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An isogeometric boundary element method is applied to simulate wave scattering problems governed by
the Helmholtz equation. The NURBS (non-uniform rational B-splines) widely used in the CAD (computer
aided design) field is applied to represent the geometric model and approximate physical field variables.
The Burton-Miller formulation is used to overcome the fictitious frequency problem when using a single
Helmholtz boundary integral equation for exterior boundary-value problems. The singular integrals ex-
isting in Burton-Miller formulation are evaluated directly and accurately using Hadamard’s finite part
integration. Fast multipole method is applied to accelerate the solution of the system of equations. It is
demonstrated that the isogeometric boundary element method based on NURBS performs better than
the conventional approach based on Lagrange basis functions in terms of accuracy, and the use of the
fast multipole method both retains the accuracy for isogeometric boundary element method and reduces
the computational cost.
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1. Introduction

The traditional numerical method divides the geo-
metric model extracted from CAD software into many
small grids for numerical integration calculation. For
complex practical engineering problems, this step is
often the most time-consuming in the whole analysis
process. In addition, the geometric error of the analysis
model also affects the accuracy of numerical analysis.
In order to improve the accuracy, large-scale discretiza-
tion of the CAD model is often necessary. However, it
results in an increase in the amount of calculation and
storage. The use of the isogeometric analysis method
(IGA) integrates the CAD and CAE (computer aided

engineering) models, and realizes the same expression
of the geometric and analysis models. No matter how
coarse the discretization used for the interpolation cal-
culation of physics field is, the geometric model is al-
ways exact, and so the IGA method produces numeri-
cal results with higher accuracy than conventional nu-
merical ones based on domain or boundary discretiza-
tion.

The IGA method in the context of Finite El-
ement Method (FEM) proposed by Hughes et al.
(2005) uses NURBS widely utilized in the CAD field
to represent the geometric model and approximate
field variables. Applications of isogeometric Finite El-
ement Method (IGAFEM) include fracture mechan-
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ics (De Luycker et al., 2011), electromagnetics field
(Takahashi, Matsumoto, 2012; Taus et al., 2016;
Zieniuk et al., 2013; Zieniuk, Szerszen, 2014), fluid-
structure interaction (Bazilevs et al., 2008; Liu et al.,
2018), and so on.

The work presented in this paper focuses on the use
of the boundary element method (BEM). As an alter-
native method to the Finite Element Method and the
Finite Difference method, the BEM has several advan-
tages. For example, it can reduce a two dimensional
problem down to one dimensional boundary and three
dimensional problems down to two dimensional sur-
face. Due to the use of a fundamental solution, the
BEM can lead to high accuracies. Especially for the ex-
terior acoustic problems in which we are interested, the
Sommerfeld radiation condition is satisfied automati-
cally when BEM is used for numerical solution. The
development of isogeometric BEM (IGABEM) is an
important research topic, and has attracted the atten-
tion of some scholars. The applications of the IGABEM
include potential problems (De Luycker et al., 2011),
elastostatics (Bai et al., 2015; Bordas et al., 2013;
Scott et al., 2013; Simpson et al., 2013), crack prob-
lems (Nguyen et al., 2016; Peng et al., 2017a; Peng
et al., 2017b), shape optimization (Cho et al., 2009;
Kostas et al., 2015; 2017; Lee et al., 2017; Li, Qian,
2011; Lian et al., 2017; Manh et al., 2011; Nguyen et
al., 2010; Wall et al., 2008), acoustic problems (Coox
et al., 2017; Liu et al., 2017; Peake et al., 2013; 2015;
Simpson, Liu, 2016; Simpson et al., 2014), and so on.

When the BEM is applied for the solution of exte-
rior acoustic problems, the non-uniqueness difficulty
has to be taken into account because it leads to
spurious results. Actually, the CHIEF (the combined
Helmholtz integral equation formulation) (Schenck,
1968) and Burton-Miller method (Burton, Miller,
1971) can both be used to overcome this problem.
The CHIEF is implemented very easily because it only
needs to use some additional collocation points at inte-
rior points. However, this method results in an overde-
termined system of equations that is difficult to solve.
Moreover, it is also difficult to choose some suitable
interior points because the exact location and number
of additional points are unknown. The Burton-Miller
method (BM) combines the conventional and its nor-
mal derivative boundary integral equations (Burton,
Miller, 1971; Chen et al., 2016a; 2016b; 2017a;
2017b; Marburg et al., 2016; Marburg, Schneider,
2003; Matsumoto et al., 1995; Simpson et al., 2014;
Zheng et al., 2015). The disadvantage of this method
is difficulty of implementation since hypersingular in-
tegrals exist in BM equation. Although BM method
has this drawback, it is still used in this work, because
of its rigorous mathematical foundation. Simpson et
al. (2014) presented the derivation process of BM for-
mulation based on IGABEM in 3D acoustic problems,
where hypersingular integral is reduced to a weakly

singular integral by an appropriate regularization tech-
nique. However, the use of Green’s function for poten-
tial problems decreases the computational efficiency, in
particular when the fast multipole method is applied
to accelerate the solution of IGABEM. The numeri-
cal technique chosen here to evaluate the hypersingu-
lar integral was developed by Telles et al. (1987),
also do Rêgo Silva (1994). Here, the singular inte-
grals can be evaluated directly and accurately by using
Hadamard’s finite part integration. Actually, in papers
(Chen et al., 2017b; Silva et al., 1994; Telles et al.,
1987), Lagrange functions are used for the interpola-
tion calculation of physics field, but this work presents
the interpolation calculation of physics field based on
NURBS basis functions. Some difference is found, such
as the expansion expression of interpolation functions
and a series of coefficient functions used for the direct
evaluation of the hypersingular boundary integral. The
derivation process of non-singular BM boundary inte-
gral equation based on IGA is presented in detail here.

Another difficulty that is typically encountered in
IGABEM is its low computational efficiency because
of the non-symmetric and dense coefficient matrix of
IGABEM. To improve the computing efficiency of con-
ventional BEM, the fast multipole method (FMM) can
be applied to accelerate the operation of matrix-vector
for conventional BEM (Coifman et al., 1993; Liu,
Nishimura, 2006; Rokhlin et al., 1990; Wolf, Lele,
2011; Zhao et al., 2019). FMM is firstly applied to ac-
celerate the solution of IGABEM for Laplace equation
in two dimensions (Takahashi et al., 2012). A black-
box FMM is applied for the solution of the three di-
mensional acoustic IGABEM, where the regularization
technique is used for the solution of the hypersingular
integrals (Simpson et al., 2016). Hierarchical matrices
method is also found to accelerate the solution of IGA-
BEM for elasticity problems (Marussig et al., 2014).
In recent years, we have applied FMM for 2D acous-
tic IGABEM and shaped optimization analysis (Chen
et al., 2018; Liu et al., 2017). Actually, there are two
different types of FMM, according to expansion form
of the Green’s function. One is called a low-frequency
FMM in which the Green’s function is expanded into
a multipole form. The other is called diagonal form
FMM in which the Green’s function is expanded into
an exponential form. Actually, both FMMs have some
shortcomings. The low-frequency FMM performs in-
efficiently in high frequencies, and the diagonal form
FMM has instability when the computing frequency is
very small. The wideband FMM generated by combin-
ing the low-frequency FMM and diagonal form FMM
can be used successfully to overcome this difficulty
(Wofl, Lele, 2011). Herein, the wideband FMM is
first applied to accelerate the solution of IGABEM.
The series of transfer operations in isogeometric fast
multipole boundary element (IGAFMBEM) is pre-
sented in this paper, such as Multipole-to-Multipole
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(M2M), Multipole-to-Local (M2L) and Local-to-Local
(L2L) ones. Finally, several examples are tested to
demonstrate the validity and correctness of the algo-
rithm proposed in this paper.

