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Speech enhancement is fundamental for various real time speech applications and it is a challenging
task in the case of a single channel because practically only one data channel is available. We have
proposed a supervised single channel speech enhancement algorithm in this paper based on a deep neural
network (DNN) and less aggressive Wiener filtering as additional DNN layer. During the training stage
the network learns and predicts the magnitude spectrums of the clean and noise signals from input
noisy speech acoustic features. Relative spectral transform-perceptual linear prediction (RASTA-PLP) is
used in the proposed method to extract the acoustic features at the frame level. Autoregressive moving
average (ARMA) filter is applied to smooth the temporal curves of extracted features. The trained
network predicts the coefficients to construct a ratio mask based on mean square error (MSE) objective
cost function. The less aggressive Wiener filter is placed as an additional layer on the top of a DNN
to produce an enhanced magnitude spectrum. Finally, the noisy speech phase is used to reconstruct
the enhanced speech. The experimental results demonstrate that the proposed DNN framework with
less aggressive Wiener filtering outperforms the competing speech enhancement methods in terms of the
speech quality and intelligibility.

Keywords: deep neural network; intelligibility; speech enhancement; speech quality; supervised learning;
Wiener filtering.

1. Introduction

Speech enhancement reduces the background noise
and improves the quality and intelligibility of the
degraded speech utterances in noisy conditions and
has many applications, for example, hearing aid, mo-
bile communication and automatic speech recognition
(ASR). Single channel based speech enhancement is
possibly the most desirable from application view-
point. Compared to the multi channel, a single channel
is less affected by the room reverberation and spatial
sources. A number of single channel speech enhance-

ment methods are available in literature, for example,
minimum mean squared error (MMSE) (Ephraim,
Malah, 1984); log MMSE (LMMSE) (Ephraim, Ma-
lah, 1985) estimation, spectral subtraction (Boll,
1979), Wiener filtering (WF) (Scalart, 1996), and
many others, including (Saleem, Irfan, 2017; Kim
et al., 2012; Xu et al., 2017; Kolbk et al., 2017;
Doire et al., 2017; Sun et al., 2016a; 2016b). The
methods in (Ephraim, Malah, 1984; 1985; Boll,
1979; Scalart, 1996) are usually less efficient in
strong noisy conditions and assume stationarity of the
noise signals, therefore, they perform poorly in non-
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stationary noisy conditions. Statistical model based
methods (Gerkmann, Hendriks, 2012; Schwerin,
Paliwal, 2014) show improved results in good signal-
to-noise ratio (SNR). In contrast, model based meth-
ods showed promising results in strong noisy condi-
tions. Methods in (Hershey et al., 2010; Narayanan,
Wang, 2013) constructed probabilistic models which
are based on the prior knowledge and showed con-
siderable performance gain. The computational audi-
tory scene analysis (CASA) based methods (Wang,
Brown, 2006; Wang, Wang, 2013) replicate the pro-
cess of human auditory system by exploiting the signal
processing techniques and group them into an audi-
tory stream using psycho-acoustic cues. In such meth-
ods, the speech enhancement is carried out as a bi-
nary classification problem to estimate the ideal bi-
nary mask (IBM) and ideal ratio mask (IRM) (Wang,
2005) and shows robustness to nonstationary noise
sources in a wide range of acoustic conditions. IBM
improves the speech quality and has been shown to
improve speech intelligibility (Roman, Woodruff,
2013; Li, Loizou, 2008; Saleem et al., 2015). Non-
negative matrix factorisation (NMF) is extensively
used as a model based method for reducing of non-
stationary noise signals (Mohammadiha et al., 2013;
Sun et al., 2015). In NMF, nonnegative data matrices
are estimated from the product of basis and encod-
ing matrices containing nonnegative elements. How-
ever, NMF is considered as a linear model that can-
not extract the complex features and is not effec-
tive as compared to non linear models. The empiri-
cal mode decomposition (EMD) gained enormous at-
tention in speech enhancement. It is a pioneer work
proposed by (Chatlani, Soraghan, 2012) where
EMD is used as post filtering to reduce musical noise.
A speech enhancement method is proposed by (Zao
et al., 2014) based on EMD and Hurst based intrinsic
mode function (IMF) selection criterion. The Hurst ex-
ponent statistics is used to classify and choose IMFs
which are notably affected by noise components. The
restoration of enhanced speech is based on least de-
graded IMFs.

