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Most of sound sources are complex vibroacoustic objects consist of numerous elements. Some coupled
vibrating plates of different shapes and sizes can be easily found in urban environments. The main aim
of this study is to determine the sound radiation of coupled plates system of practical importance. The
investigated vibroacoustic system consist of a thin circular plate coupled with a thick flat baffle with
a circular hole. The circular plate has been mounted to the baffle’s hole using screws and two steel rings.
The measurement setup was located inside a semi-anechoic chamber to assure the free field conditions. It
was necessary to take into account the whole system surface to obtain the radiation efficiency based on the
Hashimoto’s method. Such an approach can be troublesome and time-consuming. Therefore, the criterion
has been proposed which allows the vibration velocity measurements and calculations to be performed
only for the thin plate’s area. An alternative approach has been proposed based on the classical Rayleigh
integral formula. Its advantage is a simpler implementation in a computer code. The obtained results have
been compared with the theoretical results obtained for the elastically supported circular plate. A good
agreement has been obtained at low frequencies.
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1. Introduction

In practice, many real sound sources are com-
plex vibroacoustic system of coupled vibrating struc-
tures. In many cases, the vibroacoustic objects con-
sist of plates with different shapes, sizes as well as
boundary configurations. The plates are commonly
used in different branches of industry. They are ele-
ments of covers, transducers, microphones, windows,
etc. Vibroacoustic properties of such elements are im-
portant. Therefore, radiation efficiency, acoustic in-
sulation, acoustic impedance as well as vibration re-
sponses and acoustic fields associated are under con-
stant focus of many researchers. Theoretical stud-
ies, though numerous, are often complex and there-
fore limited to the simplest cases (Kwak, Kim, 1991;
Amabili et al., 1996; Lee, Singh, 1994; Rdzanek
et al., 2003; 2007; 2016; Wiciak, 2007; Oberst et al.,
2013; Jeong, 2003; Jeong, Kim, 2005; Gazizullin,
Paimushin, 2016; Hasheminejad, Afsharmanesh,
2014; Christiansen et al., 2014; Shahraeeni et al.,
2015; Squicciarini et al., 2015; Liu et al., 2017).

Consequently, experimental methods of analysis are
widely accepted due to obvious shortcomings and lim-
itations of the theoretical methods. The results of
both theoretical and experimental investigations are
often used in different practical applications such as
active control of noise and vibrations (Leniowska,
2006; Branski, Szela, 2011; Mazur, Pawełczyk,
2011; Kozupa, Wiciak, 2011; Yuan et al., 2011;
2012; Leniowska, Mazan, 2015; Hasheminejad,
Keshavarzpour, 2016; Mazur, Pawełczyk, 2016;
Beigelbeck et al., 2013; Sun et al., 2015), sen-
sors and speakers (Vishwakarma et al., 2014; Chi-
ang, Huang, 2015; 2018), and some modal tests
(Matthews et al., 2014; Robin et al., 2016; Zhao
et al., 2016; Kamper, Bekker, 2017). The discretisa-
tion technique has been used to investigate the sound
radiation inside a layer bounded by two walls (D́ıaz-
Cereceda et al., 2012). The method of measuring the
radiation efficiency of vibrating flat structures by its
discretization has been widely accepted. The method
has been originally proposed by Hashimoto (2001).
Further, it has been developed significantly by Arenas
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and Crocker (2002), Arenas (2008; 2009a; 2009b;
2010). The Hashimoto’s method has been further de-
veloped theoretically by Luo et al. (2015). The method
was also used for some other theoretical and experi-
mental analyses of the radiation efficiency of vibrating
surface sources by Hu and Shang (2012), Xiaoqing
et al. (2014), Kolber et al. (2014), Wang and Xiang
(2017), Jiang et al. (2017), Langfeldt et al. (2018),
Jung et al. (2017).