2. NURBS

NURBS are generated from B-splines. Two knot
vectors in two dimensions are a set of coordinates in
the parametric space, written as Ξ = [ξ0, ξ1,⋯, ξn+p+1]
and Υ = [η0, η1,⋯, ηm+l+1], where ξi ∈ R and ηi ∈ R,
i is the knot index, p and l are the polynomial degree,
n + 1 and m + 1 are the numbers of basis functions.

A control net Pi,j is given to represent the bound-
ary surface, i = 0,1,⋯, n+p+1 and j = 0,1,⋯,m+ l+1,
a tensor product B-spline surface is defined by

x(ξ, η) =
n

∑
i=0

m

∑
j=0

Ni,p(ξ)Nj,l(η)Pi,j , (1)

where x(ξ, η) denotes a point on the surface, (ξ, η)
means the coordinate in parameter space. Ni,p and Nj,l
are basis functions of B-spline curves. In order to im-
plement the numerical integration in boundary surface
based on B-spline, conventional “elements” are taken
to be knot spans, namely, [ξi, ξi+1]∗[ηj , ηj+1]. B-spline
is formed by a number of curve segments which can
maintain continuity. However, it is difficult for low or-
der B-spline to represent accurately a circle, ellipse,
and other complex structures. Using Non-Uniform Ra-
tional B-Spline (NURBS), designers can obtain more
control of the represented curve without increasing the
number of control points or increasing the curve de-
gree. The NURBS basis function and NURBS curve
obtained from B-spline are given by

Ri,j(ξ, η) =
Ni,p(ξ)Nj,l(η)wi,j

W (ξ, η)
(2)

and

x(ξ, η) =
n

∑
i=0

m

∑
j=0

Ri,j(ξ, η)Pi,j , (3)

where w is the weight, and

W (ξ, η) =
n

∑
a=0

m

∑
b=0

Na,p(ξ)Nb,l(η)wa,b. (4)

The sum of rational basis functions Ri,j(ξ, η) is 1,
but we can control the curve by changing the weight of
the corresponding control point (basis function). If all
weights are equal to 1, the NURBS curve will reduce to
a B-spline curve. Actually, in order to implement the
numerical integration based on BEM, normal deriva-
tive of the boundary surface needs to be solved. By
differentiating Eq. (3) with respect to the local coordi-
nate parameter, such as ξ, we can obtain the following
formulation:

∂

∂ξ
x(ξ, η) =

n

∑
i=0

m

∑
j=0

∂

∂ξ
Ri,j(ξ, η)Pi,j . (5)

By differentiating Eq. (2) with respect to the local
coordinate parameter, such as ξ, we can obtain the
derivation of the NURBS basis function, as follows:

∂

∂ξ
Ri,j(ξ, η) =

N ′
i,p(ξ)Nj,l(η)wi,j −Ri,j(ξ, η)W ′(ξ, η)

W (ξ, η)
,

(6)

where

W ′(ξ, η) =
n

∑
a=0

m

∑
b=0

N ′
a,p(ξ)Nb,l(η)wa,b (7)

and

N ′
i,p(ξ) =

∂

∂ξ
Ni,p(ξ). (8)

Similarly, we can obtain the derivative of boundary
surface with respect to η, as follows:

∂

∂η
x =

n

∑
i=0

m

∑
j=0

( ∂
∂η
Ri,j(ξ, η))Pi,j . (9)

Actually, ∂
∂ξ

x and ∂
∂η

x denote the tangential vector at
a point located on the boundary surface, and are sim-
plified to be Vξ and Vη, respectively. The normal vec-
tor at the same point can be obtained from the two
tangential vectors, as follows:

N = Vξ ×Vη. (10)

Finally, we can obtain the unit normal vector, as fol-
lows:

n = NJ−1, (11)

where

J = ∣N∣ =
√
N2

1 +N2
2 +N2

3 . (12)

3. IGABEM based on NURBS

For a 3D acoustic problem, the boundary integral
equation governed by Helmholtz equation can be writ-
ten as

c(x)p(x) =∫
S

G(x, y)q(y)dS(y)

− ∫
S

F (x, y)p(y)dS(y) + pi(x), x ∈ Ω,

(13)

where p(x) stands for the complex sound pressure,
G(x, y) is the Green function, c(x) means the solid
angle on the surface, pi denotes the incident field, and
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q(y) and F (x, y) stand for the outward normal deriva-
tives of p(y) and G(x, y) respectively. Herein, we con-
sider the harmonic time dependence e−iωt. ω denotes
the circular frequency.

G(x, y) = e
ikr

4πr
(14)

and

F (x, y) = ∂G(x, y)
∂n(y)

= − e
ikr

4πr2
(1 − ikr) ∂r

∂n(y)
, (15)

where i means the unit imaginary number, k is the
wave number, r is the distance between point x and
point y. When using Eq. (13) to obtain the pressure
on the boundary, the non-uniqueness problem occurs
at some fictitious eigen-frequencies. The Burton-Miller
method, which is formed by combining Eq. (13) and its
derived equation, can be used to overcome this prob-
lem, where the coupling parameter α can be chosen as
i/k for k ⩾ 1, but i for k < 1. The derivated equation of
Eq. (13) can be expressed as

c(x)q(x) = ∫
S

∂G(x, y)
∂n(x)

q(y)dS(y)

−∫
S

∂F (x, y)
∂n(x)

p(y)dS(y) + ∂pi(x)
∂n(x)

, (16)

where

∂G(x, y)
∂n(x)

= − e
ikr

4πr2
(1 − ikr) ∂r

∂n(x)
(17)

and

∂F (x, y)
∂n(x)

= eikr

4πr3

⎡⎢⎢⎢⎢⎣
(3 − 3ikr − k2r2) ∂r

∂n(x)
∂r

∂n(y)

+ (1 − ikr)ni(x)ni(y)
⎤⎥⎥⎥⎥⎦
. (18)

After discretizing the boundary S, acoustic pressure
p(y) in every boundary element can be expressed as

p(y) =
n

∑
i=1

Φipi. (19)

When conventional BEM is used for numerical solu-
tion, Φi stands for the Lagrange interpolation func-
tion. Different types of boundary elements are used
to discretize the boundary in (Silva et al., 1994), and
the expression of corresponding interpolation functions
can be also found in (Silva et al., 1994). When IGA-
BEM is used for numerical solution, Φi stands for the
NURBS basis function.

Actually, when the field point y approaches the
source point x, which means the point y lies on

the boundary element Sx containing the point x, the
boundary integral for the kernel function G(x, y) in
Eq. (13) is weakly singular, and the boundary inte-
grals for F (x, y) in Eq. (13) and ∂G(x,y)

∂n(x) in Eq. (16)
are also weakly singular. The weakly singular bound-
ary integrals can be solved accurately by using the po-
lar coordinate transformation (Silva et al., 1994). In
the papers by Guiggiani et al. (1992) and do Rêgo
Silva (1994), Lagrange functions are used for the in-
terpolation calculation of the physics field and geo-
metric surface. Herein, NURBS basis functions are
used to represent the boundary surface and approxi-
mate the physics field. Due to the difference of the in-
terpolation functions, different expansion expressions
for them are obtained, and different expressions for
the non-singular boundary integral formulas are also
found. In particular, the coefficient functions in the
non-singular boundary integral formulas obtained by
evaluating the strongly singular boundary integral di-
rectly also show different expressions. The correspond-
ing operation procedure for the evaluation of the sin-
gular boundary integral based on IGA is presented in
Appendices A and B.

