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The study makes an attempt to model a complete vibrating guitar including its non-linear features,
specifically the tension-compression of truss rod and tension of strings. The purpose of such a model is to
examine the influence of design parameters on tone. Most experimental studies are flawed by uncertainties
introduced by materials and assembly of an instrument. Since numerical modelling of instruments allows
for deterministic control over design parameters, a detailed numerical model of folk guitar was analysed
and an experimental study was performed in order to simulate the excitation and measurement of guitar
vibration. The virtual guitar was set up like a real guitar in a series of geometrically non-linear analyses.
Balancing of strings and truss rod tension resulted in a realistic initial state of deformation, which affected
the subsequent spectral analyses carried out after dynamic simulations. Design parameters of the guitar
were freely manipulated without introducing unwanted uncertainties typical for experimental studies.
The study highlights the importance of acoustic medium in numerical models.
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1. Introduction

The world of musical instruments is filled with var-
ious myths concerning timbre. Manufacturers, luthiers
and performing musicians often boast about outstand-
ing acoustical features of their instruments, caused by
utilisation of rare and expensive materials. Some con-
struction ideas are believed to improve guitar sound
and effectively increase its price as well. These opin-
ions remain largely unverified. While it is obvious that
sound quality depends on physical properties of an
instrument, attributing such a large impact to some
wood types might be an exaggeration. There are other
factors that influence the sound quality, such as good
design and precision of assembly. These high-quality
traits are usually applied to purposely better instru-
ments in conjunction with expensive materials. To
make things even more obscure, many wood genres
are intuitively associated with timbre characteristics

resembling visual attributes of these materials. For ex-
ample, maple and spruce are said to sound bright, as
opposed to dark looking and sounding mahogany or
rosewood. A graphite guitar nut seems to induce a mild
attack, while a steel one tends to sound harsher. Since
no conclusive work has been found in this field, it is
possible that many of these commonly acknowledged
properties are not true and are just an excuse to raise
prices.

There is a lot of research tackling the impact of
materials on tone, most of which brings more questions
than answers. Zoran et al. (2012) have recently exhib-
ited, using replaceable top plates installed into a single
guitar body, that two soundboards made of the same
wood block can be as diverse in their dynamic response
as two soundboards made of two different wood types.
Ono and Okuda (2007); Okuda and Ono (2008)
have shown that it is possible to obtain acoustic char-
acteristics comparable with wood using polyurethane
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top plates. Mansour et al. (2015) have examined 18
copies of nominally identical guitars and have shown
that despite the manufacturer and guitarists described
them as sounding differently (with large diversity of
opinions and general disagreement between the gui-
tarists), it is generally hard to attribute various tone
sensations to physical properties of these instruments.
Fritz et al. (2007) and Woodhouse et al. (2012) have
investigated psychoacoustic aspects of distinguishabil-
ity of an instrument’ tone by amateurs and professional
musicians using synthesised and digitally processed
sounds, exhibiting low importance of choice of the root
instrument. Gore (2011) formulated a bold opinion
– since wood types are practically indistinguishable
in blind tests, and famous luthiers are successful in
building guitars using non-wood materials, does the in-
strument material (soundboard aside) even matter in
forms other than the strength of construction? Tor-
res and Torres-Mart́ınez (2015) further strength-
ened the recalled doubts by experimentally examining
12 guitars made of different materials and not stating
any strong disparity between them nor even any ten-
dency in sound. Curiously enough, Duerinck et al.
(2014) built and tested an experimental trapezoidal
violin only to find out that despite its exceptional con-
struction there is almost no difference in the subjective
sound perception as compared to traditional violins.

Since defining the impact of specific materials on an
instrument sound is a distant goal, it might be more vi-
able to investigate the influence of geometrical features
on tone. Aspects such as thickness, shape and size of
an instrument’s part or stiffness of joints are all vari-
ables in the tone equation. One of the myths regarding
construction has been recently disproved by Mottola
(2007), who exhibited that the influence of neck-to-
body joints on a guitar sustain is probably exactly the
opposite to popular beliefs. Mottola’s experiment is
exceptionally reliable, because it operates on a single
instrument which has its individual non-wooden parts
successively replaced, thus no material randomness is
introduced (e.g. random density and stiffness fields
typical for wooden materials). Other than that, a com-
parative empirical study of different specimens might
be misleading due to large sound variation between in-
struments of the same type. It is a common practice
among musicians to try several copies of an instrument
before purchase in order to choose the best sound-
ing one, regardless of them being supposedly identi-
cal. Skrodzka et al. (2009) examined two violins of
varying top plate thickness only to find no strong ten-
dencies in the perceived darkness of tone (which was
initially expected). However, only two specimens were
tested, so stochastic approach was not involved in the
study. Interestingly enough, another pair of violins was
later examined (Skrodzka et al., 2013) in regard to
varnish, which was found to actually affect the sound of
violin. Again, it is not known if the effect was a matter

of coincidence or if it was reproducible. Another exper-
iment was carried on by Skrodzka et al. (2011) on two
guitars with varying bracing patterns in stringed and
unstringed variants. Significant impact of the bracing
on the lower frequency register was found, however the
study included no statistical considerations and was
most certainly valid only for the two guitars tested.