A thin plate mounted to a thick flat screen consti-
tutes a coupled system of practical importance. Such
a vibroacoustic system can be easily found in archi-
tecture as well as in industry. It can be considered as
a cover or window represented by a thin plate embed-
ded in a building wall which is thick flat baffle. This
study is focused on determining the radiation efficiency
of a system of the two coupled plates. The investigated
object is the thin steel circular plate with a point ex-
citation embedded in a flat thick rectangular baffle. In
order to make the analyzed problem more practical,
the circular plate has been mounted to the flat screen
using one of the most common mounting method, i.e.,
the mounting by means of screws. The radiation ef-
ficiency of the considered system can been obtained
based on the Hashimoto’s method. However, this ap-
proach is time-consuming, troublesome or even impos-
sible when a sound source surface has to be divided
into a large number of discrete elements. Hence, it is
necessary to propose the procedure which allows an ap-
proximate value of the radiation efficiency to be found
in a convenient way. Although the baffle and the circu-
lar plate constitute a system of two coupled plates, the
baffle is much thicker than the circular plate. There-
fore it is supposed that for some frequencies the effect
of vibrational interactions between the two plates can
be neglected which makes the baffle’s vibration veloc-
ity much smaller than the vibration velocity of the cir-
cular plate. The criterion for such a negligence will be
described later on in more detailed way. Generally it is
accepted that if the means square vibration velocity on
the baffle is much smaller than on the circular plate,
the negligence can be applied. This means that in some
cases, the baffle’s contribution to the sound radiation
can be negligible small and the radiation efficiency of
the coupled plates can be approximately determined
as the radiation efficiency of the thin plate only. This
allows the vibration velocity measurements as well as
calculations to be performed only for the thin plate
area and consequently reduces measurement procedure
complexity. Therefore, another aim of this study is to
define the criterion to indicate the conditions for which
such simplification is possible.

2. Normalized sound power

The normalized sound power, one of the fundamen-
tal quantities describing the properties of an acoustic

source, can be calculated from the following formula
(cf. Skudrzyk (1971) Sec. 28.3 Eqs. (18)–(24); and
Arenas (2009a) Eq. (15))

Π/Π(∞) = σ − iκ, (1)

where Π is the time average complex sound power,
Π(∞) = limk→∞Π = ρ0cS

〈
|v|2
〉
S

is the reference
sound power radiated for the infinite value of the
acoustic wavenumber k = 2πf/c, f is the vibration
frequency, S is the sound source area, c and ρ0 denote
the speed of sound and the density of air, respectively,

〈
|v|2
〉
Sa

=
1

2Sa

∫
Sa

|v|2 dSa, (2)

is the time-averaged mean square vibration velocity
calculated for an arbitrary surface Sa enclosing the
sound source (cf. Arenas (2009a) Eq. (16)), σ is the
radiation efficiency and κ = 2πfµ is the added mass
coefficient, µ is the total effective mass of the plate (af-
ter Skudrzyk (1971) Sec. 28.3 the text after Eq. (19)),
and i is the imaginary unit. To determine the quanti-
ties σ and κ, it is necessary to find the sound power.
The experimental investigations of the sound power
based on the measurements of the sound intensity are
troublesome and time-consuming. However, this quan-
tity can be approximately determined in more conve-
nient way by measuring only the vibration velocity at
some discrete source points. Based on the impedance
approach, the sound power can be expressed as (cf.
Skudrzyk (1971) Sec. 28.3 Eq. (18))

Π =
1

2

∫
S

pv∗ dS, (3)

where p is the acoustic pressure, v is the normal com-
ponent of the vibration velocity of source points and
the symbol ∗ denotes the conjugate of any complex
quantity.

The sound power can be calculated with the use of
the two different methods. To use these methods, it is
necessary to discretize the source surface, i.e., to divide
it into virtual elements whose dimensions are small
compared with the acoustic wave length λ. The vibra-
tion velocity is assumed to be uniformly distributed on
the surface of each particular element. It is also con-
venient to divide a source surface into elements of the
same areas ∆S which simplifies the obtained formulas.
In the case of a circular source, such a discretization
has been proposed by Arenas (2009a) (cf. his Sec. 2.3
and Fig. 1). It has been assumed that the locations of
the central points of the elements are given by the set
of vectors ru for u = 1, 2, . . . ,W , where W is the num-
ber of elements. The time-average mean square vibra-
tion velocity for an arbitrary discretized surface Sa, in
the case when all the virtual elements have the same



K. Szemela et al. – The Radiation Efficiency Measurements of Real System. . . 415

area ∆S, can be calculated as (cf. Arenas (2009a)
Eq. (17)) 〈

|v|2
〉
Sa

=
∆S

2Sa

∑
u

|vu|2, (4)

where vu = v(ru) is the vibration velocity of the u-th
element and the summation is performed over all the
elements located on the surface Sa. After calculating
the sound power Π, the radiation efficiency σ as well
as the added mass coefficient κ can be obtained with
by using Eqs. (1) and (4).