4. Isogeometric BEM based
on FMM acceleration

In order to decrease the computational time and
the memory requirements of the isogeometric BEM
proposed in this paper from O(n2) to O(n) or
O(n logn), the FMM approach is applied to accelerate
the matrix-vector product in Eqs (13) and (16). Ac-
tually, there are two different types of fast multipole
algorithms for acoustic BEM. One is original FMM
(also called low-frequency method), and the other is
the diagonal form (also called high-frequency method).
In this paper, first the fundamentals of the original
FMM are presented. However, this method is ineffi-
cient for high frequency problems. The diagonal form
is introduced to overcome this difficulty. But the diag-
onal form has an instability problem for the solution
of low frequency Helmholtz equations.

Due to the shortcoming of the original FMM and
diagonal form FMM at high and low frequencies, re-
spectively, the wideband FMBEM obtained by com-
bining both FMM forms is presented in this paper.
The aim of the wideband FMM is to evaluate the far-
field boundary integration using the original FMM at
low frequency and solve the boundary integration using
the diagonal form FMM at high frequency. When the
upward pass is implemented, the moments for the orig-
inal FMM need to be shifted to the moments for the
diagonal form FMM with the product (kds) increasing,
where k is the wave number, and ds is the edge length
of a cell at s level. Similarly, when the down pass is
implemented, the local expansion coefficients for the
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diagonal form FMM need to be shifted to that for the
original FMM with the product (kds) decreasing.

The formulation is basically the same as the FMM
for the conventional BEM based on Lagrange function
interpolation, such as piecewise constant elements, lin-
ear elements, quadratic elements. So, it is not necessary
to show the entire formulation of the wideband FMM.
Herein, we focus on the major differences between iso-
geometric BEM and conventional BEM with respect
to formulation and algorithm of wideband FMM.

4.1. Original FMM formulations for acoustic
isogeometric BEM

The FMM relies on the multipole expansion of
the Green’s function G(x, y) in Eq. (14) to solve the
boundary integration when source point x is suffi-
ciently distant form field point y. For 3D problems, the
Green’s function, i.e., Eq. (14), is expanded into the fol-
lowing series (Coifman et al., 1993; Liu, Nishimura,
2006; Rokhlin et al., 1990; Wolf, Lele, 2011):

G(x, y)= ik

4π

∞
∑
n=0

n

∑
m=−n

(2n+1)Imn (k,a1)Omn (k,a2), (20)

where yc is an expansion point near y. Vector a1 rep-
resents a directed line segment by yc pointing to y,
and vector a2 represents a directed line segment by yc
pointing to x. Imn and Omn are expressed as

Imn (k,a) = jn(kr)Y mn (θ, φ), (21)

Omn (k,a) = h(1)
n (kr)Y mn (θ, φ), (22)

and I
m

n are the complex conjugates of Imn , jn and h(1)
n

are the n-th order spherical Bessel and Hankel func-
tions of the first kind, Y mn is the spherical harmonics
defined as

Y mn (θ, φ) = cmn Pmn (cos θ)eimφ, (23)

where cmn =
√

(n −m)!/(n +m)!, Pmn denotes the as-
sociated Legendre functions; r, θ, and φ represent the
three spherical coordinates of some vector a, such as
a1 or a2, for instance. S0 stands for a subset of the
boundary S, which is far away from the source point
x. Using Eq. (20), we can obtain the Burton-Miller
formulation on boundary S0, as follows:

A3 = ∫
S0

[(G(x, y) + α∂G(x, y)
∂n(x)

) q(y)

− (F (x, y) + α∂F (x, y)
∂n(x)

)p(y)] dS(y)

= ik

4π

∞
∑
n=0

n

∑
m=−n

(2n + 1)Mm
n (k,a1)

⋅ [Omn (k,a2) + α
∂Omn (k,a2)
∂n(x)

], (24)

where Mm
n is the multipole moment defined by

Mm
n (k,a1) = ∫

S0

I
m

n (k,a1)q(y)dS(y)

−∫
S0

Dm
n (k,a1)p(y)dS(y)

=
n

∑
i=0

m

∑
j=0

⎡⎢⎢⎢⎢⎢⎣

ξe+1

∫
ξe

ηe+1

∫
ηe

Imn (k,a1)x∗
⎤⎥⎥⎥⎥⎥⎦

qi,j

−
n

∑
i=0

m

∑
j=0

⎡⎢⎢⎢⎢⎢⎣

ξe+1

∫
ξe

ηe+1

∫
ηe

Dm
n (k,a1)x∗

⎤⎥⎥⎥⎥⎥⎦
pi,j , (25)

where
x∗ = Ri,j(ξ, η)J(ξ, η)dξ dη,

and yc is located close to S0 and Dm
n (k,a1) is given by

Dm
n (k,a1) =

∂I
m

n (k,a1)
∂n(y)

. (26)

Actually, computation of the moments depends on the
choice of the bases for the geometry y on the boundary
surface. However, the remaining computations except
for the near-field computation are independent from
the choice, such as multipole-to-multipole translation
(M2M), multipole-to-local translation (M2L), local-to-
local translation (L2L). Hence we can follow Zheng
et al. (2015) for the successive formulation of the iso-
geometric fast multipole BEM (IGA-FMBEM) at low
frequency.

After the M2M, M2L, and L2L translation opera-
tions, A3 can be expressed as

A3 =
ik

4π

∞
∑
n=0

n

∑
m=−n

(2n + 1)Lmn (k, x1
l )I

m

n (k,a3) (27)

where x1
l is an expansion point near x, vector a3 rep-

resents a directed line segment by x1
l pointing to x,

Lmn is the local expansion coefficient for low-frequency
FMM. The detailed information on the M2M, M2L,
L2L translation operations and the expression of Lmn
can be found in (Zheng et al., 2015).

4.2. Diagonal formulations for acoustic
isogeometric BEM

The plane wave expansion formula of the Green’s
function (i.e., Eq. (13)) is derived by

G(x, y) = ik

16π2 ∫
S

eikk⋅a4 T (k,k,a5)e−ikk⋅a1 dS, (28)

where xl is an expansion point near x, vector a4 rep-
resents a directed line segment by xl pointing to x,
and vector a5 represents a directed line segment by yc
pointing to xl. The integration is taken over the unit
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sphere S̄, k denotes the outward unit vector on S. The
diagonal translation function T is expressed as

T (k,k,a) =
∞
∑
n=0

in(2n + 1)h(1)
n (ka)Pn(k ⋅ a), (29)

where Pn stand for the Legendre polynomials.
By substituting Eq. (28) into Eq. (13), we can ob-

tain the formulation on boundary S0, as follows:

A3 =
ik

16π2 ∫
S

eikk⋅a4 B(k,k,a1)T (k,k,a5)dS, (30)

where B(k,k,a1) is the high-frequency moments de-
fined by

B(k,k,a1) = ∫
S0

[e−ikk⋅a1q(y) −E(a1)p(y)] dS(y)