On the other hand, numerical methods are capa-
ble of performing a purely deterministic study, provid-
ing independent control over all parameters of a model
and reducing the material and geometric randomness
to zero. If executed with a sufficient precision and
detail, this approach might make it possible to com-
pare acoustic properties corresponding to different con-
struction ideas while neglecting the material impact.
Some works have already made use of advanced geo-
metrical ideas and numerical implementations. A re-
cent study by Lynch et al. (2013) have shown that
even a slight change in shell shape can have a dramatic
effect on the sound radiation produced by an enclosed
cavity. Inácio et al. (2008) have executed a mixed
experimental-numerical research on string-body inter-
action in violins and beating on the hunt after wolf
notes. Issanchou et al. (2017) have gone as far as
defining a collision effect of a vibrating string against
a flat or curved surface. Kopač and Šali (1999) have
investigated a surface finish influence on the wooden
plates tone, which turned out to be surprisingly sig-
nificant. In this context one of the most relevant and
interesting parts of the study performed by Skrodzka
et al. (2014) is that the eigenfrequency change of a vi-
olin top plate was not proportional to the change
of a bass bar tension. It means that even a single-
parameter modification can lead to non-linear effects
not to be predicted without a separate experiment or
an appropriate modelling solution.

The work presented in the paper follows the path
of geometrical complexity and focuses on developing
a FEM model precise enough to investigate the the-
oretical influence of geometrical properties on sound
while keeping the material randomness under control.
We can not emphasize it strong enough that we are
speaking of the theoretical influence here, which means
a predicted or expected effect of some geometrical ap-
plication to a real guitar. Previous research has shown
that it is hardly possible to actually predict any real
effect neither by modelling nor by experimental mea-
surements. It is however viable to at least theoretically
justify application of some uncommon or expensive de-
signs. It is even more worthwhile to do something op-
posite, i.e. show that some of these ideas are absolutely
unjustified and their application should be avoided,
since their only purpose is to increase an instrument’s
price.

This paper contributes by developing a model
which treats the instrument not only as a solid vibrat-
ing body, but also as a multi-part device. Folk guitar
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was chosen for the research because of its availability
and relative simplicity. What distinguishes this study
from the others is including the active behaviour of
strings and truss rod in the model. The work is based
on an observation how greatly the guitar set-up affects
its sound. It is a well-known fact for most guitarists
that the adjustable parameters such as string action,
string gauge and tension, truss rod pre-stress (neck
curvature), etc. can have a decisive impact on the gui-
tar tone. Because of that, not only the guitar geometry
and materials should be taken into account when eval-
uating the guitar sound, but also the initial state of
stress and deformation introduced by truss rod and
strings, as well as relative motion of these parts dur-
ing vibration. Each of these parts is a carrier of inertia
(accelerating mass) as well as influences the state of
equilibrium (stresses and deformation). By including
these features, a typical stiff model turns into a non-
linear system which can be subjected to something
more than a modal analysis. A preliminary form of the
study had been presented at a conference (Bielski,
Kujawa, 2017).

Speaking of a well-established background, there
are numerous works which focus on general physics
behind instruments’ acoustics. The classic book by
Helmholtz (1954) provides a theoretical basis on air
vibration and composition of resonance modes. Camp-
bell and Greated (1994) and Jansson (2002) cre-
ated works useful for musicians, luthiers and scien-
tists concerning acoustics, measurements and assem-
bly. A book by Fletcher and Rossing (2012) and
Wolfe’s private on-line repository (Wolfe, n.d.b.) pro-
vide a reliable basis on physics of musical instruments.

2. Materials and methods

2.1. Overview

The guitar selected for the research is LAG Tra-
montane T200D. It is a standard Dreadnought acoustic

Fig. 1. Real guitar and its CAD geometry including strings and inner bracing.

folk guitar. The material and construction data nec-
essary for a proper modelling of the instrument was
acquired directly form the guitar manufacturer. Most
of the geometry was measured manually during the
research, while inaccessible interior parts were intro-
duced to the model using common Dreadnought con-
struction drafts. A typical set of 0.013–0.056 inch phos-
phor bronze wound strings with a steel hexagonal core
was used (D‘Addario EJ17), totalling for 1850 N ten-
sion force on the bridge.

Classical guitars are equipped with low-tension ny-
lon strings, while folk guitars come with high-tension
steel strings. Because of that, these instruments are
constructed differently, using different materials, brac-
ing pattern, etc. One of the most interesting differences
in construction of acoustic folk guitars and classical
guitars is the truss rod. Increased tension of the steel
strings is compensated by presence of the truss rod in
the guitar neck. Truss rod is an adjustable element that
counters the excessive neck curvature caused by high
string tension. It is the main subject of the numerical
study performed and discussed in the paper.