3. The Hashimoto’s method

The sound power can be determined using the
Hashimoto’s method. This method is based on the as-
sumption that the u-th virtual element can be consid-
ered as the piston of the vibration velocity vu and the
area ∆S. Then, using Eq. (3) results in (Hashimoto
(2001) Eq. (3))

Π ' 1

2
Z(self)

W∑
u=1

|vu|2 +

W∑
u=2

u−1∑
q=1

Z(mut.)
u,q Re(vuv

∗
q ), (5)

where Re(·) gives the real part of a complex quantity,

Z(self) = ρ0c∆S

[
1− J1(2ka0)

ka0
− i

H1(2ka0)

ka0

]
, (6)

is the self impedance (Hashimoto (2001) Eq. (1); cf.
also Pritchard (1960) Eqs. (9) and (10)), J1(·) is the
Bessel function of first order, H1(·) is the Struve func-
tion of first order, a0 =

√
∆S/π is the piston radius,

and

Z(mut.)
u,q = −2i ρ0c∆SJ2

1 (ka0)
eik|ru−rq|

k|ru − rq|
, (7)

is the mutual impedance (Hashimoto (2001) Eq. (2);
cf. also Pritchard (1960) Eq. (12)). The number of
terms in Eq. (5) has been reduced taking into account
that Z(mut.)

u,q = Z
(mut.)
q,u and vuv

∗
q + vqv

∗
u = 2Re(vuv

∗
q )

which significantly improves the sound power calcula-
tions.

4. The Rayleigh’s method

The sound power from Eq. (3) can be formulated
for the discretized source surface as

Π ' ∆S

2

W∑
u=1

puv
∗
u, (8)

where pu = p(ru) is the sound pressure at the central
point of the u-th element, and the integration of con-
tinuous quantity pv∗ has been replaced by the summa-
tion of the discrete elements on a sound source surface
leading to approximate results. The quantity pu can be

found using the Rayleigh’s first integral (cf. Rayleigh
(1896) Sec. 278)

p(r) = −ifρ0

∫
S

v(rS)
eik|r−rS |

|r− rS |
dS, (9)

where r is the vector indicating field point, rS is the
source point vector. The above formula has been pre-
sented in the discrete form by using the auxiliary dis-
cretization. The area of each element of the auxiliary
discretization is equal to ∆S and the locations of the
elements’ central points are given by the set of vectors
r′q for q = 1, . . . ,W . Next, the formula from Eq. (9)
can be expressed as

p(r) ' −ifρ0∆S

W∑
q=1

v′q
eik|r−r′q|

|r− r′q|
, (10)

where v′q = v(r′q). Taking into account the singularity
in Eq. (10), it is clear that the sound pressure pu can
be calculated only for the auxiliary discretization per-
formed so that ru 6= r′q for u, q = 1, . . . ,W . Finally,
inserting Eq. (10) into Eq. (8) leads to

Π ' −1

2
ifρ0∆S2

W∑
u=1

W∑
q=1

v′q
eik|ru−r′q|

|ru − r′q|
v∗u. (11)

The above formula is equivalent for the formula from
Eq. (5). In the further analysis, the results given by
both formulas as well as their computational efficien-
cies have been discussed.

5. Measurement setup and instruments

The investigated object was a steel circular plate
with the radius a = 0.15 m and the thickness h =
1 mm. It was mounted with the use of eight screws
and two steel rings to a flat chipboard of the thickness
28 mm and with the width and the length equal to
1.7 m (see Fig. 1). The flat chipboard was considered
as a baffle. It was situated on four columns filled with

Fig. 1. The investigated circular plate, mounting screws
and steel ring.
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sand which ensured a vibroacoustic insulation from vi-
brations of a building floor (see Fig. 2). The distance
between the baffle and the chamber floor was equal
to 72 cm. To reduce an influence of reflected waves as
well as some other acoustics disturbances, the measure-
ment setup has been placed inside the semi-anechoic
chamber. The chamber’s walls and ceiling are covered
with wedges which absorb acoustic waves for frequen-
cies f > 200 Hz. The chamber floor is a reflected sur-
face. Therefore, some acoustic waves reflected from the
floor can disturb acoustic measurements. This effect
is particularly strong when the amplitude of acoustic
pressure generated by some acoustic waves reflected
from the floor has a maximum (see Appendix A). The
plate vibrations were generated by a point excitation
realized with the help of the shaker The Modal Shop
2075E. The excited point was asymmetrically located
in the distance 0.75a from the plate center. This al-
lowed some asymmetric modes to be strongly excited.
The time dependence of the plate excitation was as-
sumed in the form of the white noise which caused
that the acoustic behavior of the considered system can
be investigated for a whole analyzed frequency range.
Moreover, the amplitude of excitation force was cho-
sen so that the plate deflections can be small enough
to describe its vibrations by the plate linear model.
As a result of measurements, the vibration velocity of
the plate as well as the baffle was determined using the
Polytec PDV-100 vibrometer. Additionally, the value
of excitation force F was measured by means of the
PCB Piezotronics 208C03 force sensor. The measure-
ments and data aggregation were performed with the
use of the LMS Scadas Mobile data acquisition device
and the LMS Test.Xpress software.