=
n

∑
i=0

m

∑
j=0

⎡⎢⎢⎢⎢⎢⎣

ξe+1

∫
ξe

ηe+1

∫
ηe

e−ikk⋅a1y∗
⎤⎥⎥⎥⎥⎥⎦

qi,j

−
n

∑
i=0

m

∑
j=0

⎡⎢⎢⎢⎢⎢⎣

ξe+1

∫
ξe

ηe+1

∫
ηe

E(a1)y∗
⎤⎥⎥⎥⎥⎥⎦

pi,j (31)

where
y∗ = Ri,j(ξ, η)J(ξ, η)dξ dη

and

E(a1) =
∂e−ikk⋅a1

∂n(y)
. (32)

Similarly, the computation of the moments for high-
frequency FMM depends on the choice of the bases
for the geometry y on the boundary surface. However,
the remaining computations except for the near-field
computation are independent from the choice, such as
multipole-to-multipole translation (B2B), multipole-
to-local translation (B2H), local-to-local translation
(H2H). Hence we can also follow Zheng et al. (2015)
for the successive formulation of the isogeometric fast
multipole BEM (IGA-FMBEM) at high frequency.

After the B2B, B2H, H2H translation operations,
A3 can be derived by

A3 =
ik

16π2 ∫
S

eikk⋅a3H(k,k, x1
l )dS, (33)

where H is the local expansion coefficient for high-
frequency FMM. The detailed information on the B2B,
B2H, H2H translation operations and the expression
of H can be found in (Zheng et al., 2015). It is worth
noting that the above expansion expression may cause
instability of the diagonal form FMBEM at lower fre-
quencies (Zheng et al., 2012). That is because when
the computing frequency is too low, the number of nu-
merical integral points on the unit sphere is too small,
resulting in the error of interpolation and filtering used
in high-frequency fast algorithm being too large.

4.3. Wideband FMBEM

The wideband FMBEM obtained by combining the
original form and the diagonal form of the FMBEM is
accurate and efficient. After generating the tree struc-
ture, we start the operation of called upward pass,
where multipole moments are calculated. When the
product (kdl) is less than a specified number v (in
this paper, the specified number is set as 0.25), the
moments of the original FMM are calculated by M2M
translation. Herein, k denotes the wave number, and
dl stands for the edge length of a cell at l level. When
kdl+1 > v, the moments of the diagonal form are calcu-
lated by B2B translation. When kdl+1 < v and kdl > v,
the moments of the original FMM need to be shifted
to the moments of the diagonal form by using the M2B
formula, as follows:

B(k,k, yc)=
∞
∑
n=0

n

∑
m=−n

(2n+1) i−nY mn (k)Mm
n (k, yc). (34)

After the moments of cells in all levels except for lev-
els 0 and 1 are solved, the downward pass operation
will be implemented, in which the local expansion co-
efficients are calculated. When kdl >= v, the local ex-
pansion coefficients are calculated by B2H and H2H.
When kdl < v and kdl−1 >= v, the local expansion co-
efficients are calculated by M2L and H2L, where H2L
translation can be derived by

Lmn (k, xl) =
in

4π
∫
S

Y mn (k)H(k,k, xl)dS. (35)

On the other hand, we have to truncate the terms used
in the functions O, I, M , and L and the number of the
plane wave samples along the unit sphere. The number
of truncation terms z is given in the following form in
(Coifman et al., 1993):

z = kd + c ⋅ log(kd + π), (36)

where c is a constant. Actually, the truncation num-
ber z increases with parameter c, which leads to an
improvement of accuracy but induces a longer com-
puting time and memory usage. Herein, c is set as 5
(Coifman et al., 1993).

Using FMM, the coefficient matrices of BEM con-
sist of two parts. One is a near-field part, which is eval-
uated using standard boundary element techniques.
The other is a far-field part, which arises from the se-
ries expansion. Applying FMM on a hierarchy of clus-
ters reduces the complexity of BEM from O(N2) to
O(N log2N), where N is the degree of freedom.

5. Numerical examples

In order to verify the validity and correctness of
the proposed algorithm, several numerical examples
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are presented in this section. First, we consider the
acoustic radiation from a sphere with uniform veloc-
ity. Figure 1 shows the geometric shape represented
by NURBS curve. The second example is considering
acoustic scattering from a sphere with a plane incident
wave. The third example is considering acoustic scat-
tering from a complex structure. The field outside the
sphere is assumed to be air, with the mass density of
ρ = 1.2 kg/m3 and the sound speed of c = 340.0 m/s.

Fig. 1. Pulsating sphere model represented by NURBS
curve.

a) b)

Fig. 2. Real part (a) and imaginary part (b) of sound pressure at the computing point located on (2,0,0)
in terms of frequency.

a) b)

Fig. 3. Real part (a) and imaginary part (b) of acoustic pressure at the computing points distributed on x axis.

5.1. Pulsating sphere example

In this subsection, the acoustic radiation from
a sphere with uniform velocity is considered. The ra-
dius of the sphere is 1 m, and the amplitude of the
vibrating velocity of the sphere is 1. Figure 2 shows
the real and imaginary parts of sound pressure at the
computing point located on (2,0,0) in terms of fre-
quency, respectively. The iterative solver GMRES ter-
minates the iteration when the residue is below the
tolerance 10−5. For IGA-FMBEM, the numbers of dis-
cretized elements and collocation points are 1800 and
7082, respectively. For FMBEM, the numbers of dis-
cretized elements and collocation points are 1800 and
7082, respectively. From this figure, we can find that
the solution by IGA-FMBEM and FMBEM both agree
well with the analytical solution, and it demonstrates
the validity and correctness of this algorithm proposed
in this paper.

Figure 3 shows the real and imaginary parts of
acoustic pressure at the computing points distributed
on x axis, respectively. We also see that the numeri-
cal solution by FMBEM and IGA-FMBEM has a good
agreement with the analytical solution. In the Figs 2
and 3, the Burton-Miller formulation is used for the
numerical solution.
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In order to compare the computation accuracy of
different numerical methods, we define the relative er-
ror by

error =
∣pnumer − panalyt∣

∣panalyt∣
, (37)

where pnumer denotes the numerical solution of com-
plex sound pressure at a computing point, and panalyt

is the analytical result.
Table 1 shows the comparison of the relative er-

ror for sound pressure at a point (2,0,0) by NURBS
interpolation and conventional Lagrange function in-
terpolation including constant quadrilateral element
(BE41), linear discontinuous quadrilateral element
with linear geometric approximation (BE44), linear
continuous quadrilateral element (CBE44), linear dis-
continuous quadrilateral element with quadratic ge-
ometric approximation (BE94), quadratic continuous
quadrilateral element (CBE88), see Fig. 4 or paper
(Marburg, Amini, 2005) for more content. In this ta-
ble, the computing frequency is 100 Hz. There we can
see that the solution obtained by Lagrange boundary

Table 1. Comparison for the computing solution by NURBS interpolation and conventional Lagrange function interpolation
with quadrilateral mesh shape.