Recently, deep learning is used in speech enhance-
ment (Xu et al., 2014), which is a learning method
with multiple layers representation. This representa-
tion is achieved by using a nonlinear module where
each layer transforms the representation from a lower
to a higher level. A regression based DNN is proposed
by (Xu et al., 2015) where the DNN framework is
considered to estimate clean speech from the noisy
speech. The huge training set of 104 noise sources is
used to train a network. A DNN framework is pro-
posed in (Wang et al., 2014) to train diverse targets,
including IBM, ideal ratio mask (IRM), FFT-mask,
Gammatone frequency power spectrum (GFPS), and
short-time Fourier transform (STFT) spectral magni-
tude for supervised speech separation. A joint optimi-

sation of masking functions and deep recurrent neural
networks (DRNN) for monaural source separation task
is proposed by (Huang et al., 2015). The joint opti-
misation of DRNN with an additional masking layer
enforces a discriminative training approach for DNN
to further improve the separation performance. Here
we present a speech enhancement method which adds
a less aggressive Wiener filter as an additional layer
in a DNN framework to increase speech intelligibility
and quality in adverse noisy conditions. A comparative
performance study is carried out to access the perfor-
mance of the proposed method in diverse noisy condi-
tions in terms of the speech quality and intelligibility.
Five competing speech enhancement methods are used
for comparison purpose. The Matlab R2015b is used to
develop the proposed method and all the simulations
and evaluations are performed using this simulation
platform. The remaining paper is organised as follows:
an overview of our method is presented in Sec. 2; the
experimental setup is presented in Sec. 3, while results
and discussions are presented in Sec. 4. Finally, the
concluding remarks are presented in Sec. 5.

2. Proposed speech enhancement overview

Consider a noisy speech Sm(t) which can be ex-
pressed as a sum of the clean speech and noise as:
Sm(t) = x(t)+d(t), where x(t) and d(t) show the clean
speech and additive noise signal, respectively. Usually,
Wiener filtering is applied as a soft mask to the DNN
outputs. However, in our method, we have combined
a DNN and a less aggressive Wiener filter (LW) (Chen,
Loizou, 2010) into a single structure. LW can synthe-
sise spectral components more efficiently as compared
to the conventional rigid Wiener filter, specifically the
components with low a priori SNR without over atten-
uation. The proposed deep neural network framework
is named as DNN+LW and shown in Fig. 1, where for
the given input features, the DNN+LW computes the
magnitude spectrums of the clean speech and noise sig-
nals. After acquiring magnitude spectrums, the LW is
used as an additional layer. The DNN framework is
trained by extracting acoustic features from the noisy
and clean speech signals based on RASTA-PLP, as
shown in Fig. 2. All acoustic features are extracted at
the frame level and coupled with delta features. A sec-
ond order (k = 2) ARMA filter is applied to smooth
the temporal curves of extracted features, and is given
by equation:

F̂ (t) = F̂ (t − k) + ... + F (t) + ... + F (t + k)
2k + 1

, (1)

where F (t) shows the feature vector at time t, F̂ (t)
are filtered feature vectors, and k shows the filter order.
The dropout and back propagation techniques are used
in the proposed method. Short time Fourier analysis is
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Fig. 1. Proposed DNN framework.

Fig. 2. RASTA-PLP extracted features for clean and noisy speech utterances.

applied to input signal and discrete Fourier transform
(DFT) is computed for all overlapping frames. DNN
predicts the magnitude spectrums of clean and noise

signals and the less aggressive Wiener filtering can be
seen as additional layer on the top of the DNN output
layer. The filtering process is as follows:
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X̃(ω, k)= ∣x̂(ω, k)∣2

∣x̂(ω, k)∣2 + ∣d̂ (ω, k)∣2
⊙ Ym(ω, k), (2)

X̃(ω, k)=
E {∣x̂(ω, k)∣2}

E {∣x̂(ω, k)∣2}+E {∣d̂ (ω, k)∣2}
⊙Ym(ω, k). (3)

The operator ⊙ shows elementwise multiplication
function and E{⋅} is expectation operator. In Eq. (3),
outputs of DNN, that is, x̂(ω, k) and d̂ (ω, k), are used
to compute gain, and Ym(ω, k) is magnitude spectrum
of the noisy speech. The gain G(ω, k) is a function of
a priori SNR ξ(ω, k) and a posteriori SNR γ(ω, k),
respectively, and is given as:

ξ(ω, k) =
E (∣X(ω, k)∣2)

E (∣D(ω, k)∣2)
,

γ(ω, k) = ∣Ym(ω, k)∣2

E (∣D(ω, k)∣2)
.