Fig. 2. The measurement setup placed inside
the semi-anechoic chamber.

6. Vibration velocity measurements

In order to determine the measuring points’ lo-
cations, the polar coordinate system with the origin
placed at the thin plate central point and the radial
axis including the plate’s excited point has been intro-

duced. In this coordinate system, the position vector
has been defined as r0 = (r0, ϕ0), where r0 and ϕ0

are the radial coordinate and the angular coordinate,
respectively. Taking into account the construction of
measurement setup, it can be expected that the thin
plate’s vibrations can generate the vibrations of the
baffle. Hence, the considered sound source are the two
coupled plates. The vibration velocity measurements
were performed on the surface S1 containing the points
for which 0 < r0 ≤ a1 = 3a = 0.45 m. The measur-
ing points’ locations are given by the following set of
vectors r(m)

j = (r
(m)
j , ϕ

(m)
j ) where

r
(m)
j = 25b(j + 13)/15c [mm],

ϕ
(m)
j =

2π

15
mod(j − 2, 15)γj ,

(12)

j = 1, . . . , 271, bwc gives the greatest integer less than
or equal to w, mod(a, b) is the reminder after division
of a by b, γ1 = 0 and γj = 1 for j > 1. The vibra-
tion velocity has been measured for some selected thin
plate’s points to provide an accurate information about
a plate’s vibrational behavior. The measurements per-
formed at some baffle’s points allows its contribution
to the sound radiation of the considered system to be
estimated. Because of a small value of the applied ex-
citing force F [N], it has be assumed that the vibration
velocity is proportional to the value of F and the fol-
lowing relation is satisfied

v(r0) = β(r0)F, (13)

where β(r0) [m/(s·N)] is the proportionality coeffi-
cient. The main aim of measurements was to deter-
mine the function β(r0). For this purpose, the exciting
force was recorded as a function of time for each veloc-
ity measurement. The duration of measurement in the
case of each point was equal to 30 s and the sampling
frequency 12.8 kHz. Based on the measurement data
and making use of DFT (Discrete Fourier Transform),
in the case of each measuring point j, the vibration ve-
locity v(m)

j as well as the exciting force F (m)
j have been

obtained for the discrete values of frequency f = fn
where fn = n/30 Hz for n = 0, 1, . . . Then, making
use of Eq. (13) the values of the proportionality coef-
ficient have been obtained at the measuring points as
β(r(m)

j ) = v
(m)
j /F

(m)
j . Finally, using an interpolation,

the continuous functions β(r0) defined on the whole
investigated surface S1 have been determined for the
discrete frequencies fn. These interpolating functions
have been used in further numerical calculations.

7. Surface discretization

The considered circular surface S1 has been dis-
cretized according to the method proposed by Are-
nas (2009a) (cf. his Sec. 2.3 and Fig. 1). Firstly, the
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surface has been divided into rings of the same width
∆r = a1/N , where N is the number of rings. Then, in
order to obtain the elements of the same area ∆S =
π(∆r)2/4, the discretization has been perform assum-
ing that the ring of number j, where j = 1, . . . , N
contains 4(2j − 1) elements. The number of all the el-
ements is equal to W1 = 4N2 whereas the number of
elements located on the thin plate’s surface can be ex-
pressed as W = a2W1/a

2
1. The vectors defining the

locations of elements’ central points can be expressed
as ru = (ru, ϕu), where

ru = ∆r(εu − 1/2),

ϕu =
π
[
u− 4(εu − 1)2 − 1/2

]
2(2εu − 1)

,

(14)

u = 1, . . . ,W1, εu =
N−1∑
n=0

αn(u) gives the number of

ring on which the element is located, αn(u) = 1 when
u > 4n2 and αn(u) = 0 otherwise. The used surface
discretization has been shown in Fig. 3. The angular
size of the element depends on its number u and can
be expressed as (∆ϕ)u = π/[2(2εu − 1)]. Additionally,
the set of vectors r′q = (ru, ϕ

′
u), where

ϕ′u = ϕu − (∆ϕ)u/2 =
π
[
u− 4(εu − 1)2 − 1

]
2(2εu − 1)

, (15)

has been used for the auxiliary discretization in the
Rayleigh’s method.