Both numerical analysis and experimental studies
were designed to reflect the same conditions and ob-
tain the same data type. They were targeted towards
measuring accelerations and computing displacements
of the selected spots of the guitar top plate. Exciting
the body was executed without direct contact, allow-
ing both the strings and the top plate to vibrate freely.
Experimental conditions were rather coarse and not
in line with the standard measurement methods used
in acoustics, however the purpose of the experimental
study is only supplementary to the numerical part.

2.2. Numerical study

2.2.1. Geometry and materials

A full 3D guitar geometry has been created in
a CAD environment (Fig. 1). It has been imported
to the SIMULIA Abaqus engine in separate parts.
The complexity of the guitar geometry implied usage of
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solid, shell and beam elements (Zienkiewicz, Tay-
lor, 1977). The guitar parts with their respective
types have been listed in Table 1.

Most of the wood types were implemented with
the orthotropic material model (Khennane et al.,
2014), for which the data on the material properties
was obtained from USDA Forest Products Laboratory
(Green et al., 1999). Several parameters missing in
this repository have been found in Eric Meier’s Wood
Database (Meier, n.d.). The only exception was In-
dian rosewood (Dalbergia latifolia), for which no infor-
mation on its anisotropic properties was found even in
the papers devoted specifically to this type of wood
(Sproßmann et al., 2017). A simple isotropic model
with a single Young modulus value was used instead.

All of the values were specified for casual condi-
tions, i.e. a room temperature and 12% moisture con-
tent. Graphite properties were hard to specify, since
there are many subtypes of this material and the gui-
tar manufacturer did not provide any detailed data
about it. As the graphite parts are of marginal mean-
ing in this model, approximate average values were
used without a further investigation. The part-material
pairs are listed in Table 2. The material properties can
be found in Table 3.

Table 1. FEM model parts sorted by element type.

Part Element type

head, fretboard, top plate, sides, back, bracing, stiffening
bars, nut, bridge

4-node shell elements with reduced integration and hour-
glass control (S4R)

neck, neck block 4-node tet solid elements (C3D4)

strings, truss rod bars 2-node beam elements, circular cross-section (B31)

truss rod nuts 8-node hex solid elements with reduced integration
(C3D8R)

Table 2. FEM model parts sorted by material type.

Part Material name and model

top plate western red cedar, orthotropic

head, neck, back, sides, end block honduran mahogany, orthotropic

fretboard east indian rosewood, isotropic

bracing, stiffening bars sitka spruce, orthotropic

bridge, nut graphite, isotropic

truss rod, truss rod nuts, strings steel, isotropic

Table 3. Mechanical properties of materials: density ρ, Young modulus E, Poisson ratio ν, shear modulus G;
directions: 1 – longitudinal (axial), 2 – radial, 3 – circumferential (tangential).

Material ρ [kg/m3] E1 [MPa] E2 E3 ν12 [–] ν13 ν23 G12 [MPa] G13 G23

cedar 320 7700 624 424 0.378 0.296 0.484 670 662 39

mahogany 450 10300 1102 659 0.314 0.533 0.600 680 886 288

spruce 360 9900 772 426 0.372 0.467 0.435 634 604 30

rosewood 750 12300 – – 0.330 – – 4624 – –

graphite 2000 20000 – – 0.200 – – 8300 – –

steel 7800 210 000 – – 0.300 – – 81 000 – –

The examined guitar was equipped with a 3.0 mm
thick red cedar top plate. In later part of the study, two
modifications of this property were considered – one
with a 3.3 mm red cedar top, the other with a 3.0 mm
spruce top. It is worth noting that 0.3 mm is a 10% in-
crease in thickness, while spruce is roughly 10% denser
than red cedar. It means that both plates were about
10% heavier than the reference plate in terms of mass,
but the spruce one has significantly greater values of
Young modulus.

2.2.2. Boundary conditions

Fixed boundary conditions were applied in the
places where the strap buttons are located on the real
guitar. They constrained the system just enough to
keep it stable during the excitation. In the same time
they do not affect the guitar body movement signifi-
cantly, allowing it to deform and vibrate freely. All of
the six degrees of freedom have been constrained on the
surfaces corresponding to the strap buttons location.

Proper truss rod modelling was important to
retain realistic neck stiffness. In a real guitar the truss
rod is fixed on the body end and it is free to slide
on the head end. The T200D guitar is equipped with
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Fig. 2. Truss rod location inside guitar neck and its deformed shape acquired by shortening bottom bar.

a double action truss rod, consisting of a passive top
bar (closer to the strings) and an active bottom bar
(deeper in the neck), as shown in Fig. 2. By turning
a hex key on the nut located on the body side, a gui-
tar player shortens the active bar and applies a ten-
sion to it. As an effect, the truss rod bends down and
pulls the neck against the strings. However, due to the
sliding ability of the truss rod’s opposite end, no ad-
ditional compression is introduced to the guitar neck
apart from the one triggered by a bending moment.
This feature has been included in the model by cre-
ating a detailed contact definition between the truss
rod and the neck/fretboard surfaces. Normal interac-
tion was set to hard contact; tangential behaviour was
scaled with a 0.2 friction coefficient between wood and
steel (Lemoine et al., 1970).

