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An original model based on first principles is constructed for the temporal correlation of acoustic
waves propagating in random scattering media. The model describes the dynamics of wave fields in
a previously unexplored, moderately strong (mesoscopic) scattering regime, intermediate between those
of weak scattering, on the one hand, and diffusing waves, on the other. It is shown that by considering the
wave vector as a free parameter that can vary at will, one can provide an additional dimension to the data,
resulting in a tomographic-type reconstruction of the full space-time dynamics of a complex structure,
instead of a plain spectroscopic technique. In Fourier space, the problem is reduced to a spherical mean
transform defined for a family of spheres containing the origin, and therefore is easily invertible. The
results may be useful in probing the statistical structure of various random media with both spatial and
temporal resolution.
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1. Introduction

The temporal correlation of waves scattered off, or
transmitted through, a random medium has long been
a very efficient tool in the study of the space-time dy-
namics of a great variety of complex structures (Rytov
et al., 1989; Berne, Pecora, 1976; Ishimaru, 1978).
At the microscale, typical examples include the so-
lutions of macromolecules and colloidal suspensions,
gels, foams, granular materials, biological tissues, and
laboratory plasma. Macroscopic structures range from
atmospheric turbulence, internal waves in the ocean
and heterogeneous Earth to ionospheric and interstel-
lar plasmas. The basic quantity measured in such ex-
periments is usually the temporal autocorrelation func-
tion (ACF), defined as

Γ (τ) = ⟨u(t)u∗(t + τ)⟩ , (1)

where u(t) is the complex amplitude of the field (ei-
ther scattered or total), and the angular brackets mean
the ensemble average. In some situations, the analysis
is based on the power spectrum of field fluctuations,
which is given by the Fourier transformation of the
temporal ACF.

The random medium, in its turn, is typically char-
acterized by some constitutive parameter ε̃ (r, t). The
physical content of ε̃ (r, t) depends on the specific prob-
lem under study: for example, (fluctuations of the) per-
mittivity in electromagnetic applications, or slowness
for acoustic waves, but will generally be referred to
as the scattering potential in the sequel. The quan-
tity we should recover is usually the two-point corre-
lation function Bε (ρ, τ) of the scattering potential, or
a corresponding spectral density Ψε (q,Ω), obtained by
Fourier transforming Bε (ρ, τ) in both space and time
(see Appendix).

Two extreme regimes of wave scattering are typi-
cally considered. When the scattering is rather weak,
the wave field can be described by using a single-
scattering (Born) approximation. The resulting theory
relates the power spectrum measured for a wave prop-
agating initially in the direction of vector ki and then
scattered in the direction of vector ks, to the value
of spectral density Ψε (q,Ω), taken at the Bragg (mo-
mentum transfer) vector q = ks − ki (Rytov et al.,
1989). Quasi-elastic scattering implies the condition
∣ki∣ = ∣ks∣ = k, where k is the wave number of the radi-
ation in a background medium. This concept is illus-
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trated by mapping the appropriately constrained equa-
tion q = ks − ki onto the Ewald diagram (Devaney,
2012), see Fig. 1. In this regime, the selectivity of the
wave-matter interaction in the q-space (Lahiri et al.,
2009) permits, in principle, reconstruction of the full
space-time dynamics of the structure, by varying both
the radiation frequency and the propagation directions
of the incident and scattered waves (Berne, Pecora,
1976; Wolf, 1996). Apart from the classical Dynamic
Light Scattering (DLS) (Berne, Pecora, 1976) and
Dynamic Sound Scattering (DSS) (Cowan et al., 2016;
Igarashi et al., 2014; Kohyama et al., 2009; Konno
et al., 2016) techniques, new modalities exploring the
same weak scattering regime have been proposed re-
cently. For example, Differential Dynamic Microscopy
(DDM) may provide valuable information on the tem-
poral dynamics of random media at different values
(and directions) of vector q (Cerbino, Trappe, 2008;
Giavazzi et al., 2009; Reufer et al., 2012).

Fig. 1. Two-dimensional version of the Ewald construction.
The points of the Ewald sphere for a given wave vector ki
determine all possible spectral components that could res-
onantly transform the incident wave into a scattered wave,

with wave vector ks.