Fig. 3. The location of some elements for used surface dis-
cretization proposed by Arenas (2009a) (cf. his Sec. 2.3
and Fig. 1), the vector ru defining the location of u-th ele-
ment and the coordinates (r0, ϕ0) of the position vector r0.

8. Numerical analysis

The numerical calculations has been performed for
the speed of sound equal to c = 345.757 m/s. It should
be noted that the normalized sound power does not
depend on the density of medium ρ0. The sound ra-
diation has been analyzed for the vibration frequen-
cies f ≤ 1.1 kHz, i.e., for λ > 0.314 m. It should

be noted that some acoustic waves reflected from the
floor generate the acoustic pressure which acts on
the plate surface. This pressure value has been es-
timated in Apppendix A. It has been shown that
the strongest influence of the waves reflected from
the floor on the plate vibrations can be observed in
the case when the vibration frequency is equal to
f = cn/(2l), where n = 0, 1, . . . , and l = 0.748 m is the
distance between the floor and the plate surface, which
gives f = 231.1 Hz, 462.2 Hz, 693.4 Hz, and 924.5 Hz.
Therefore, it can be expected that the measurement
results obtained for the vibration frequencies close to
these frequencies can not be accurate or even correct.
The discretization with the elements’ sizes smaller than
λ/6 has to be used to obtain some correct results. It
can be estimated that in this case, the relative error
is less than about 15%. However, as smaller the el-
ements’ sizes as more accurate results. Since the an-
alyzed object is the two coupled plates system, it is
necessary to assume that the element sizes should also
be much less than the shortest considered length of
the plate bending wave. Taking into account that the
vibration velocity amplitudes on the thin plate are
considerably greater than the vibration velocity ampli-
tudes on the baffle, it is enough to analyze the bend-
ing waves on the thin plate only. The length of the
bending wave on the thin plate is given by (cf. Leissa
(1969) Eq. (1.5); and Rao (2007) Eq. (14.225))

λp = 4
√

4π2D/(ρhf2), (16)

where D = Eh3/[12(1 − ν2)] is the plate’s bending
stiffness (cf. Leissa (1969) Eq. (1.2); and Rao (2007)
Eq. (14.19)), E denotes the Young’s modulus, ν is
the Poisson’s ratio and ρ is the plate’s density. It has
also been accepted that E = 210 GPa, ν = 0.3, and
ρ = 7850 kg/m3 for the considered steel plate. It re-
sults in λp > 0.1 m and implies that the element sizes
should be much less than 0.1 m. To satisfy this con-
dition, the discretization of surface S1 has been per-
formed for N = 75 which means that the considered
region has been divided into W1 = 4N2 = 22 500 el-
ements. It can be estimated that the element sizes
are equal to ∆r = a1/N = 6 mm and ∆S/∆r =
πa1/(4N) ≈ 5 mm. Now, knowing that λp/∆r > 16.7,
λp∆r/∆S > 20, λ/∆r > 52 and λ∆r/∆S > 62, the
elements can be considered as small enough and the
results of performed numerical analysis reliable.

8.1. Baffle’s contribution to the sound radiation
of the considered system

In order to determine the normalized sound power
of the considered coupled plates system, it is neces-
sary to taking into account the sound radiation by the
surfaces of both plates. The large baffle’s area causes
that the vibration velocity measurements can be time-
consuming. Moreover, the calculations of the sound
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power with the use Hashimoto’s method can also be
time-consuming or even impossible to perform which
is due to a large number of discretization elements.
Therefore, in such case, another methodology for de-
termining the sound power has to be proposed. Only
thin circular plate is excited hence it can be expected
that in some case, this plate gives a main contribution
to the sound radiation of the considered system. This
causes that the baffle’s contribution can be neglected
and the sound power of the considered system can
approximately be determined based on measurements
and calculations performed for the thin plate’s surface
only. This significantly reduces the number of points at
which the vibration velocity has to be measured and
makes the numerical calculations of the sound power
possible to perform. It is of practical importance to in-
dicate the conditions under which such simplification
can be used. For this purpose, the baffle’s contribution
to the sound radiation of the considered system should
be compared with the thin plate’s contribution. How-
ever, comparing the sound power emitted by the baffle
with the sound power radiated by the thin plate leads
to time-consuming calculations. Therefore, it has been
proposed that the contribution of vibrating surface to
the sound radiation by the considered system can be
estimated based on the time-average mean square vi-
bration velocity. This quantity given by Eq. (4) is much
easier to calculate than the sound power calculated
from Eq. (5). In the case of the whole analyzed surface
S1, the formula for

〈
|v|2
〉
S1

given by a single sum con-
tains W1 terms whereas the formula for Π expressed in
the form of double sums contains W1(W1+1)/2 terms.
Taking into account of numbers of terms in these for-
mulas, it can be estimated that the calculations time of
sound power is about (W1+1)/2 = 11 250 times longer
than the calculations time of time-average mean square
vibration velocity.