Each string has been divided into three parts – one
active and two passive (Fig. 3). The active part is lo-
cated between the nut and the bridge. It is the vibrat-
ing part of the string. The passive parts are located
on both ends of the string. On the head end they pro-
vide a connection between the nut and the tuning pegs.
On the bridge end they join the saddle with the pins.
These short passive sections must not have been omit-
ted, as they provide a counter-balance of the nut and
bridge loading. Otherwise there would be too much
bending applied to the saddle and the nut, resulting in
a top plate warping. To avoid undesirable local effects
and stress concentrations, strings have been attached
to the guitar body by means of kinematic coupling dis-
tributed within a 10 mm radius of each adjoining sur-
face. It was necessary to provide a reliable beam-shell
interaction while allowing unconstrained rotations of
the strings. A distance-dependent coupling has been
applied with a square decay rate.

Fig. 3. Fixation of strings in numerical model.

2.2.3. Linear modal analysis

A standard modal analysis was performed in four
different states. Two of them included full guitar geom-
etry; another two consisted only of the separated top
plate. In each of these pairs there was a variant with ac-

celerometer mass added and without it. In case of the
full body models, there was no strings attached and
no truss rod pre-tension due to lack of non-linearity
in this analysis. In the plate-only model a fixed sup-
port was applied to the outer boundary of the plate.
A frequency range of up to 1000 Hz was requested,
since higher frequency modes are of little use in case
of modal analysis, as hinted by Zoran et al. (2012).

2.2.4. Tightening strings and truss rod

Setting up a real folk guitar is an iterative pro-
cess. It consists of two alternately repeated steps –
tightening/loosening the strings and adjusting a ten-
sion in a truss rod (Fig. 4). It is necessary to maintain
a proper neck curvature when having the strings tuned
to a pitch. The neck should be bowed away from the
strings by a fraction of a millimetre, just enough to
let the strings vibrate freely without hitting the frets.
Too much of a back-bow will make the guitar uncom-
fortable to play, so a proper balance must be found.
It is usually accomplished by trial and error by real
musicians and it has been done the same way in the
numerical analysis.

Fig. 4. Truss rod and guitar neck in FEM model.

Firstly, strings were loaded with appropriate
stresses using a bolt load feature (Vegte, Makino,
2004) in order to tune them to their respective funda-
mental tones. The stresses were easy to calculate using
common formulas for the wave speed. A guitar neck
displacement on the 12th fret was measured. Then the
strings have been removed completely from the model
and an arbitrary bolt load was introduced to the ac-
tive bar of the truss rod. The guitar neck has bent in
the opposite direction and the displacement was mea-
sured again. Finally both the strings and the truss rod
have been loaded. After several attempts, a desired
curvature was obtained with the strings tuned to ade-
quate fundamental tones. In the end, the active bar was
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shortened by 0.2 mm. Global displacement and stress
fields were exported and used as a predefined begin-
ning state for a subsequent dynamic analysis.

2.2.5. Dynamic analysis parameters

Abaqus solver offers two basic algorithms com-
monly used for dynamic numerical computations in
time domain. Implicit analysis is carried out by Abaqus
Standard, while explicit is controlled by Abaqus Ex-
plicit solver. Implicit algorithm allows for sparse dis-
cretisation of time domain, thus providing a relatively
short path to the final solution by allowing large time
steps. As a downside, results are written only at a small
amount of fixed time points, each of which is quite
costly computationally. Explicit dynamic analysis re-
lies on a simpler algorithm, so each computational step
is much faster than its implicit counterpart. If the time
step is too large, however, numerical instability can oc-
cur and lead to false results. Because of that, explicit
analysis is limited by a parameter called critical step,
which is the largest time step ∆t allowed while assuring
a numerically stable solution (Arnold, 2001):

∆t ≤ 2

ωmax
. (1)

This criterion is dependent on the largest eigenvalue
ωmax [rad/s] of the whole system, obtained by means
of modal analysis (Bathe, Wilson, 1976). A stable
time increment relies heavily on FE discretisation of
the model and is usually much smaller than that al-
lowed in implicit analysis, enforcing a dense discretisa-
tion of time domain. Successive computation steps are
based on inverting the mass matrix, which is much less
costly to execute than manipulating the stiffness ma-
trix typical for implicit analysis. As a result, explicit
analysis is a preferred choice when a high resolution of
output data is demanded.

To deal with the task effectively, a mixed implicit-
explicit approach was taken. To set up the guitar, tune
the strings and find the truss rod tension, the implicit
algorithm was chosen due to its ability to reach equilib-
rium in few steps. Dynamic excitation was performed
using the explicit solver, which required some import-
export actions of the initial state and properties be-
cause of lack of full compatibility between these en-
gines.