G-L quadrature BE41 BE44 CBE44 BE94 CBE88 NURBS

5× 5 2.12e–2 3.56e–2 3.84e–2 6.89e–4 2.07e–3 2.19e–5

8× 8 2.12e–2 3.57e–2 3.84e–2 6.89e–4 2.07e–3 9.93e–7

10× 10 2.12e–2 3.57e–2 3.84e–2 6.89e–4 2.07e–3 1.21e–7

15× 15 2.12e–2 3.57e–2 3.84e–2 6.89e–4 2.07e–3 5.23e–10

20× 20 2.12e–2 3.57e–2 3.84e–2 6.89e–4 2.07e–3 3.20e–11

NEs 384 96 384 96 96 72

DOFs 384 384 386 384 290 266

Fig. 4. Distribution of geometrical nodes and interpolation nodes in quadrilateral elements.

elements hardly change with the level of Gauss inte-
gral quadrature, but the solution obtained by NURBS
elements change fast with the level of Gauss integral
quadrature, such as 2.19e–5 for 5× 5 Gauss-Legendre
quadrature and 3.20e–11 for 20× 20. Actually, the ge-
ometric used for numerical integral is not exact when
using Lagrange function interpolation. The deviation
between approximated geometric and exact geometric
results in a big error of the numerical solution with
respect to analytical solution. So, the global error is
attributed mainly to the discrete error of geometric ap-
proximation. However, when using NURBS discretiza-
tion, the geometry used for boundary integral is exact,
and the global error can be attributed entirely to nu-
merical integration because the solution of the problem
is known to be constant over the entire boundary. In
addition, we also find that the solution error for 20× 20
is below the tolerance for convergence. That is because
this example is very special with an extremely simple
structural model and boundary condition. In fact, af-
ter one iteration, the calculation accuracy can reach
about 1.6e–9.
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Table 2. Comparison for the computing solution by NURBS interpolation and conventional Lagrange function interpolation
with triangular mesh shape.

G-L quadrature BE31 BE33 CBE33 BE63 CBE66 NURBS

5× 5 2.67e–2 3.82e–2 4.28e–2 8.56e–3 2.00e–2 2.19e–5

8× 8 2.67e–2 3.82e–2 4.28e–2 8.56e–3 2.00e–2 9.93e–7

10× 10 2.67e–2 3.82e–2 4.28e–2 8.56e–3 2.00e–2 1.21e–7

15× 15 2.67e–2 3.82e–2 4.28e–2 8.56e–3 2.00e–2 5.23e–10

20× 20 2.67e–2 3.82e–2 4.28e–2 8.56e–3 2.00e–2 3.20e–11

NEs 432 144 768 144 192 72

DOFs 432 432 384 432 386 266

Fig. 5. Distribution of geometrical nodes and interpolation nodes in triangular elements.

Table 2 shows the comparison for the computing
solution by NURBS interpolation and conventional La-
grange function interpolation including constant trian-
gular element (BE31), linear discontinuous triangular
element with linear geometric approximation (BE33),
linear continuous triangular element (CBE33), linear
discontinuous triangular element with quadratic ge-
ometric approximation (BE63), quadratic continuous
triangular element (CBE66), see Fig. 5. Similar as in
Table 1, the relative error for the numerical solution
obtained by Lagrange discretization is much greater
than that obtained by NURBS discretization. More-
over, it demonstrates the validity and correctness of
IGA-BEM. In Tables 1 and 2, the CBIE is used for the
numerical solution.

We compare the accelerated IGABEM (IGAFM-
BEM) against an accelerated conventional BEM
(FMBEM) in which a GMRES iterative solver is em-
ployed with a solver tolerance of 10−5 prescribed. All
simulations are performed on a 2.4 GHz quadcore pro-
cessor in which six parallel threads duo to hyperthread-
ing are used for numerical analysis. From this figure,
we can find that both methods provide O(N logN)

scaling with the number of DOFs (degrees of free-
dom). For a similar number of DOFs, the IGAFMBEM
runs slowlier than the conventional FMBEM because
the NURBS basis functions are obtained by using re-
cursive computation.

Fig. 6. Comparison of runtimes for the IGAFMBEM and
FMBEM applied to a pulsating spherical model.
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5.2. Scattering from a sphere

The second example is considering the acoustic
scattering of a plane incident wave with a unit ampli-
tude on a sphere with radius r = 1 m centered at point
(0,0,0). The analytical solution for scattering acous-
tic in the fluid domain can be found in (Zheng et al.,
2012). Figure 7 shows the real and imaginary parts
of acoustic pressure at a computing point (10,0,0)
in terms of frequency, respectively. Herein, the num-
bers of discretized elements and collocation points used
for numerical solution are 1800 and 7082, respectively.
From this figure, we can see that the solution ob-
tained by IGA-FMBEM-CBIE (IGA-FMBEM based
on single boundary integral equation) has a big de-
viation from the analytical solution at some fictitious
eigen-frequencies, such as wave number k = 3.142 and
k = 6.283. Actually, the fictitious eigen-frequencies are
the roots of jn(kr) = 0. However, the solution ob-
tained by IGA-FMBEM-BM (IGA-FMBEM based on
Burton-Miller method) agrees well with analytical so-
lution at all frequencies.

a)

b)

Fig. 7. Real part (a) and imaginary part (b) of acoustic
pressure at a computing point (10,0,0) in terms of fre-

quency, respectively.

In order to further investigate the accuracy perfor-
mance of the algorithm proposed in this work, the rela-
tive error for the sound pressure amplitude at this com-
puting point in terms of frequencies is given in Fig. 8.
Observing the graph, we can find that the solution ob-
tained by using Burton-Miller formulation is basically
below 1.e–3. However, the calculation results obtained
by using CBIE jump rapidly at some fictitious eigen-
frequencies.

Fig. 8. Relative error for sound pressure amplitude in terms
of frequencies.

5.3. Simple submarine model

Numerical simulation of acoustic scattering from
large scale shell model is of great significance. For ex-
ample, by using numerical simulation, we can obtain
the acoustic performance and characteristics of sub-
marine, and it will provide the necessary guidance for
their acoustic design. More about the vibration radia-
tion of the submarine models can be found in (Merz
et al., 2010; Peters et al., 2014). In this subsection,
the BeTssi-sub (Benchmark Target Strength Simula-
tion Submarine) model is used to numerical analysis.
The bow of the submarine is the semi ellipsoid, the hull
is the cylinder, and the stern is the conoid. The size
of the submarine structure and the position of coordi-
nate system can be found in Fig. 9, where the origin
of coordinate system is located at the major axis of
the submarine (also called z axis). When NURBS is
used to represent the structural surface, the location

Fig. 9. Simplified physical model of the submarine hull and
the position of coordinate system.
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of the corresponding control points is given in Fig. 10.
The number of collocation points used for interpolation
calculation in physics field is set as 8810. The subma-
rine is located in water, and the incident plane wave
with a unit amplitude can travel along x axis, y axis,
and z axis, respectively.

Fig. 10. NURBS control points of the simple
BeTSSi; two knot vectors in two dimensions are
Ξ = [0,0,0,0.25,0.25,0.5,0.5,0.75,0.75,1,1,1] and
Υ = [0,0,0,0,25,0.25,0.5,0.5,0.75,0.75,1,1,1], re-

spectively; the order is p = 2 and l = 2.

In Figs 11 and 12, the real and imaginary parts
contour of acoustic pressure on a square (20× 20) m2

is plotted, respectively, where the square is located on
xOy plane and the frequency is 100 Hz. The incident
wave is traveling along y axis. From the two figures, we
can find that the contour has a strict symmetry along
y axis.

Fig. 11. Real part contour of acoustic pressure on a square
located on xOy plane that is perpendicular to the z axis
and in which the coordinate of the center point is (0,0,0).