The condition of weak scattering imposes severe
limitations on the disordered system and the wave-
length of the radiation. Indeed, fluctuations in the scat-
tering potential (for instance, the contrast of the con-
stituent phases in composite media) must be very
small, or the typical size `ε of the scatterers must
be much smaller than the wavelength λ of the radia-
tion applied to probe the structure. This precludes use
of the corresponding methods in the study of densely
packed systems beyond the limits of the Born approxi-
mation, i.e., in the regime of multiple scattering, when
`ε is of the same order of magnitude as λ. On the other
hand, probing the structures with multiply-scattered
waves may be much more effective, since, in princi-
ple, they are sensitive to very small displacements in
the medium. However, in order to realize this poten-
tial, we should have a rather accurate model relating
the measured quantity, Γ (τ), to the statistics of the
scattering medium.

Taking the multiple scattering into account is usu-
ally performed by completely changing the paradigm,
namely by replacing the wave equation, as a basic tool,
with a radiation transfer equation or its asymptotics,

e.g., a diffusion model. One such technique, termed Dif-
fusing Wave Spectroscopy (DWS), was proposed more
than three decades ago, initially in optics (Maret,
Wolf, 1987; Pine et al., 1988; Weitz, Pine, 1993)
and was extended later to acoustics (Cowan et al.,
2000) and seismology (Snieder, 2006). At present, ap-
plications of the DWS technique and its derivatives are
not limited to the study of the dynamics of relatively
simple structures, such as colloidal suspensions, but
may be efficiently implemented, for example, in the
functional imaging of brain activity (Li et al., 2005).

Actually, DWS is a phenomenological theory, which
models the transport of light as a random walk be-
tween scatterers. A partial ACF evaluated for a spe-
cific path length s is averaged over all possible values
of s, with the photon (phonon) time-of-flight distribu-
tion P (s) as a weighting factor. In the original version
of the DWS theory, P (s) is given by the isotropic dif-
fusion model (Weitz, Pine, 1993). As is known, this
model is unsuitable for describing light propagation
along relatively short paths which, in turn, results in
underestimating the field correlation for long times.
Some attempts to correct the time-of-flight distribu-
tion P (s) have been performed on the basis of solving
the original version of the radiative transfer equation
(Carminati et al., 2004).

Nevertheless, the main problem of DWS is in
the construction of the partial ACF itself, which is
performed in a purely heuristic way, assigning to each
specific path of length s a phase accumulated by the
photon (phonon) on its way from one point scatterer
to another. Hence, DWS provides us with a somewhat
limiting amount of information. In contrast to the
single scattering, inverting diffuse wave data permits
estimation of only the mean square displacement of
the scattering particle in time τ , instead of the full
space-time dynamics described by the correlation func-
tion Bε (ρ, τ). Although the importance of structural
details coupled with the wave dynamics was realized
shortly after the DWS technique had been proposed
(Nilsen, Gast, 1994; Ladd et al., 1995; Stephen,
1988; MacKintosh, John, 1989), no essential pro-
gress in this direction has been observed so far.

In the present paper, we construct an original
model of temporal correlations, which is based on first
principles and therefore is free of the intrinsic limita-
tions of the DWS phenomenology. At the same time,
our model is complementary to both single scatter-
ing approximation and DWS, since it is designed to
describe an intermediate, moderately strong (meso-
scopic) scattering regime, in which the coherence of
the wave process is still preserved.

Two main questions are explored here. First of
all, the measured temporal ACF of the wave field is
presented as a subtle integral transform of the spec-
tral density Ψε (q,Ω), taking into account the multi-
ple scattering effects. Second and more importantly, we
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show that by measuring the normalized ACF Γ (k, τ)
as a function of both time delay τ and the wave vec-
tor k, and applying a tomographic technique, it is pos-
sible to reconstruct (of course, only in a statistical
sense) the full space-time dynamics of the scattering
structure. Unlike all known wave tomography meth-
ods, the relevant q-space spectral components of the
scattering potential contributing to the measured field
constitute a manifold of the same dimensionality as
the ambient space. It will be shown, however, that the
classical methods of integral geometry are still rele-
vant here. This technique, tentatively called Correla-
tion Wave Tomography (CWT), can be applied to the
noninvasive study of density fluctuations in a variety
of disordered systems.

The outline of the paper is as follows. The solution
of the direct problem, i.e., finding the integral trans-
form relating the temporal ACF Γ (k, τ) to the spec-
tral density Ψε (q,Ω), is presented in Sec. 2. The gen-
eral solution obtained is analyzed in Sec. 3, especially
for a statistically isotropic three-dimensional random
medium. The concept of CWT based on the inversion
of the integral transform is discussed in Sec. 4. Finally,
the main results are summarized in Sec. 5.