The largest eigenfrequency of the system was found
to be approximately 1.25 ⋅107 rad/s by means of modal
analysis, fixing the critical step at 10−7 seconds order of
magnitude, which requires a 10 MHz sampling rate of
numerical data. Since typical experimental measure-
ments of response spectrum rarely deal with values
greater than 2 kHz, let alone numerical studies, we de-
cided to execute our analyses a 4 kHz frequency and
write the output data only each 2.5 ⋅ 10−4 second. It
helped to reduce and manage the output files size sig-
nificantly in spite of performing the computations with

the required critical time step. A total time interval of
0.5 second was analysed and it resulted in a 2.5 GB
output data file per analysis. The calculation time was
approximately 4 hours on a moderately powerful PC
with a 6-core 4.2 GHz processor and 16 GB of RAM.

2.2.6. Excitation methods

Experimental sine sweep and white noise measure-
ments were executed without the strings attached.
However, in this case the truss rod pre-stress persists,
as it is not loosened together with the strings. To prop-
erly follow this procedure, the strings were removed
from the model, but the truss rod was still loaded as
described above. It resulted in a slight back-bow of the
neck.

Since there is no acoustic medium in the model,
it was not possible to precisely reproduce the speaker
excitation method. A simplified method was used in-
stead, pushing the top plate directly by applying
a time-dependent pressure. White noise and 20 Hz–
20 kHz sine sweep signals were generated and used as
amplitude functions for the pressure, both 0.5 second
long.

Strings strum excitation was divided into two steps
in the numerical analysis. In the first, quasi-static step
– the strings were pulled; in the second, dynamic – the
strings were released and put into vibration. Function
of pulling the strings consisted of 0.01 s buffer inac-
tivity, 0.01 s linear ramp function and another 0.01 s
buffer inactivity, resulting in 0.03 s total. The strings
were pulled in 1/10th of their length from the bridge;
the pulling amplitude was 5 mm in the direction paral-
lel to the top plate and 2 mm in the perpendicular di-
rection. Afterwards, the strings were released and put
to vibration for 0.5 s in the second step.

2.2.7. Damping

Damping is usually introduced to dynamic analyses
not only to bring a solution closer to the reference data,
but also to stabilise the analysis in order to reduce
the numerical noise originating from the unwanted
vibration. In cases where the acoustic signal quality
is not of much value, a simple mass- and stiffness-
proportional Rayleigh damping (Liu, Gorman, 1995)
is a likely option. In other cases, more sophisticated
damping models should be introduced, often utilising
variables instead of constants (Torres, 2010). How-
ever, wood materials are inconvenient enough to de-
scribe by means of static values, leave dynamic ones
alone. There are several methods of measuring damp-
ing parameters of wood (Falk, Itani, 1987; Wegst,
2006), often exhibiting diverse results. Bissinger and
Keiffer (2003) have stated that even though there
is large variation in total damping ratios of vio-
lins, they can be roughly estimated using a common
frequency-dependent curve 1/

√
f . In a sense of being
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an asymptotic power function, it is similar to the mass-
proportional part of Rayleigh damping:

ξ = α

2ω
+ βω

2
. (2)

It coincides with the fact that the beta coefficient
responsible for damping of the higher register directly
affects the stable time increment of explicit analy-
sis mentioned before. In the equation below, ξ is the
damping ratio of the highest eigenfrequency ωmax of
the system, thus dependent mainly on the stiffness-
proportional coefficient:

∆t ≤ 2

ωmax
(
√

1 + ξ2 − ξ) . (3)

As a result, the critical time step tends to drop
dramatically even at very small values of the beta
coefficient. Since proficiency of explicit analysis suf-
fers greatly from this factor, it is usually advised to
leave out the stiffness-related component and use only
the mass-proportional damping coefficient (Xiaoming
et al., 2015). This approach had been undertaken by
Torres in his PhD thesis (2010) and it was also chosen
for our study. A complicated, variable and material-
dependent damping definition is not feasible. If a re-
ally accurate damping model was to be implemented,
it would need to be linked to the air movement in-
side and outside the sound box to create a dissipative
mechanism. Since acoustic medium is absent at the
present stage of the modelling, a simple Rayleigh ap-
proach was chosen despite its well-known flaws and
artificial nature.

The alpha coefficient was scaled to filter out vi-
brations below 50 Hz, which is the lowest eigenfre-
quency of the system (corresponding to the upwards
and downwards motion of the neck). The wood damp-
ing ratio was found to equal approximately 0.02 based
on various sources (Brémaud et al., 2009; Brémaud,
2012). This is also the value used by Torres in his dis-
sertation. The damping ratio of the steel strings was
set to ξ = 0.001 (Irvine, 2004), and the truss rod to
ξ = 0.1. Heavy damping was applied to the truss rod
to reduce its disruptive effect on the output, since its
mass and stiffness is much greater than that of the
strings; in a real guitar, its independent high-frequency
vibrations are suppressed by silicon tubes.