Fig. 12. Imaginary part contour of acoustic pressure
on a square located on xOy plane.

Figure 13 shows the comparison of acoustic pres-
sure obtained by FMBEM with that obtained by IGA-
FMBEM. “FMBEM” denotes the solution obtained by
using the conventional fast multipole BEM, where the
element shape is triangular and the DOFs is 93234.
The computing points are located on a circle with a ra-
dius 6 m on xOy plane. The incident wave is traveling
along x axis, and the θ denotes the included angle be-
tween the radial direction at a computing point and
x axis direction. The figure shows that the solution
has a strict symmetry at θ/π, and it denotes that the
numerical solution at computing points distributed on
a circle has a good symmetry along the incident wave
direction (x axis). Moreover, the solution by FMBEM
with 93234 DOFs has a good agreement with that by
IGA-FMBEM with 14282 DOFs, and it demonstrates
the validity and efficiency of IGA for acoustic BEM.
Figure 14 shows the comparison of acoustic pressure
contour on the surface between the FMBEM and IGA-
FMBEM, where the incident wave is traveling along

a)

b)

Fig. 13. Real part (a) and imaginary part (b) of
acoustic pressure at some computing points located

on a circle with a radius 6 m on xOy planes.
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a)

b)

c)

d)

Fig. 14. Contour for real and imaginary parts of aco-
sutic pressure on the structural surface: a) real part of
sound pressure with FMBEM, b) imaginary part of sound
pressure with FMBEM, c) real part of sound pressu-
re with IGA-FMBEM, d) imaginary part of sound pressure

with IGA-FMBEM.

z axis. From this figure, we can find that the solution
by FMBEM and IGA-FMBEM both have a good ax-
ial symmetry along the incident wave direction, and it
keeps good consistency.

6. Conclusion

IGA-FMBEM based on Burton-Miller method is
presented for the simulation of 3D acoustic problems,
where NURBS basis functions are used to approxi-
mate the geometry and physical fields. Hadamard’s
finite integral method is used to overcome the hyper-
singular and strong singular boundary integral. The
non-singular boundary integral equation based on IGA
is presented, and an excellent agreement between the
numerical solution obtained by using the algorithm

proposed in this paper and analytical solution is ob-
served. By using a pulsating sphere example with
analytical solution, we can find that the isogeometric
boundary element method presents better results than
conventional Lagrange basis functions in terms of ac-
curacy. The expansion approximations in the fast mul-
tipole method do not negate the accuracy of the iso-
geometric boundary element method and so the IGA-
FMBEM both retains the IGA accuracy and reduces
the computational cost.

Future work will further extend the proposed al-
gorithm into 3D acoustic sensitivity analysis and opti-
mization analysis for practical engineering problems.

Appendix A
Evaluation of weakly singular integral

Firstly, rewriting Eq. (13) as follows:

c(x)p(x) = ∫
S−Sx

G(x, y)q(y)dS(y)

− ∫
S−Sx

F (x, y)p(y)dS(y)

+pi(x) +A1 −A2, x ∈ Ω (38)

where

A1 = ∫
Sx

G(x, y)q(y)dS(y),

A2 = ∫
Sx

F (x, y)p(y)dS(y).
(39)

By substituting Eq. (19) into Eq. (39), we can obtain
the following

A1 =
n

∑
i=0

m

∑
j=0

⎡⎢⎢⎢⎢⎢⎣

ξe+1

∫
ξe

ηe+1

∫
ηe

G(x, y)z∗
⎤⎥⎥⎥⎥⎥⎦

qi,j ,

A2 =
n

∑
i=0

m

∑
j=0

⎡⎢⎢⎢⎢⎢⎣

ξe+1

∫
ξe

ηe+1

∫
ηe

F (x, y)z∗
⎤⎥⎥⎥⎥⎥⎦

pi,j ,

(40)

where
z∗ = Ri,j(ξ, η)J(ξ, η)dξ dη,

[ξe, ξe+1] × [ηe, ηe+1] denotes the location space taken
by the boundary element Sx. And then, building a po-
lar coordinate system centered at source point x, the
relation between the polar coordinate and local param-
eter coordinate can be expressed as

ξ = ξx + ρ cos(θ),

η = ηx + ρ sin(θ),
(41)
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where (ξx, ηx) stands for the parameter coordinate of
the source point x, ρ, and θ are the radial and angu-
lar coordinates of the polar coordinate system, respec-
tively. By substituting Eq. (41) into Eq. (40), we can
obtain the following expression:

A1 =
n

∑
i=0

m

∑
j=0

⎡⎢⎢⎢⎢⎢⎣

2π

∫
0

ρ(θ)

∫
0

GRi,jJρdρdθ

⎤⎥⎥⎥⎥⎥⎦
qi,j ,

A2 =
n

∑
i=0

m

∑
j=0

⎡⎢⎢⎢⎢⎢⎣

2π

∫
0

ρ(θ)

∫
0

FRi,jJρdρdθ

⎤⎥⎥⎥⎥⎥⎦
pi,j .

(42)

These integrals in the above equation are solvable be-
cause the Jacobian of the coordinate transformation
(ρ) cancels out the 1/r weak singularity. Solving the
boundary integral for quadratic boundary element in
Eq. (42) directly is unnecessary, a comfortable alterna-
tive method is to subdivide the quadratic element into
four triangular elements and then solve the boundary
integrals at every triangular element in a simple way,
see Fig. 15 or (Silva et al., 1994). Then, Eqs (42) can
be expressed as

A1 =
n

∑
i=0

m

∑
j=0

4

∑
k=1

⎡⎢⎢⎢⎢⎢⎣

θ2

∫
θ1

ρ(θ)

∫
0

GRi,jJρdρdθ

⎤⎥⎥⎥⎥⎥⎦
qi,j ,

A2 =
n

∑
i=0

m

∑
j=0

4

∑
k=1

⎡⎢⎢⎢⎢⎢⎣

θ2

∫
θ1

ρ(θ)

∫
0

FRi,jJρdρdθ

⎤⎥⎥⎥⎥⎥⎦
pi,j ,

(43)

where θ1 and θ2 denote the polar coordinate angles of
two sides passing through the collocation point (node)
in a triangular element. The weak singular boundary
integrals showed in Eq. (43) are allowed to be solved
directly by using Gauss integral rule.

Fig. 15. Subdivision of a quadratic element into four
triangular elements.

Appendix B
Evaluation of hypersingular integral

When the Burton-Miller method is used for numer-
ical solution of IGABEM, the boundary integral for
∂F (x,y)
∂n(x) function is hypersingular. It is still difficult to

eliminate the hypersingularity by using polar coordi-
nate translation because this method can only decrease
the first order singularity. However, Hadamard’s finite
integral method can be used to overcome this diffi-
culty, although the implementation procedure of this
method is complex. The boundary integral formulas
for ∂F (x,y)

∂n(x) function when y point approaches point x
can be rewritten as

∫
Sx

∂F (x, y)
∂n(x)

p(y)dS(y)= lim
ε→0

∫
Sx−eε

∂F (x, y)
∂n(x)

p(y)dS(y)

+ lim
ε→0
∫
Sε

∂F (x, y)
∂n(x)

p(y)dS(y), (44)

where Sε stands for a half spherical surface centered
in point x with a radius ε, and eε stands for a circle
centered in point x with a radius ε. The first limit
integral in Eq. (44) is marked as B1. First, we solve the
second limit integral in Eq. (44). On Sε, the following
formulas are valid:

lim
ε→0

∂r

∂n(y)
= 1, (45)

lim
ε→0

∂r

∂n(x)
= − lim

ε→
nl(x)nl(y). (46)

Using the above two equations, we can rewrite the se-
cond limit integral in Eq. (44) as

− 1

2π
lim
ε→0

π

∫
0

nl(x)nl(y)
ε

p(x)dθ

= − 1

2π

n

∑
i=0

m

∑
j=0

lim
ε→0

π

∫
0

nl(x)nl(y)
ε

Ri,j(ξx, ηx)pi,j dθ.