(4)

The gain of conventional and LW filtering is gi-
ven as:

GC(ω, k) = ξ(ω, k)
ξ(ω, k) + 1

,

GLW(ω, k) =
√
ξ(ω, k)

√
ξ(ω, k) + 1

.

(5)

Here, the conventional rigid Wiener filter GC(ω, k)
is replaced with less aggressive Wiener filtering
GLW(ω, k) because this gain can synthesise spectral
components, specifically those with low a priori SNRs
without any over-attenuation. The estimate of a priori
SNR is computed by using a modified version of de-
cision direct (DD) (Ephraim, Malah, 1984) approach
given as:

ξMDD(ω, k) = β
∣Ŝ(ω, k − 1)∣2

λD(ω, k − 1) + η(ω, k)

+ (1 − β) ⋅max [ ∣Y (ω, k)∣2

λD(ω, k) − 1, 0], (6)

η(ω, k) = α[ξ(ω, k − 1) − ξ(ω, k − 2)],
ξMDD(ω, k) is a priori SNR estimate using the modified
decision direct method, β is the smoothing parameter
(β = 0.98), α is the momentum parameter (α = 0.99),
η(ω, k) is momentum terms, and λD(ω, k) is the es-
timate of background noise variance. The magnitude
spectrum of noisy speech Ym(ω, k) is multiplied with
GLW(ω, k) gain. During the enhancement stage, the
trained DNN is fed with acoustic features to obtain
the enhanced speech. The phase is appended from the
noisy speech as it is not useful for human auditory
perception. Finally, the enhanced speech is obtained
by taking inverse DFT and overlap-and-add method.

3. Experimental setting

A dataset composed of 720 IEEE utterances
(Rothauser, 1969) is used as training utterances,
whereas the testing set consists of 250 utterances from
unknown speakers of both genders. We used five noise
sources from AURORA dataset (Hirsch, Pearce,
2000) in the training and testing process. The noise
sources include: airport, babble, car, street, and train.
The spectrograms of the noise sources are given in
Fig. 3. All noise sources are considered nonstationary
and the duration of each noise source is around 3.5
minutes.

a) b)

c) d)

e) f)

Fig. 3. Spectrograms of noise sources used in experiments.

In order to formulate the training set, random cuts
from the first half of all noise sources are used and
mixed with clean utterances at −10 dB, −6 dB, −2 dB,
2 dB, 6 dB, and 10 dB SNR, respectively. The test-
ing mixtures are formulated by mixing random cuts
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from the second half of all noise sources. In our pro-
posed method, DNN framework used three hidden lay-
ers. Each layer contains 1024 hidden units and the sig-
moid function is used as an activation function. The
standard back propagation method is used to train the
network. To circumvent the mismatch between train-
ing and testing, the dropout regularisation method
(Seltzer et al., 2013) is adopted to improve the gen-
eralisation of DNN. The dropout rate is fixed at 0.2
and no unsupervised pretraining is used. The adaptive
gradient descent (AGD) method (Duchi et al., 2011)
is tied with a momentum term ς to optimise the pro-
posed DNN. For first 4 epochs, the momentum rate
is set at 0.6, while the rate is increased and fixed at
0.8 in the remaining epochs. The mean square error
(MSE) is used as the objective cost function to re-
duce errors during the training. For evaluation pur-
pose, we have adopted the frequency weighted seg-
mental SNR (FwSNRSeg) (Krishnamoorthy, 2011)
and short time objective intelligibility (STOI) (Taal
et al., 2011) to measure objective speech intelligibility.
STOI scores are computed by correlating the clean and
enhanced speech signals and this measure has shown
a strong connection to the human speech intelligibility.
FwSNRSeg is preferred as an objective intelligibility
measure since it showed a strong correlation to subjec-
tive speech intelligibility (Hu, Loizou, 2008). To mea-
sure objective speech quality, perceptual evaluation of

Table 1. The objective quality analysis using PESQ.