In order to indicate the cases for which the baf-
fle’s contribution can be neglected in the determining
the normalized sound power of the considered coupled
plates system, it is convenient to define the following
quotient

q =

〈
|v|2
〉
Sb〈

|v|2
〉
S

, (17)

where Sb is the baffle’s surface containing points for
which a < r0 ≤ a1. Making use of Eqs. (4) and (13),
the above definition can be expressed as

q =
S

Sb

W1∑
u=W+1

|βu|2

W∑
u=1

|βu|2
, (18)

where βu = β(ru). The quantity q depends only on
the values of the coefficient β(r0) and depends nei-
ther on the excitation force F nor on the vibration

velocity v. To show the thin plate’s vibration re-
sponse as well as the baffle’s contribution to the sound
power of the considered system, the normalized quan-
tity

〈
|v|2
〉
S
/F 2 [m2/(s2·N2)] calculated with the use

of Eqs. (4) and (13) and the quotient q have been pre-
sented in Fig. (4) as a function of the vibration fre-
quency.

It has been assumed that for q < 0.01, the baffle’s
contribution to the sound power of the considered sys-
tem is negligible small and the proposed methodology
to approximately determine the sound power of the an-
alyzed coupled plates as the sound power radiated only
by the thin plate can be employed. Figure 4 proves that
these cases occur for the wide frequency ranges, for ex-
ample, f ∈ (100, 200) Hz, f ∈ (350, 550) Hz as well as
f ∈ (850, 1100) Hz. Some small values of q have been
observed both for the vibration frequencies close to the
resonances frequencies and for some other ones. For
example, in Fig. 4b, the analyzed quantities has been
presented additionally for the narrow frequency range
related to one of the resonance frequencies. Based on
Fig. 4b, it can be concluded that for the vibration
frequencies close to the resonance frequency equal to
about 103 Hz, the thin plate gives a main contribution
to the sound power of the considered system and the
proposed methodology can be used. In the case of low
frequencies, i.e., when f < 80 Hz, the quotient q as-
sumes some greater values, q > 0.1 which shows a sig-
nificant baffle’s contribution to the sound radiation of
the considered system. Thus, it can be stated that the

a)

b)

Fig. 4. The quotient q given by Eq. (17) – solid line and
the normalized time-average mean square vibration velo-
city

〈
|v|2
〉
S
/F 2 – dashed line as the functions of vibration

frequency: a) whole analyzed frequency range, b) narrow
frequency range around the resonance frequency of the con-

sidered system.
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normalized sound power at low frequencies has to be
determined by taking into account the sound radiation
by surfaces of both plates.

8.2. Normalized sound power

Inserting Eq. (13) into Eqs. (4) and Eq. (5) or alter-
natively (11), the normalized sound power Π/Π(∞) can
be expressed by means of the proportional coefficient
β(r0). Because of the high computational complexity of
the analyzed problem, the numerical analysis has been
performed taking into account the thin plate’s sur-
face only. Therefore, the obtained results are valid for
the considered coupled plates system only in the case
when the baffle’s contribution is small enough to be ne-
glected, i.e., when the quotient q < 0.01. On the basis
of the measurement data and using the Hashimoto’s
method, the radiation efficiency σ and the added mass
coefficient κ have been calculated and presented in
Fig. 5 as the functions of the vibration frequency. The
imaginary part of self impedance Z(self) from Eq. (6) is
given by the Struve function of first order H1(x). The
numerical estimation of the value for this function can
be time consuming. Therefore, the following approxi-
mation proposed by Aarts and Janssen (2003) (cf.
their Eq. (16))