(47)

B1 can be rewritten as the following formulas using
Eq. (19)

B1 =
n

∑
i=0

m

∑
j=0

Bi,jpi,j , (48)

where

Bi,j = lim
ε→0

⎧⎪⎪⎪⎨⎪⎪⎪⎩

ξe+1

∫
ξe

ηe+1

∫
ηe

∂F (x, y)
∂n(x)

Ri,j(ξy, ηy)J(ξy, ηy)dξ dη

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

(49)

Obviously, function Bi,j is hypersingular when point y
approaches point x. The key point is to solve Bi,j ac-
curately. Using the polar coordinate system to replace
the local parameter system shown in Eq. (49), we can
obtain the following formulas:

Bi,j = lim
ε→0

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2π

∫
0

ρ2

∫
ρ1

W (ρ, θ)dρdθ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (50)
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where ρ1 is equal to ε, ρ2 is a function of angle θ,
and stands for the distance between the collocation
point (the central point of the polar coordinate system)
and the point with θ angle on the boundary of the
quadrilateral element

W (ρ, θ) = ∂F (x, y)
∂n(x)

Ri,j(ξy, ηy)J(ξy, ηy)ρ. (51)

We can find that the highest singular term in ker-
nel function ∂F (x,y)

∂n(x) is nl(x)nl(y)/4πr3 when r is very
small. By using polar coordinate translation, the for-
mulas for the highest singular term can be rewritten as

f(ρ, θ) = nl(x)nl(y)
4πr3

Ri,j(ξy, ηy)J(ξy, ηy)ρ. (52)

When ρ is very small, f(ρ, θ) can be expanded into the
following form:

f(ρ, θ) = f2(θ)
ρ2

+ f1(θ)
ρ

+ f0(θ)
ρ0

, (53)

where the derivations for f1(θ)and f2(θ) can be found
in the Appendix A. Obviously, the singular terms in
W (ρ, θ) are f2(θ)

ρ2 and f1(θ)
ρ

. When we eliminate the
two singular terms, we can obtain the non-singular ex-
pression, and then we can obtain the new expression
of Bi,j , as follows:

Bi,j = lim
ε→0

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2π

∫
0

ρ2

∫
ρ1

[W (ρ, θ) − (f2(θ)
ρ2

+ f1(θ)
ρ

)] dρdθ

⎫⎪⎪⎪⎬⎪⎪⎪⎭

+ lim
ε→0

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2π

∫
0

ρ2

∫
ρ1

f1(θ)
ρ

dρdθ

⎫⎪⎪⎪⎬⎪⎪⎪⎭

+ lim
ε→0

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2π

∫
0

ρ2

∫
ρ1

f2(θ)
ρ2

dρdθ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (54)

where ρ1 is very small. It can be found that the first
term on the right hand of Eq. (54) is non-singular,
and can be expressed as the following formulation by
subdividing the quadratic element into four triangular
elements:

4

∑
k=1

lim
ε→0

θ2

∫
θ1

ρ2(θ)

∫
ρ1

[W (ρ, θ)−(f2(θ)
ρ2

+ f1(θ)
ρ

)] dρdθ, (55)

where integration in the above equation can be solved
directly by using Gauss integral method.

The second term on the right hand of Eq. (54)
marked as I1 and the third one marked as I2 are both
singular, and need to be treated specially. Firstly, by
using Taylor expansion, ρ1(ε, θ) can be expressed as

ρ1 = εβ(θ) + ε2γ(θ) +O(ε3). (56)

We rewrite I1 as

I1 =
2π

∫
0

f1(θ)
⎛
⎜
⎝

lim
ε→0

ρ2(θ)

∫
ρ1

dρ
ρ

⎞
⎟
⎠

dθ. (57)

Using Eq. (56) and omitting high-order minor terms,
the limit integral in brackets in the above equation can
be derived by

lim
ε→0

ρ2(θ)

∫
ρ1

dρ
ρ

= lnρ2(θ) − lim
ε→0

lnρ1

= ln
ρ2(θ)
β(θ)

− lim
ε→0

ln ε. (58)

And then, substituting Eq. (58) into Eq. (57), we can
obtain the following expression:

I1 =
2π

∫
0

f1(θ) ln ∣ρ2(θ)
β(θ)

∣dθ − lim
ε→0

⎡⎢⎢⎢⎢⎣
ln ε

2π

∫
0

f1(θ)dθ
⎤⎥⎥⎥⎥⎦
. (59)

In order to meet Lipschitz condition, the solution of
2π

∫
0

f1(θ)dθ must be equal to zero. So, I1 can be ex-

pressed as

I1 =
2π

∫
0

f1(θ) ln ∣ρ2(θ)
β(θ)

∣dθ. (60)

Subsequently, we still need to solve I2. We rewrite I2 as

I2 =
2π

∫
0

f2(θ)
⎛
⎜
⎝

lim
ε→0

ρ2(θ)

∫
ρ1

dρ
ρ2

⎞
⎟
⎠

dθ. (61)

The limit integral in brackets in the above equation
can be derived by

lim
ε→0

ρ2(θ)

∫
ρ1

dρ
ρ2

= − 1

ρ2(θ)
+ lim
ε→0

1

ρ1(θ)
. (62)

We need to obtain the expansion expression of 1
ρ1(θ) .

Actually, ε is also a function of ρ1, and can be ex-
panded as

ε = βρ1 + γρ2
1 +O(ρ3

1). (63)

And then, substituting Eq. (56) into Eq. (63), we can
obtain the expression of β and γ, as follows:

β = 1

β(θ)
, γ = −γ(θ)

β3(θ)
. (64)

Rewriting Eq. (63), we can obtain the expression of
1

ρ1(θ) , as follows:

1

ρ1(θ)
= 1

εβ(θ)
− γ(θ)
β2(θ)

. (65)
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By substituting Eqs (65) and (62) into Eq. (61), we
can obtain the new expression, as follows:

I2 = −
2π

∫
0

f2(θ) [
γ(θ)
β2(θ)

+ 1

ρ2(θ)
] dθ

+ lim
ε→0

⎡⎢⎢⎢⎢⎣

1

ε

2π

∫
0

f2(θ)
β(θ)

dθ
⎤⎥⎥⎥⎥⎦
. (66)

Obviously, the solution of the second term on the right
hand of Eq. (66) is infinite. By substituting Eqs (60)
and (66) into (54), we can obtain new expression of
Bi,j , as follows:

Bi,j =
2π

∫
0

ρ2

∫
0

[W (ρ, θ) − (f2(θ)
ρ2

+ f1(θ)
ρ

)] dρdθ

+
2π

∫
0

f1(θ) ln ∣ρ2(θ)
β(θ)

∣ dθ

−
2π

∫
0

f2(θ) [
γ(θ)
β2(θ)