2.3. Experimental study

It should be noted in the very beginning that the
experimental study was carried out on a specific pur-
pose. We are well aware of the many measurement
devices developed throughout the years, such as laser
Doppler vibrometer, electromagnetic sensors, etc. Re-
gretfully we did not have access to any of this equip-
ment, since the only devices available to us are de-
signed for civil engineering and are not very well suited

for the relatively lightweight and high-frequency struc-
tures such as musical instruments. For this reason we
were forced to use large piezoelectric accelerometers
commonly used to measure vibration of bigger engi-
neering structures. Still, experimental measurements
were necessary to interpret the results of modal analy-
sis and to further investigate the outcome of numeri-
cal excitations. In addition to the measurements being
performed using rather massive accelerometers, the ex-
citation was carried out by means of a guitar combo
speaker. The obtained results were obviously affected
by these flaws. However, the experimental study was
executed primarily to compliment the numerical study
– which is the main part of the research – by pro-
viding supplementary material for comparison. These
result should by no means be treated as a stand-alone
value of its own. We tried to compensate for the heavy
accelerometers by including additional concentrated
mass in the numerical model, however no rotational
inertia was introduced.

When holding a guitar on stage, a musician usually
mounts a strap on his instrument to prevent it from
being dropped on the ground. There are two buttons
on most guitars designed for installation of the strap.
They are attached with long screws and they sit in the
wooden body firmly. These buttons have been used
as supports in the experiments (Fig. 5a). They were
immobilized between jaws of two vices. Small felt discs,
placed by the manufacturer between the button and
the body to protect the wood, have been removed for
a firmer grip.

Fig. 5. Guitar support (a) and accelerometer location (b)
during excitation in laboratory.
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The measurement was performed with two Vi-
braSens 500 mV/g 160 g piezo accelerometers con-
nected to the Alitec ViMEA VE16BCA device capa-
ble of writing up to 65536 samples per second. The
accelerometer A has been placed in a symmetrical po-
sition near the bridge (Fig. 5b). The accelerometer B
was intended to capture different spectrum of vibra-
tions, thus it has been installed away from the bridge,
on the asymmetrical position. Both accelerometers are
equipped with magnets, as they have been designed
for measurement of steel structures. These magnets
were used to install the accelerometers by placing small
brass tiles inside the guitar body, on the opposite side
of the plate (Fig. 6). A considerable force was required
to dismount the accelerometers afterwards.

Fig. 6. Strap buttons fixed between vice jaws and ac-
celerometers fastening using brass plates and embedded

magnets.

The excitation of the guitar has been executed in
the following ways:

• with the strings attached, by strumming all
the strings simultaneously; no frets pressed
(open strings);

• with the strings removed, using a guitar speaker to
excite the top plate with an acoustic wave; a white
noise sample (4 seconds exposure) and a logarith-
mic sine sweep through 20 Hz–20 kHz frequencies
(4 seconds sample).

For technical reasons it was not possible to place
the speaker directly above the top plate, in a parallel
position. To ensure a proper body excitation, nearly
a full power of a 40 watt Roland CUBE 40XL amplifier
has been used. The data was written with a frequency
of 4096 samples per second, allowing to build a har-
monic spectrum up to 2048 Hz using a FFT algorithm
later on. With the lowest and highest strings tuned to
82 and 330 Hz, it was possible to capture respectively
23 and 5 overtones of these notes.

3. Results and discussion

By investigating the results of the numerical modal
analysis alone (Fig. 7) we can draw first conclusions.
Introducing a full guitar body to the model resulted
in significant changes as compared to the plate-only
model. Both the shapes and eigenfrequencies were af-
fected. Different boundary conditions (full body) of the
top plate reduced the stiffness and generally shifted

the resonant frequencies into a lower register. What is
more, they introduced some additional modes of vibra-
tion coupled to the global body motion, which were
absent in the plate-only model. Similar modes were
grouped using black frames in the figure. About 2–3
new shape patterns emerged in the frequency range
up to 600 Hz. The observed eigenmodes were heavily
asymmetrical due to the arrangement of the top plate
bracing. Hence, the choice of accelerometer A position
near the middle of the bridge is reasonable in case of
the examined acoustic folk guitar; contrary to the clas-
sical guitar, where it would lie on a nodal line of the
even-number modes (Torres, Boullosa, 2009).

These modes, however, are purely structural, that
is they are limited to the body motion and not air mo-
tion. By comparing them with the experimental results
(Fig. 8) we can make further observations. Regarding
Wolfe’s equation for an approximate Helmholtz fre-
quency in a guitar sound box (Wolfe, n.d.a.), the first
cavity mode should occur at about 220 Hz. Since it is
calculated for a constant air volume, it should be cou-
pled with a 2nd or 3rd body mode, which means the co-
ordinated motion of top and back plates. This peak is
easily identifiable on the experimental spectrum. The
first air-pumping mode, produced by inverse vibration
of top and back plates (changing volume (Russell,
1998)), should be coupled with 1st body mode and is
also distinguishable around 120 Hz mark. The distinc-
tive peaks on A and B curves respectively are prob-
ably A and B accelerometers resonances (see modal
analysis) around 80 Hz and 180 Hz, not coupled with
neither body nor air modes (isolated vibration of top
plate). Considering the mass of accelerometers we can
assume that they are capable of dominating local mo-
tion of the guitar.

