel et al., 2015; ISO 1999, 2013).
The subjects were divided into three age groups: 20–35,
35–50, and +50 year-old (Ramos-Miguel et al., 2015).
The subjects in each group were categorized into three
ranges of the duration of work experience: less than 10
years, 10–20 years, and more than 20 years of service
(Majumder, Sharma, 2014).

Equivalent sound pressure level was measured using
a TES-1345 dosimeter. The dosimeter was calibrated
with a CEL 110.2 calibrator (ISO 9612, 2009; Golmo-
hammadi, Aliabadi, 1999). The modeling and predic-
tion of hearing loss changing were made for frequencies
of 250, 500, 1000, 2000, 4000, and 8000 Hz (ISO 1999,
2013; Schlauch, Nelson, 2009).

2.3. Audiometric measurements
and calculation of NIHL

Pure-tone hearing thresholds were measured at 250,
500, 1000, 2000, 4000, 6000, and 8000 Hz frequencies
with a CA 120 audiometer (Gubbels et al., 2017).
Noise induced hearing loss (NIHL) was calculated for
each ear from Eq. (1) (Golmohammadi, Aliabadi,
1999):

NIHL = a
∗

4
, (1)

where

a∗=(TL500 Hz)+(TL1000 Hz)+(TL2000 Hz)+(TL4000 Hz),
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and TL – hearing loss at a given frequency [dB], NIHL
– noise-induced hearing loss [dB].

After calculating NIHL for each ear, the total
NIHL was calculated for both ears, from Eq. (2)
(Golmohammadi, Aliabadi, 1999):

NIHLt =
(NIHLb × 5) + (NIHLp)

6
, (2)

where NIHLt – total PTS in both ears [dB], NIHLb –
PTS in the better ear [dB], NIHLp – PTS in the weaker
ear [dB].

2.4. Classification of hearing loss degrees

The degree of hearing loss was classified accord-
ing to WHO (1991). Hearing losses of 26–40 dB were
considered mild, 41–55 dB moderate, 56–70 dB mode-
rately severe, 71–90 dB severe, and > 91 dB profound
(WHO, 1991).

2.5. Modeling the development of hearing loss
on the basis of an artificial neural network

2.5.1. Input and output encoding

The robustness of neural networks to unforeseen
pattern variations in new data set is regarded as their
positive side. Their downside however is that, for en-
coding attribute values, they follow a standardized pro-
cedure, meaning that all the attributes, including the
categorical ones, are granted a value ranging from 0
to 1. The following equation (Eq. (3)) indicates the
calculation algorithm (Larose, Larose, 2014):

X∗ = X −min(X)
range(X)

= X −min(X)
max(X) −min(X)

. (3)

Upon clear ordering of the classes, single output
nodes can be utilized. For instance, one can imagine a
categorization of reading prowess in elementary schools
based on a collection of student attributes. The succes-
sive reading level categories may be defined as follows:
first grade category – output from 0 to 0.25, second
grade category: 0.25 ≤ output < 0.50, third grade cate-
gory: 0.50 ≤ output < 0.75, fourth grade category: out-
put ≥ 0.75 (Larose, Larose, 2014).

2.5.2. Neural networks for estimation and prediction

Since neural networks produce a continuous output,
they are typically exploited for running estimation and
prediction, using Eq. (4):

prediction = output (data range) +minimum, (4)

where output is the neural network output in (0,1)
range, data range is the range of the original attribute
values on a non-normalized scale, and minimum indi-
cates the lowest attribute value on the non-normalized
scale (Larose, Larose, 2014).