+ 1

ρ2(θ)
] dθ

+ lim
ε→0

⎡⎢⎢⎢⎢⎣

1

ε

2π

∫
0

f2(θ)
β(θ)

dθ
⎤⎥⎥⎥⎥⎦
. (67)

By substituting the above equation into Eq. (48), we
can obtain new expression of B1, as follows:

B1 =
n

∑
i=0

m

∑
j=0

2π

∫
0

ρ2

∫
0

[W (ρ, θ) − (f2(θ)
ρ2

+ f1(θ)
ρ

)]dρdθpi,j

+
n

∑
i=0

m

∑
j=0

2π

∫
0

f1(θ) ln ∣ρ2(θ)
β(θ)

∣ dθpi,j

−
n

∑
i=0

m

∑
j=0

2π

∫
0

f2(θ) [
γ(θ)
β2(θ)

+ 1

ρ2(θ)
] dθpi,j

+
n

∑
i=0

m

∑
j=0

lim
ε→0

⎡⎢⎢⎢⎢⎣

1

ε

2π

∫
0

f2(θ)
β(θ)

dθ
⎤⎥⎥⎥⎥⎦

pi,j . (68)

According to Lyapunow-Tauber theory (Kupradze,
1965), in order to meet the requirements of smooth
continuity, the last term on the right hand of Eq. (68)
and the second limit integral in Eq. (44) must cancel
each other. So, the non-singular boundary integral for-
mulas for ∂F (x,y)

∂n(x) function when point y approaches
point x can be expressed as

∫
Sx

∂F (x, y)
∂n(x)

p(y)dS(y)

=
n

∑
i=0

m

∑
j=0

2π

∫
0

ρ2

∫
0

[W (ρ, θ) − (f2(θ)
ρ2

+ f1(θ)
ρ

)] dρdθpi,j

+
n

∑
i=0

m

∑
j=0

2π

∫
0

f1(θ) ln ∣ρ2(θ)
β(θ)

∣ dθpi,j

−
n

∑
i=0

m

∑
j=0

2π

∫
0

f2(θ) [
γ(θ)
β2(θ)

+ 1

ρ2(θ)
] dθpi,j , (69)

where the coefficients f1(θ), f2(θ), β(θ), and γ(θ) are
obtained using Taylor’s expansion, see Appendix C.
After we obtain the expression of all the coefficient
functions, we can obtain the non-singular BM formu-
lation. Although the expression of Eq. (69) in form
is consistent with that in the literature (Silva et al.,
1994; Telles et al., 1987), these coefficient functions
have different expression because of the use of different
interpolation functions.

Appendix C
Evaluation of coefficient functions

First, we try to get the expressions of β(θ) and
γ(θ). By using Taylor’s expansion, yi − xi in polar co-
ordinate system this can be expressed as

yi − xi = ρAi(θ) + ρ2Bi(θ) +O(ρ3), (70)

where

Ai(θ) = cos(θ)∂xi
∂ξ

∣ξx,ηx + sin(θ)∂xi
∂η

∣
ξx,ηx

(71)

and

Bi(θ) = cos2(θ)
2

∂2xi
∂ξ2

∣
ξx,ηx

+ cos(θ) sin(θ) ∂
2xi

∂ξ∂η
∣
ξx,ηx

+ sin2(θ)
2

∂2xi
∂η2

∣
ξx,ηx

. (72)

By using Taylor’s expansion for r = ∣y − x∣, we can
obtain the expression of n-th power of r, as follows:

rn = ρnAn(θ) [1 + nρAk(θ)Bk(θ)
A2(θ)

] +O(ρn+2), (73)

where

A(θ) = [A2
1(θ) +A2

2(θ) +A2
3(θ)]

1/2
, (74)

B(θ) = [B2
1(θ) +B2

2(θ) +B2
3(θ)]

1/2
. (75)



490 Archives of Acoustics – Volume 44, Number 3, 2019

By setting n = 1 and r = ε in Eq. (73), we can obtain
the expansion of ε, as follows:

ε = ρ1A(θ) + ρ2
1

Ak(θ)Bk(θ)
A(θ)

+O(ρ3
1), (76)

where ρ1 denotes the value of ρ when field point y on
Sx−eε is close to eε. And then, by substituting Eq. (56)
into Eq. (76), we can obtain the expression of β(θ) and
γ(θ), as follows:

β(θ) = A−1(θ), (77)

γ(θ) = −Ak(θ)Bk(θ)
A4(θ)

. (78)

By setting n = −3 in Eq. (73), we can obtain the ex-
pansion of r−3, as follows:

1

r3
= S3(θ)

ρ3
+ S2(θ)

ρ2
+O (1

ρ
) , (79)

where

S3(θ) = A−3(θ), (80)

S2(θ) = −3Ak(θ)Bk(θ)
A5(θ)

. (81)

And then, by using Taylor’s expansion for NURBS
basis function Ri,j(ξy, ηy), we can obtain the follow-
ing formulas, in which the expansion point is source
point x:

Ri,j(ξy, ηy) = Ri,j(ξx, ηx) + ρ
⎡⎢⎢⎢⎢⎣
cos(θ)

∂Ri,j

∂ξ
∣
ξx,ηx

+ sin(θ)
∂Ri,j

∂η
∣
ξx,ηx

⎤⎥⎥⎥⎥⎦
+O(ρ2)

= R0
i,j + ρR1

i,j +O(ρ2). (82)

The remaining term nl(x)nl(y)J(ξy, ηy) in Eq. (52)
also needs to be expanded. First, by using local param-
eter system, we can rewrite this term into the following
formulation

nl(x)nl(y)J(ξy, ηy) = nl(ξx, ηx)nl(ξy, ηy)J(ξy, ηy)

= nl(ξx, ηx)Jl(ξy, ηy). (83)

And then, by using Taylor’s expansion for this term, we
can obtain its new expression, in which the expansion
point is source point (ξx, ηx)

nl(ξx, ηx)Jl(ξy, ηy) = nl(ξx, ηx)Jl(ξx, ηx)

+ρnl(ξx, ηx)
⎡⎢⎢⎢⎢⎣
cos(θ)∂Jl

∂ξ
∣
ξx,ηx

+sin(θ)∂Jl
∂η

∣
ξx,ηy

⎤⎥⎥⎥⎥⎦
+O(ρ2)

= J(ξx, ηx) + ρnl(ξx, ηx)J1
l (ξx, ηx) +O(ρ2)

= J0 + ρJ01 +O(ρ2). (84)

By substituting Eqs (84), (83), (82), and (79) into
Eq. (52), we can obtain the following formulas:

f(ρ, θ) = ρ

4π
(S3(θ)

ρ3
+ S2(θ)

ρ2
+O (1

ρ
))

⋅ (R0
i,j + ρR1

i,j +O(ρ2)) (J0 + ρJ01 +O(ρ2))

=
S3R

0
i,jJ0

4πρ2
+
S2R

0
i,jJ0 + S3 (R1

i,jJ0 +R0
i,jJ01)

4πρ
+O(ρ0).

(85)

Finally, by substituting Eq. (85) into Eq. (53), we can
obtain the expression of coefficient f1(θ) and f2(θ), as
follows:

f1(θ) =
S2R

0
i,jJ0 + S3 (R1

i,jJ0 +R0
i,jJ01)

4π
(86)

and

f2(θ) =
S3R

0
i,jJ0

4π
. (87)
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