Methods −10 dB −6 dB −2 dB 2 dB 6 dB 10 dB −10 dB −6 dB −2 dB 2 dB 6 dB 10 dB

Airport noise Babble noise

MMSE 1.19 1.42 1.73 2.01 2.31 2.41 1.17 1.40 1.58 1.79 2.11 2.34

LMMSE 1.31 1.66 1.91 2.19 2.44 2.76 1.23 1.41 1.65 1.83 2.19 2.43

NMF 1.29 1.61 1.88 2.18 2.38 2.68 1.29 1.38 1.81 1.92 2.20 2.54

WF 1.23 1.51 1.78 2.02 2.21 2.55 1.21 1.43 1.66 1.86 2.18 2.44

DNN 1.58 1.82 2.12 2.38 2.65 2.91 1.42 1.68 1.92 2.22 2.52 2.75

DNN+LW 1.69 1.91 2.18 2.45 2.78 2.96 1.58 1.87 2.15 2.35 2.70 2.94

Factory Noise Street Noise

MMSE 1.21 1.48 1.78 2.09 2.21 2.57 1.18 1.47 1.78 2.03 2.21 2.54

LMMSE 1.27 1.57 1.83 2.16 2.34 2.68 1.23 1.67 1.91 2.01 2.33 2.67

NMF 1.30 1.41 1.88 2.02 2.14 2.47 1.42 1.65 1.88 2.11 2.32 2.47

WF 1.22 1.47 1.75 2.06 2.24 2.58 1.28 1.78 1.94 2.02 2.21 2.65

DNN 1.41 1.79 1.90 2.19 2.46 2.76 1.47 1.82 2.01 2.23 2.52 2.81

DNN+LW 1.47 1.83 2.02 2.30 2.53 2.87 1.55 1.91 2.13 2.31 2.59 2.88

Subway Noise Train Noise

MMSE 1.16 1.39 1.76 2.04 2.21 2.44 1.66 1.99 2.22 2.45 2.66 2.82

LMMSE 1.21 1.52 1.88 2.11 2.35 2.51 1.72 2.08 2.33 2.58 2.70 2.86

NMF 1.18 1.48 1.71 2.09 2.21 2.45 1.65 1.89 2.29 2.55 2.49 2.85

WF 1.02 1.31 1.54 1.82 2.09 2.35 1.66 1.92 2.16 2.43 2.63 2.85

DNN 1.63 1.77 2.06 2.26 2.46 2.68 1.91 2.17 2.44 2.75 2.95 3.18

DNN+LW 1.66 1.88 2.15 2.37 2.65 2.71 2.07 2.32 2.58 2.96 3.01 3.27

speech quality (PESQ) is adopted (Rix et al., 2001).
The range of STOI scores is from 0 to 1, whereas for
PESQ scores, the range is from −0.5 to 4.5. SNR based
measure is used to evaluate the performance of the
speech enhancement methods. However, standard SNR
measure does not present a good correlation with the
speech quality because averaging over the entire signal
length can remove crucial speech contents. To handle
this problem, the segmental SNR (SNRSeg) is used,
which computes SNR in short segments. We consid-
ered this measure to examine the noise suppression in
the synthesised speech. Four competing methods are
chosen for performance comparison with the proposed
method. The competing methods include spectral sub-
traction, Weiner filtering, LMMSE, and NMF.

4. Results and discussions

To evaluate the performance at all input SNRs, we
have given mean and the best performance values of
DNN, MMSE, LMMSE, NMF, WF, and DNN+LW.

4.1. Comparison with competing methods

Table 1 shows comparison of DNN+LW and com-
peting methods in terms of PESQ, used to examine the
overall quality of the synthesised speech. We have no-
ticed that DNN+LW achieved consistent higher PESQ
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scores at all input SNRs, however, a less significant
PESQ scores are achieved in some noisy conditions at
high SNRs. Considerable PESQ scores are attained by
the DNN+LW at low SNRs, i.e., −10 dB, −6 dB, and
−2 dB, in all noisy conditions. MMSE, LMMSE, NMF,
and WF methods have lost considerable speech quality
as compared to DNN+LW. For instance, the average
predicted PESQ scores in airport noise are improved
from 2.06 with LMMSE to 2.32 with DNN+LW. In
the same way, for train noise, the average scores are
improved from 2.27 with WF to 2.70 with DNN+LW.
Also, the average PESQ scores in babble noise are im-
proved from 2.08 with competing DNN to 2.26 with
DNN+LW.