Examination of the numerical white noise (Fig. 9a)
and sine sweep (Fig. 9b) excitations evokes some inter-
esting, if not obscure notices. The simulation allows to
identify the accelerometer peaks quite precisely, how-
ever the body modes are nearly absent. The situation
gets slightly better in the upper register, above 400 Hz
mark, where mass is less dominant and stiffness draws
more influence on the modes. It clearly indicates that
there is a problem with reflecting coupled body-air
modes, which makes sense since air is not included in
the model and the plate is not heavy enough (mass)
to overcome the accelerometers. The first important
observation can be made – acoustic medium is cru-
cial for a proper representation of the coupled modes.
Otherwise the low-frequency body modes alone are not
strong enough to emerge on the spectrum.

Strumming the strings in the numerical model
(Fig. 9c) resulted in a spectrum that represents a gen-
eral trend line of the guitar dynamic response, with
string modes only subtly marked. Harmonic peaks are
not as pronounced and steep as expected by compari-
son to the experimental measurements. Again the situ-
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Fig. 7. Modes of vibration and corresponding eigenfrequencies [Hz] in four variants of modal analysis.

ation is slightly better in the upper register. In this case
mass of the strings is probably not enough to drive the
plate in a purely structural model, because the plate is

not damped enough by the air inside the box and starts
to resonate in its own modes. Rayleigh damping does
not help much in this case, because it affects the whole
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Fig. 8. Response spectra of experimental white noise and chirp excitations.

a)

b)

c)

Fig. 9. Response spectra of various experimental vs numerical excitation variants:
a) sine sweep, b) white noise, c) string strum.
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model, effectively killing string harmonics. Again, air
medium is necessary to provide natural damping of the
body and allow the strings to vibrate freely in the same
time.

Pearson correlation coefficient (Table 4) shows that
sine sweep and white noise excitations gave basically
the same results, however the sine sweep spectra ex-
hibit better correlation between the numerical and
experimental data, slightly outperforming the white
noise excitation. Striking the strings is on the last
place, nevertheless it does not stand out much, retain-
ing resemblance to the white noise and chirp excita-
tions (which is not desired).

Table 4. Pearson correlation coefficient r between various
response spectra; E – experimental, N – numerical, sw –
sine sweep, wh – white noise, str – strings strum, accelerom-
eter position A in upper right half of the matrix, position B

in bottom left half.

Esw Nsw Ewh Nwh Estr Nstr

Esw 1 0.757 0.973 0.727 0.560 0.687

Nsw 0.543 1 0.738 0.969 0.723 0.894

Ewh 0.949 0.545 1 0.708 0.519 0.663

Nwh 0.431 0.892 0.449 1 0.712 0.892

Estr 0.571 0.580 0.561 0.476 1 0.698

Nstr 0.276 0.690 0.237 0.676 0.452 1

The fact that the air modes have a large impact
on the sound box proficiency is no mystery and it
has been investigated in multiple ways. A classic re-
search by Bissinger and Hutchins (1983) followed
by Weinreich et al. (2000) and McLennan (2003)
clearly shows that cavity modes are coupled with body
modes and can be affected by a type of gas inside
the sound box. In the same time, the number and
size of sound holes defines not only the stiffness of
the plate, but in the first place the air-body cou-
pled modes caused by the internal pressure fluctuation.
Runnemalm (1999) managed to record many forms of
high-frequency resonance in a closed air cavity as well
as inside a guitar box, proving that not only the fun-
damental cavity mode is of importance, but the whole
instrument range is significantly affected by the air vi-
bration.

Lack of air cavity resonance modes and coupled
structure-air modes is apparent in the numerical solu-
tion. Regarding Wolfe’s equation for an approximate
Helmholtz frequency in a guitar sound box (Wolfe,
n.d.a.), the first cavity mode should occur at about
220 Hz. Its presence is easily noticeable as a second (or
third) large peak in the experimental spectra. Since it
is absent in the numerical analyses, relatively more en-
ergy is attributed to the first body mode, resulting in
its pronounced domination over the rest of the regis-
ter. It should be noted that around the 800 Hz mark
the numerical representation of the point A spectrum

takes on a flat shelf shape, indicating low-energy struc-
tural modes with no support of cavity modes. As the
air resonance does not have such a large influence on
the accelerometer B position, which is (according to
the modal analysis) dominated by the presence of the
heavy accelerometer itself, numerical response spec-
tra B are seemingly better aligned with the experi-
mental data.