A neural network comprises a layered, feedforward,
completely connected network of artificial neurons, or
nodes. The feedforward nature of the network is limited
to a single flow direction, whereby no looping or cy-
cling is permitted. The neural network consists of two
or more layers; nonetheless, the majority of networks
comprise three layers: an input layer, a hidden layer,
and an output layer. The number of hidden layers may
not exceed one. In most of the cases, however, the net-
works encompass only one layer, which is sufficient for
most applications. Furthermore, the neural network is
completely connected, which means that each node in
a particular layer is associated with each node in the
next layer. On the other hand, the nodes of the same
layer are not connected to each other. The weight of
the connection between nodes is indicated by W1A. At
the stage of initialization, the weights are given ran-
dom values of 0 and 1 (Larose, Larose, 2014).

The number and the type of data set attributes
commonly determine the number of input nodes. The
number of hidden layers and the number of nodes in
every hidden layer can be identified by the user. Based
on the classification task, the output layer may pos-
sess more than one node (McCullagh, 2010; Larose,
Larose, 2014). The neural network structure is dis-
played in Fig. 1.

Fig. 1. Neural network structure.

The power and the flexibility of the network are
related with the number of nodes in the hidden layer.
A large number of hidden layers may cause overfitting
which results in memorizing the training set at the ex-
pense of generalizability to the validation set. If over-
fitting occurs, one may reduce the number of hidden
layers. On the other hand, when the training accuracy
is too low, the number of nodes may be increased in
the hidden layer (Larose, Larose, 2014).

Data set inputs (e.g. attribute values) are fed into
the input layer and pass through the hidden layer with
no processing. As a result, the input layer nodes do not
possess the same node structure as that of the hidden
layer and output layer nodes. The node inputs and the
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connection weights are combined into a single scalar
value through a combination function (which typically
is summation Σ), known as net (Eq. (5)) (Larose,
Larose, 2014):

netj =
i

∑
ij

xij =W0jx0j +W1jx1j + ... +WIjxI , (5)

where xij indicates the i-th input to node j,Wij refers
to the weight connected with the ith input to node j,
and there are I + 1 inputs to node j.

It is worth mentioning that inputs from upstream
nodes are illustrated by x1, x2, ..., xI , whereas x0 is
a constant input which conventionally takes the value
of 1 and is similar to the constant factor in regression
models. Therefore, every hidden or output layer node
(represented by j) comprises an extra input which is
equal to a specific weight W0jx0j = dW0j (e.g. W0B for
node B). Equation (6) presents the calculation algo-
rithm (Larose, Larose, 2014):

netA = ∑
i

WiAxiA

= W0A(1) +W1Ax1A +W2Ax2A +W3Ax3A. (6)

In neurons functioning in biology, signals are trans-
mitted between two neurons only if the combination
of inputs to a neuron exceeds a certain threshold level,
which results in firing of the neuron. The firing re-
sponse is not necessarily linearly related to the in-
put stimulation increment. This behavior of neurons
in biology is simulated in artificial neural networks
by a nonlinear activation function. The sigmoid func-
tion (Eq. (7)) is the most typical activation function
(Krogh, Vedelsby, 1995; Larose, Larose, 2014):

y = 1

1 + e−x
, (7)

where e is the natural logarithm base.
Prior to computing netZ , the node contribution

should be gauged, as shown in Eq. (8):

netB = ∑
i

WiBxiB

= W0B(1) +W1Bx1B +W2Bx2B +W3Bx3B . (8)

In the next step, node Zcombines the outputs from
nodes A and B through netZ , a weighted sum. This is
carried out by the use of the weights related to the
connections between these nodes, as shown in Eq. (9)
(Larose, Larose, 2014).

netZ = ∑
i

WiZxiZ

= W0Z(1) +WAZxAZ +WBZxBZ . (9)

It should be noted that the inputs xi to node Z are
not data attribute values but outputs from the sigmoid
functions from upstream nodes.

2.5.3. Assessment of the accuracy and the error rates
of the models

The accuracy and the error rates of the models were
determined from the confusion matrix. Confusion ma-
trix is a square matrix whose dimensions are equal to
the number of the output factor groups. In the matrix,
the main diameter represents the percentage of cases
predicted properly. According to Eq. (10), the model
accuracy is the ratio of positive cases to the total num-
ber of cases (Larose, Larose, 2014)

Accuracy = True Postive cases +True Negative cases
All cases

.