The overall average PESQ scores across all noise
sources are improved from 1.28 with unprocessed
noisy speech to 1.85 with DNN+LW at −10 dB and
−6 dB. The highest and lowest PESQ improvements
are achieved at −10 dB train noise and 10 dB babble
noise, i.e., ∆PESQ = 0.63 and ∆PESQ = 0.54, respec-
tively. Table 2 shows the comparison of DNN+LW
and competing methods in terms of SNRSeg, used
to examine noise suppression in synthesised speech.
The results indicate that DNN+LW significantly
reduced the background noise and achieved better
SNRSeg scores in all noisy conditions and at all
SNRs consistently. High values of SNRSeg measure
at low SNRs (−10 dB and −6 dB) indicate that the

Table 2. The objective quality analysis using SNRSeg.

Methods −10 dB −6 dB −2 dB 2 dB 6 dB 10 dB −10 dB −6 dB −2 dB 2 dB 6 dB 10 dB

Airport noise Babble noise

MMSE 0.26 0.36 1.00 2.49 3.86 5.65 0.31 0.70 1.38 2.35 3.87 5.76

LMMSE 0.31 0.86 1.81 3.12 5.04 7.03 0.17 0.47 1.24 2.75 4.77 6.93

NMF 0.37 1.21 1.92 3.22 4.32 5.97 0.20 0.56 1.41 2.30 3.07 4.95

WF 0.40 0.81 1.65 3.42 5.11 6.98 0.22 0.62 1.49 3.08 4.64 6.78

DNN 1.52 2.56 3.54 4.92 6.43 8.01 1.48 2.01 2.98 4.46 5.96 7.50

DNN+LW 1.63 2.74 3.72 5.04 6.54 8.25 1.57 2.07 3.11 4.60 6.05 7.67

Factory Noise Street Noise

MMSE 0.14 0.42 1.12 2.23 3.94 5.68 0.12 0.44 1.15 2.21 3.83 5.56

LMMSE 0.42 1.07 2.07 4.02 5.75 7.03 0.23 1.03 1.63 3.34 4.97 6.98

NMF 0.43 0.98 2.01 3.08 4.11 6.24 0.24 0.93 1.54 3.14 3.94 5.92

WF 0.45 1.22 2.23 3.86 5.70 7.12 0.44 1.28 3.17 3.84 5.18 7.51

DNN 1.43 1.59 2.83 4.28 5.59 7.21 1.77 2.59 3.69 4.65 6.61 8.09

DNN+LW 1.57 1.97 2.97 4.52 5.98 7.92 1.84 2.67 3.92 5.44 6.74 8.32

Subway Noise Train Noise

MMSE 0.11 0.19 0.35 0.64 1.15 2.08 0.22 0.57 1.21 2.43 3.87 5.98

LMMSE 0.52 1.14 2.11 3.76 5.35 7.33 0.79 1.81 3.31 4.62 6.75 8.37

NMF 0.17 0.57 1.98 2.19 3.12 4.98 0.57 1.29 2.97 4.22 5.43 7.11

WF 0.21 1.09 2.08 3.69 5.32 7.39 0.67 1.95 3.36 4.60 6.32 8.23

DNN 1.43 2.44 3.65 5.10 6.13 7.42 2.07 3.18 4.40 6.25 7.28 8.69

DNN+LW 1.45 2.45 3.71 5.43 6.64 8.24 2.11 3.28 4.70 6.28 7.43 8.98

DNN+LW based speech enhancement has the great
capacity to reduce noise in adverse noisy conditions.
In terms of SNRSeg, the DNN+LW performed better
in train noisy condition and achieved the highest
scores as compared to other competing methods. The
average predicted SNRSeg scores in factory, subway,
and street noise are improved from 3.38, 3.29, and
3.57 with WF to 4.65, 4.68, and 4.82, respectively,
with DNN+LW. Similarly, average SNRSeg scores
in five noise sources are improved from 4.28 with
DNN to 4.51 with DNN+LW. Within-competing
methods comparison, in terms of SNRSeg, the WF
performed equally well for most SNR conditions and
five noise sources, except for a few SNR conditions.
For instance, the average SNRSeg scores in factory
noise are improved from 2.25, 3.39, and 2.80 with
MMSE, LMMSE, and NMF to 3.43 with WF. Speech
enhancement mainly involves noise suppressing, so
that to improve the quality of the noisy speech. But,
in speech recognition, the intelligibility is the key
attribute. The intelligibility scores for all methods
are predicted using STOI measure, presented in
Fig. 4. The highest and lowest STOI scores for
DNN+LW are achieved at train and babble noise,
respectively. All five noise sources led to the high
intelligibility scores (STOI ≥ 80%) for SNR = 10 dB.
However, large differences in STOI scores are found
at low SNRs. DNN+LW outperformed the competing
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Fig. 4. Speech intelligibility scores using STOI.