H1(x) ' 2

π
− J0(x) +

(
16

π
− 5

)
sinx

x

+

(
12− 36

π

)
1− cosx

x2
, (19)

has been used to improve the numerical calcula-
tions. In order to check the validity of the proposed
Rayleigh’s method, for comparison, the quantities σ
and κ have also been calculated from the formula given
by Eq. (11). Assuming that the results given by the
Hashimoto’s method are exact, the percentage relative
error has been estimated for the results obtained on
the basis of the Rayleigh’s method. The relative er-
ror for σ does not exceed 3%. The only exceptions are
very narrow frequency ranges for which it is greater
than 3% and does not exceed 12.2%. In the case of the
added mass coefficient κ, it has been estimated that
the relative error is less than 1% with the exception of
a very narrow frequency range for which it exceeds 1%
but is less than 4%. Taking into account the value of
the relative error, it can be stated that both method-
ologies lead to equivalent results. Taking into account
that the number of terms in Eq. (11) is about two times
greater than the number of terms in the formula from
Eq. (5), it is obvious that the Hashimoto’s method has
a greater computational efficiency than the Rayleigh’s
method. However, the advantage of the formula given
by Eq. (11) is the fact that it is not expressed by the
special functions such as the Bessel or Struve functions
which makes it easier for further implementations.

It is of interest to compare the experimental results
obtained for the thin plate with the results given by
a pure theoretical model. It gives the answer whether
the Hashimoto’s method is correct. The measurements
of the vibration velocity shown that the thin plate’s
vibrations are transmitted to the baffle by its edge.
Hence, the analyzed thin plate can not be considered
as the perfectly clamped circular plate. In order to the-
oretically predict its behavior, its boundary conditions
have to be describe with the use of more complicated
model. In the literature, the elastically supported edge,
whose properties are defined by two stiffness constants,
has been proposed to describe the real boundary con-
ditions. The sound power of the circular plate for such
boundary conditions has been discussed by Rdzanek
et al. (2003; 2007) in the case of the point excitation
and when the internal as well as acoustic damping are
neglected. It is of interest to examine whether this the-
oretical model is accurate enough to predict the sound
radiation of analyzed plate. For this purpose, it is nec-
essary to find the values of dimensionless stiffness con-
stants KW = KWa

3/D and Kψ = Kψa/D, where KW

and Kψ are the boundary stiffness constant associated
with the force counteracting the transverse deflection
of the plate’s edge and the rotary moment, respec-
tively. The normalized sound power has been calcu-
lated for some different values of KW and Kψ. Finally,
it has been assumed that KW = 1200 and Kψ = 1000
which allows the results obtained with the use of the
theoretical model to be as close as possible to those
obtained based on the measurements. In Fig. 5, for
comparison, the curves given by the theoretical for-
mulas have been presented together with the curves
obtained based on the measurement data. In the case
of σ, a good agreement between those curves is ob-
served for the vibration frequency f < 0.6 kHz with
the exception of some very narrow frequency ranges.
At higher frequencies, the results obtained with the use
of both methodology can significantly differ from each
other. This effect can be explained by the fact that the
increase in frequency leads to the increase in the size

Fig. 5. The radiation efficiency σ and the added mass co-
efficient κ as the functions of the vibration frequency. The
line keys: solid – obtained on the basis of measurement data
with the use of the Hashimoto’s method, dashed – obtained

from the theoretical model.
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of discretization elements compared with the length
of acoustic wave λ. For the added mass coefficient κ,
Fig. 5 shows a good agreement between experimental
and theoretical curve for the whole analyzed frequency
range.

9. Conclusions

The normalized sound power of the two coupled
plates system of practical importance has been ana-
lyzed. The considered object was the thin circular plate
with a point excitation which has been mounted to the
thick flat baffle. The results of the performed investi-
gations and analysis can be summarized as follows:

1) Taking into account that experimental investiga-
tions of the sound power are difficult or in some
cases even impossible, the useful methodology has
been proposed. This approach is based on the ob-
servation that in some cases the baffle’s contribu-
tion to the sound radiation can be neglected. The
criterion indicating these cases has been defined.

2) Based on the simple theoretical model, the fre-
quencies, for which the strongest influence of
acoustic waves reflected from the floor can occur,
have been indicated.

3) The equivalent formula for the Hashimoto’s
method has been presented without the use of the
special function such as the Bessel and the Struve
function. Its advantage is a simpler implementa-
tion in a programming language.

4) For comparison, the theoretical model of elasti-
cally supported plate has been used to determine
the normalized sound power of the thin circu-
lar plate which is the part of considered system.
A good agreement between theoretical and ex-
perimental results has been obtained in the case
when the vibration frequency is less than 0.6 kHz.
This proves that at low frequencies, the behav-
ior of a real circular plate can be predicted based
on the pure theoretical formulas. Moreover, it can
be concluded that the Hashimoto’s method gives
some accurate results only for the frequencies less
than 0.6 kHz.