(10)

2.6. Ethical considerations

Ethical approval was obtained from the Ethics
Committee of Kerman University of Medical Sciences
(ID: IR.KMU.REC.1396.2458). All participants signed
an informed consent form.

2.7. Data analysis

The data were analyzed with the use of SPSS soft-
ware, version 18. The mean, standard deviation, cor-
relation coefficient, and regression diagrams were ana-
lyzed by linear regression and a paired t-test. Modeling
of the hearing loss changes was made with the use of
IBM SPSS Modeler 18.0 software.

3. Results

3.1. Predictive factors

3.1.1. Age and work experience duration

The age and work experience duration of the work-
ers tested in the study are shown in Table 1.

Table 1. Age and work experience duration of workers
in Groups 1–3.

Groups Factors Mean Standard
deviation

Group 1
(n = 50)

Age 37.66 9.91

Work
experience
duration

9.1 4.9

Group 2
(n = 50)

Age 35.56 11.45

Work
experience
duration

8.48 5.38

Group 3
(n = 50)

Age 41.76 10.93

Work
experience
duration

11.34 5.32
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3.1.2. Equivalent sound pressure level

Group 1 was exposed to A-weighted equivalent
sound pressure level (LAeq) of less than 70 dB. The
participants in Group 2 and Group 3 were exposed
to LAeq of 70–80 dB and > 85 dB, respectively. The
mean Leq and standard deviation across participants
in the groups were 70.0± 3 dB (Group 1), 77.6± 4.4 dB
(Group 2), and 89.7± 3.0 dB (Group 3).

3.2. Hearing loss (target factor)

The hearing loss degree across both ears of the par-
ticipants is shown, in terms of hearing loss severity, in
Table 2. In Group 1 (LAeq < 70 dB) 80% of the par-
ticipants had normal hearing and 20% had mild hear-
ing loss. In Group 2 (LAeq 70–80 dB), 74% had nor-
mal hearing and 20% mild hearing loss. In Group 3
(LAeq > 85 dB), 58%, 20%, 8%, and 4% of the partici-
pants had, respectively, normal hearing, mild, modera-
te, and severe hearing loss, according to WHO (1991)
classification. The data in Table 2 indicate that the
severity of hearing loss increases with LAeq. The results
of a paired t-test have shown that there was no signi-
ficant difference (p > 0.05) between the mean hearing
loss in the left and in the right ear of the participants,
in the three groups.

Table 2. Hearing loss of workers in Groups 1–3.

Normal
(0–25 dB)

Mild
(26–40 dB)

Moderate
(41–60 dB)

Severe
(61–80 dB)

Profound
(> 80 dB)

Group 1
(n = 50)

(LAeq < 70 dB)

40 participants
(80%)

10 participants
(20%)

– – –

Group 2
(n = 50)

(LAeq 70–80 dB)

37 participants
(74%)

10 participants
(20%)

3 participants
(6%)

– –

Group 3
(n = 50)

(LAeq > 85 dB)

29 participants
(58%)

15 participants
(30%)

4 participants
(8%)

2 participants
(4%)

–

Table 3. Correlation of age and work experience duration with hearing loss of workers in Groups 1–3.

Group
Regression statistics

Coefficient of determination, R2* Correlation, R p

Age
Group 1 0.148 0.385 0.008
Group 2 0.155 0.394 0.008
Group 3 0.036 0.189 0.277

Work experience duration
Group 1 0.131 0.362 0.014
Group 2 0.102 0.32 0.038
Group 3 0.079 0.28 0.076

3.3. Correlation between age, duration of work
experience, and hearing loss

Table 3 shows the correlation between age, dura-
tion of work experience and hearing loss, determined
by linear regression for the three groups. The data indi-
cate that there was a statistically significant difference
between age and hearing loss as well as between dura-
tion of work experience and hearing loss, in Groups 1
and 2.