Fig. 5. Speech intelligibility scores using FwSNRSeg.
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methods at all SNRs and led to the best overall average
prediction rate: 88.51%. Note from the Fig. 4, as com-
pared to MMSE, LMMSE, NMF, and WF, that the
DNN+LW achieved the best average STOI scores in
five nonstationary noisy conditions. For instance, the
predicted STOI scores are improved from 61.51% with
MMSE to 83.16% with DNN+LW. The average STOI
scores for LMMSE, NMF, WF, and DNN are 66.16%,
73.1%, 74.16%, and 80.60%, respectively. Finally, the
FwSNRSeg is used, which showed a high correlation
with subjective speech intelligibility. Large FwSNRSeg
scores describe improved intelligibility. Figure 5 gives
FwSNRSeg scores obtained with DNN+LW and com-
peting methods. The average comparison shows that
DNN+LW achieved the best scores at all input SNRs
for five nonstationary noise sources as compared to
competing methods. When compared to the baseline

a) b) c)

d) e) f)

g) h)

Fig. 6. Spectrogram analysis: a) clean speech, b) noisy speech, c) speech processed by LMMSE, d) speech processed by
MMSE, e) speech processed by NMF, f) speech processed by Weiner filtering, g) speech processed by DNN, and h) speech

processed by DNN+LW.

DNN, DNN+LW achieved the best FwSNRSeg scores
at all noise sources. Average scores demonstrate that
DNN+LW performed very well at all SNRs in terms
of STOI and FwSNRSeg. The experimental outcomes
verify the superiority of DNN+LW-based speech en-
hancement in terms of speech intelligibility.

4.2. Spectrogram analysis

For obtaining further understanding about the
residual noise we have examined the time varying
spectrograms. Figure 6 shows the spectrograms of
DNN+LW and competing methods. A speech utterance
is contaminated by airport noise at +2 dB SNR, and
has PESQ = 1.98 and SNRSeg = 2.42 dB. By exam-
ining spectrograms in Fig. 6c–h harmonic spectrums
of the vowels are retained. Hence, the DNN+LW and
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competing methods did not suffer badly from over-
attenuation. However, large residual noise is evident
in spectrograms of MMSE, LMMSE, NMF, and WF.
During speech-pause areas, the DNN+LW are adequate
in removing background noise as compared to other
methods. Weak harmonic structures in high frequency
subbands are retained by DNN+LW. That is why, per-
ceptual quality of DNN+LW speech is better than that
of the competing methods. The residual noise is evi-
dent in the spectrogram showing the output speech
of DNN, shown in Fig. 6g, which is considerably re-
duced in the spectrogram showing the output speech
of DNN+LW, shown in Fig. 6h. The weak energy con-
tents are well preserved by DNN+LW, resulting in less
speech distortion.

5. Conclusion

A supervised single-channel speech enhancement
algorithm based on deep neural network (DNN) and
less aggressive Weiner filtering gain is proposed in this
paper. Usually, Wiener filtering is used as a soft mask
to DNN outputs, but we have used DNN and less
aggressive Wiener filter in a single framework. Four
performance metrics and five competing methods are
used in experiments to evaluate the performance of the
proposed speech enhancement method. To summarise,
the DNN+LW outperformed by yielding a high speech
quality and the background noise is excellently reduced
with less residual noise. Also, DNN+LW showed the
highest intelligibility scores in all noise sources.
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