Appendix

Eigenvalues of the fluid layer

The problem of the resonance frequencies of the
fluid layer can be considered roughly as a single di-
mensional problem. The simplifying assumption is that
the entire plane is vibrating with a uniform normal ve-
locity. The flat wave conditions can be actually satis-
fied in the rigid tube below the first non-zero eigen-
value (cf. Beranek (1996) Eq. (2.47), p. 32 for the
rigid termination; and Beranek and Mellow (2012)

Eq. (2.58), p. 38 for the impedance termination). The
acoustic pressure satisfies the following single dimen-
sional Helmholtz equation in the fluid layer

d2p

dz2
+ k2p = 0, (20)

for 0 > z > −l, and p(z, t) = p(z) exp(−iωt).
Generally, the impedance boundary condition can

be derived from the law of conservation of momentum
(cf. Kuttruff (2009) Eq. (1.2) p. 8)

∇p+ %0
∂v
∂t

= 0, (21)

and from the wall impedance definition (cf. Kuttruff
(2009) Eq. (2.2), p. 37, and Kuttruff (2007) Sec. 7.1)

Z =

(
p

vn

)
surface

, (22)

where vn = n·v, n is the unit vector outward normal to
the boundary surface. Now, multiplying Eq. (21) side
by side by n and differentiating Eq. (22) with respect to
time t, gives finally, the impedance boundary condition
in the following form (cf. Kuttruff (2009) Eqs. (3.2a)
and (3.2b), p. 68; Meissner (2013) Eq. (2); Meissner
(2015) Eq. (5))

∂p

∂n
+
β

c

∂p

∂t
= 0,

∂p

∂n
− ikβp = 0,

(23)

where ∂p/∂n = n · ∇p, n is the unit vector outward
normal to the boundary surface, β = %0c/Z is the di-
mensionless floor admittance, and c is the sound ve-
locity in fluid.

The following boundary conditions are satisfied

dp
dz

∣∣∣∣
z=−l

= −ikβp(−l),

dp
dz

∣∣∣∣
z=0

= +ik%0cv0,

(24)

where v0 is the normal outward vibration velocity on
the upper plane bounding the fluid layer.

The solution to Eq. (20) may be expected in the
general form of

p(z) = A(k) sin[k(z+l/2)]+B(k) cos[k(z+l/2)]. (25)

Inserting this solution to the boundary conditions
yields immediately

A(k)
[

cos(kl/2)− iβ sin(kl/2)
]

+B(k)
[

sin(kl/2) + iβ cos(kl/2)
]

= 0, (26)

A(k) cos(kl/2)−B(k) sin(kl/2) = +i%0cv0.
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These two equations can be solved with respect to A(k)
and B(k), giving

A(k) = + i%0cv0
sin(kl/2) + iβ cos(kl/2)

sin(kl) + iβ cos(kl)
;

lim
β→0

A(k) =
+i%0cv0

2 cos(kl/2)
,

B(k) = − i%0cv0
cos(kl/2)− iβ sin(kl/2)

sin(kl) + iβ cos(kl)
;

lim
β→0

B(k) =
−i%0cv0

2 sin(kl/2)
.

(27)

Inserting these back into Eq. (25) provides the acoustic
pressure in the form of

p(z) =
i%0cv0

sin(kl) + iβ cos(kl)

·
{

[sin(kl/2)+iβ cos(kl/2)] sin[k(z+l/2)]

− [cos(kl/2)−iβ sin(kl/2)] cos[k(z+l/2)]

}
,

lim
β→0

p(z) =
1

2
i%0cv0

[
sin[k(z+l/2)]

cos(kl)
− cos[k(z+l/2)]

sin(kl/2)

]
.

(28)
Then, the following functions can be obtained at both
fluid bounding planes

p(−l) =
−i%0cv0

sin(kl) + iβ cos(kl)
;

lim
β→0

p(−l) = − i%0cv0
sin(kl)

,

p(0) = −i%0cv0
cos(kl)− iβ sin(kl)

sin(kl) + iβ cos(kl)
;

lim
β→0

p(0) = −i%0cv0
cos(kl)

sin(kl)
.

(29)

The eigenvalues are complex when β 6= 0, whereas
when β = 0, the characteristic equation is

sin(kl) = 0; k = n
π

l
; n = 0, 1, 2, . . . , (30)

i.e. the acoustic pressure maximums occur on both
planes (the upper and the lower, no matter which plane
is the driving plane) whenever this equation is satisfied.
On the other hand the acoustic pressure nodes occur
only on the upper plane (on the lower plane a minimum
occurs) whenever

cos(kl) = 0; k =

(
m+

1

2

)
π

l
; m = 0, 1, 2, . . .

(31)
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