3.4. Relationship between LAeq and hearing loss

Figure 2 shows correlation and linear regression
between LAeq and hearing loss for all participants in
Groups 1–3.

Fig. 2. Correlation between LAeq and hearing loss across
Groups 1–3.
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3.5. Modeling of hearing loss changes

Five different models (Model 1 – Model 5) of hear-
ing loss changes were used for hearing loss prediction
and modeling. Model 1 (People working in the office)
was used for Group 1, Model 2 – for Group 2, Model 3
– for Group 3, Model 4 (people working in the operat-
ing area) for Groups 2 and 3, Model 5 for Groups 1, 2,
and 3. The results of modeling obtained with the use
of IBM SPSS Modeler 18.0, are shown in Figs 3–7. The
plots show, for a given model, the weight percentage of
hearing loss of each predictor factor. Tables 4–8 present
the confusion matrix of the neural network algorithm
for the hearing loss models.

Fig. 3. Model 1: Weight percentage of hearing loss predictor
factors for Group 1 (n = 50).

Table 4. Confusion matrix of data determined by the neural
network algorithm in Model 1.

Measured severity
Predicted NIHL severity
Normal Mild

Normal 100% 0.0%
Mild 0.0% 100%

Fig. 4. Model 2: Weight percentage of hearing loss predictor
factors for Group 2 (n = 50).

Table 5. Confusion matrix of data determined by the neural
network algorithm in Model 2.

Measured severity
Predicted NIHL severity

Normal Mild Moderate
Normal 100% 0.0% 0.0%
Mild 0.0% 100% 0.0%

Moderate 0.0% 0.0% 100%

Fig. 5. Model 3: Weight percentage of hearing loss predictor
factors for Group 3 (n = 50).

Table 6. Confusion matrix of data determined by the neural
network algorithm in Model 3.

Measured severity
Predicted NIHL severity

Normal Mild Moderate Severe
Normal 100% 0.0% 0.0% 0.0%
Mild 40% 53.3% 0.0% 6.7%

Moderate 0.0% 75% 25% 0.0%
Severe 0.0% 0.0% 0.0% 100%

Fig. 6. Model 4: Weight percentage of hearing loss predictor
factors for Groups 2 and 3 (n = 100).

Table 7. Confusion matrix of data determined by the neural
network algorithm in Model 4.

Measured severity
Predicted NIHL severity

Normal Mild Moderate Severe
Normal 98.5% 1.5% 0.0% 0.0%
Mild 0.0% 96% 4% 0.0%

Moderate 0.0% 0.0% 100% 0.0%
Severe 0.0% 0.0% 0.0% 100%

Fig. 7. Model 5: Weight percentage of hearing loss predictor
factors for Groups 1–3 (n = 150).
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Table 8. Confusion matrix of data determined by the neural
network algorithm in Model 5.

Measured severity
Predicted Severity of NIHL

Normal Mild Moderate Severe
Normal 100% 1.5% 0.0% 0.0%
Mild 2.9% 97.1% 0.0% 0.0%

Moderate 0.0% 0.0% 100% 0.0%
Severe 0.0% 0.0% 0.0% 100%

4. Discussion and conclusions

The results shown in Table 3 indicate that correla-
tion between age and hearing loss as well as between
duration of work experience and hearing loss of the
workers were statistically significant in Groups 1 and 2.
The data in Fig. 2 show that there was a significant
difference between the A-weighted sound pressure level
of exposure and hearing loss across Groups 1–3.