Air has been present in guitar numerical analyses
for some time already. Efforts have been made to in-
troduce air (Elejabarrieta et al., 2002) and other
types of gas (Ezcurra et al., 2005) to the classical gui-
tar analysis. Despite its proficiency in calculating air
modes and providing the air-body coupling and addi-
tional mass, it was usable only in the modal analysis.
Derveaux et al. (2003) and Bécache et al. (2005)
have implemented a theoretically complex and exhaus-
tive algorithm for computing a coupled sound box and
air vibration. However, the method incorporated lim-
ited geometry, lacking many guitar parts, the truss rod
and strings pre-tension. A more straightforward solu-
tion is to be found, such as the one suggested by Jack-
man et al. (2009). It must be capable of providing a rel-
atively simple air-body coupling model and a natural
damping mechanism by energy dissipation at the ab-
sorbing (non-reflecting) acoustic medium boundaries.
Recent findings by Sauer and Luginsland (2017) re-
garding general FE fluid-structure surface interaction
come to mind. On top of that, the model must be a pro-
ficient performer in explicit analysis.

To check the efficiency of the model two simple
comparative analyses were executed. The first one
checked behaviour of the model with and without the
truss rod. Both models were subjected to chirp excita-
tion and to string strum excitation. The second variant
required to tighten and pull the strings, resulting in
some initial deformation of the model. This deforma-
tion was compared with the same situation in the truss
rod model. The picture is quite self-explanatory, as it
presents the proper deformation of a guitar with truss
rod (Fig. 10a, compensated straight neck) and a com-
pletely wrong and unplayable (for a guitarist) initial
state in case of truss rod absence (Fig. 10b) as com-
pared with the relaxed guitar (Fig. 10c). The result-
ing spectra are different, however they differ in a non-
obvious way, since after truss rod removal the sine
sweep variant (Fig. 11a) became duller but the string
strum one (Fig. 11b) got brighter. Explanation of this
effect needs more insight, however the influence of truss
rod is apparent.

The other analysis introduced some design changes
to the guitar model with truss rod. The reference top
plate, which is a 3.0 mm thick sheet of red cedar, was
changed first to a 3.3 mm plate (thickness change),
then to a 3.0 mm spruce plate (material change). In
each case, these changes affected both the mass distri-
bution and the stiffness.
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Fig. 10. a) Up-scaled deformation of FEM model in equilibrium state after performing a geometrically non-linear incre-
mental analysis; visible resemblance to common rheological effects of old guitars and exposed ability of non-fixed truss

rod end to slide along guitar neck under compression; b) deformation of guitar without truss rod; c) relaxed guitar.

a)

b)

Fig. 11. Response spectra of numerical excitations with and without the truss rod: a) sine sweep and b) string strum.
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Fig. 12. Comparison of numerical response of reference guitar with red cedar top and its modifications.

Now let us consider several scenarios. It is clear
that if a model includes just a single material applied
to the whole body, then the material properties ex-
pression act as a constant factor in front of the govern-
ing eigenproblem equation. Therefore, in case of modal
analysis of the plate-only model, we could expect pro-
portional shifting and shrinking of the eigenvalues set –
and consequently the possible response spectrum – but
not a complete change of shape of the spectrum. This
would be possible only if a more non-straightforward
change was introduced to the stiffness matrix, i.e. if the
whole body was analysed, but only the top plate was
modified before. However, the observed change should
not be very radical, since top plate is the main vibrat-
ing part of the modelled instrument and the rest of
the body acts more like a set of interactive boundary
conditions than a vibrating structure itself.

These changes start to be significant when we
switch from linear modal analysis to geometrically non-
linear incremental analysis. Properties of the model
play their role twice in this case. First – during set-
ting up the guitar and determining the initial state of
stress and deformation. Second - during excitation, by
responding differently due to both the change in prop-
erties and in the initial state. In this case we would
expect the response spectrum to change its charac-
ter in a heavily non-linear fashion, not just by shift-
ing the peaks, but also by creating new ones and al-
tering the proportions between them.

The results of the simulation are presented in
Fig. 12. It is already visible that the modifications of
the top plate parameters result in different shapes with
new peaks emerging, rather than in modified variants
of the same spectrum. For example, one can notice that
more life can be brought above the 800 Hz mark by
means of increased thickness (more mass and stiffness)
instead of switching to the spruce top (more mass and
much more stiffness). This is just a sample comparison,
hard to predict intuitively, which exhibits the nature
of the presented approach. We need to have more con-

fidence in the model to draw real conclusions, however
we can already tell that some non-obvious relations can
be observed.

4. Conclusions

The main novelty of this paper lies in introducing
the geometrically non-linear effects of truss rod and
strings tension to a detailed folk guitar FEM model.
The main findings can be summarised as follows:

• Modal analysis of a full guitar body leads to com-
putation of some additional top-plate modes and
shifting of the existing modes into a slightly lower
register as compared to the fixed plate-only model;

• Tightening the strings in the model with an ad-
justable truss rod leads to a drastically more ap-
propriate state of deformation than in a similar
model with the truss replaced by a passive wooden
brick;

• Response of the model with a truss rod differs sig-
nificantly from that without a truss rod, however
this difference is not to be obviously interpreted;

• Simulation of striking the strings will not work
properly until the model is equipped with an
acoustic medium, providing natural damping con-
ditions and air-pumping modes; The same is true
for any coupled modes.
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