The data presented in Figs 3–7 show the weight of
individual predictor factors in the development of hear-
ing loss in Models 1–5. In Model 1 (LAeq < 70 dB), the
hearing threshold at 8 kHz, with a 38% weight, had the
maximum impact on hearing loss, while the factors of
age and hearing threshold at 1 kHz (6% weight), were
the least influential ones (Fig. 3). The prediction ac-
curacy of the neural network algorithm was 100% (Ta-
ble 4). In Model 2 (LAeq 70–80 dB), the factor with
maximum weight was the hearing threshold at 4 kHz
(19%) while the factors of age and threshold at the
500-Hz frequency (weights of 7%) had the minimum
impact (Fig. 4). The prediction accuracy of the neu-
ral network algorithm was 100% (Table 5). In Model 3
(LAeq > 85 dB) the threshold at 4 kHz, with a 20%
weight, had the maximum impact while the factor of
duration of work experience had the minimum impact,
with a 6% weight (Fig. 5). In this model, the predic-
tion accuracy of the neural network algorithm was 80%
(Table 6). In Model 4, determined for Groups 2 (LAeq

70–80 dB) and 3 (LAeq > 85 dB), the maximum impact
was observed for the hearing thresholds at 4 kHz and
2 kHz frequencies, with 18% weights, and the minimum
impact (3% weight) was found for the factors of dura-
tion of work experience and noise (Fig. 6). The pre-
diction accuracy of the neural network algorithm was
98% (Table 7). In Model 5, determined for Groups 1–3,
the threshold at 4 kHz had the maximum impact, with
a weight of 18%, and the least impact (1% weight) was
found for the factor of age (Fig. 7). The neural network
algorithm prediction accuracy was 99.3% (Table 8).

The present findings, demonstrating the effects
of individual predictor factors on the development of
hearing loss in industry workers, are in agreement
with published studies of hearing loss in steel indus-
try workers which indicate that hearing loss increases
with sound exposure level and duration of workers’

service (Golmohammadi et al., 2001; Masumi et al.,
2008).Golmohammadi et al. (2006) studied the effect
of noise on the development of hearing loss of workers
in stone cutting industry in Iran and reported that
maximum hearing loss was observed in a frequency
range around 4000 Hz (Golmohammadi et al., 2006).
Zare et al. (2019) used the C5 algorithm to determine
the weight of factors affecting hearing loss, determined
from audiometric data, in three groups of workers, clas-
sified on the basis of the exposure sound pressure level.
The factor with the highest weight, in a group of ma-
chinery workers was the hearing threshold at 4 kHz
frequency (Zare et al., 2019).

The high prediction accuracy of the algorithms ap-
plied in the present study is a finding in agreement with
reported studies. For example, in a study conducted to
predict hearing loss symptoms from audiometry, using
the FP-Growth (Frequent Pattern Growth) algorithm
as a feature extraction technique, Noma et al. (2013)
reported that the error rate ranged from 0 to 5.4%. In
a recent study Zare et al. (2019) obtained prediction
accuracy from 94% to 100% for different models.

Majumder and Sharma (2014) used machine
learning and data classification models to investigate
hearing hazards of professional drivers. The study was
conducted with the use of unsupervised (Expectation
Maximization, k-means, Linear Vector Quantization,
Self Organization Map) and supervised (Naïve Bayes,
Instance Based, Back Propagation Network, Radial
Basis Function) learning techniques. The results have
demonstrated that all the techniques, except the Ra-
dial Basis Function classifier, have shown high perfor-
mance in terms of classification accuracy (Majumder,
Sharma, 2014).

Nawi et al. (2011) applied a Gradient Descent with
Adaptive Momentum (GDAM) algorithm to predict
noise induced hearing loss in workers, using age, du-
ration of work experience, and noise exposure as the
main factors involved in hearing loss. The accuracy ob-
tained in the present study in the prediction of hearing
loss is close that reported by Nawi et al. (2011).

The present study added new data to a large body
of investigations of hearing hazards in the industry.
Most published studies on the modeling of hearing loss
were based on audiometric data. The findings reported
here show that neural data mining classification algo-
rithms can be an effective tool for hearing hazard iden-
tification and greatly help in designing and conducting
hearing conservation programs in the industry.
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