2. Temporal correlation

Our starting point is the reduced Helmholtz equa-
tion,

∇
2G (r, t) + k2

[1 + ε̃ (r, t)]G (r, t) = −δ (r) , (2)

written for a point source located in an unbounded,
statistically homogeneous medium. In this expression,
it is assumed implicitly that the medium is practi-
cally frozen during the typical time interval character-
izing the wave-matter interaction (the so-called quasi-
stationary approximation).

The formal solution of Eq. (2) is given in terms
of the Feynman-Garrod path integral (Samelsohn,
Mazar, 1996):

G (r, t) =
i

2k

∞

∫
0

dσ exp (ikσ/2)

r(σ)=r

∫

r(0)=0

Dr(ξ)

⋅ exp

⎡
⎢
⎢
⎢
⎢
⎣

i
k

2

σ

∫
0

dξ {ṙ2
(ξ) + ε̃ [r(ξ), t]}

⎤
⎥
⎥
⎥
⎥
⎦

. (3)

Here, wave number k contains an (infinitesimally
small) positive imaginary part that enforces the ra-
diation condition at infinity, and provides the conver-
gence of the integral over pseudotime σ. The integra-
tion ∫ Dr (ξ) in the continuum of all admissible paths
is interpreted as the sum of contributions of arbitrary
trajectories, over which a wave propagates from point
r0 at σ = 0 to point r at the “moment” σ, and the
expression in the exponent may be considered as an

“action functional”, which is related to the phase ac-
cumulated along the corresponding path.

Equation (3) is especially suitable for constructing
statistical moments of the Green’s function G (r, t).
Indeed, irrespective of the statistics of ε̃ itself, the in-
tegral of ε̃ along the path traversing many uncorrelated
inhomogeneities, may be considered as a Gaussian ran-
dom variable. As a result, the wave field correlator is
presented in terms of the correlation function Bε (ρ, τ)
of the scattering potential. At the next step, as pro-
posed by Samelsohn and Mazar (1996), the σ in-
tegral may be evaluated by the method of stationary
phase, and the path integral replaced with a first cu-
mulant approximation.

In the past, this procedure was verified for the
statistical moments of first and second order. It was
shown, in particular, that the mean field constructed
in such a way coincides exactly with the Bourret
approximation of the Dyson equation (Samelsohn,
Mazar, 1996). The solution for the mean intensity,
combined with the idea of spectral filtering, was used
to describe the wave localization phenomenon in ran-
dom media, with both isotropic and anisotropic dis-
order (Samelsohn et al., 1999; Samelsohn, Frei-
likher, 2004). Also, the same path integral tech-
nique was employed to construct the two-frequency
mutual coherence function (frequency field-field corre-
lator) (Samelsohn, Freilikher, 2003; Samelsohn
et al., 2008). As is known, the Fourier transformation
of this correlator leads to an impulse response func-
tion (time-of-flight distribution), measured for a short
narrowband pulse (Ishimaru, 1978). To evaluate this
impulse response, a cumulant expansion of a double
path integral was applied (Samelsohn et al., 2008).
It was shown that even the first cumulant is capable of
reproducing the two-scale structure of the coherence
function, which corresponds to weakly and strongly
scattered components of the wavefield, coexisting in
the impulse response, even in the regime of multiple
scattering.

It would be natural to extend this approach to the
evaluation of the coherence function accounting for the
temporal dynamics of the medium. In particular, here
we evaluate the temporal ACF defined as

Γ (k, τ) = ⟨G (r, t) G∗
(r, t + τ)⟩ . (4)

Note that unlike the single-scattering approxima-
tion, we define the ACF for the total, not scattered,
wavefield. In Eq. (4), the obvious fact is emphasized
that this quantity should depend on the wave vector
k = kr/r, directed along the line connecting the source
with the observation point.

The generalization of the approach mentioned
above to time-varying media is straightforward, and
the calculations may be performed following the steps
described in (Samelsohn et al., 2008). Stationary
phase approximation applied to the integrals over
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pseudotime and subsequent averaging lead to a dou-
ble path integral of exp (−X), where the functional X
has the form

X [r1 (ξ) , r2 (ξ) ; τ] =
k2

8

L

∫
0

dξ1

L

∫
0

dξ2

⋅ [Bε (r1 (ξ1) − r1 (ξ2) ,0)

−2Bε (r1 (ξ1) − r2 (ξ2) , τ)

+ Bε (r2 (ξ1) − r2 (ξ2) ,0)], (5)

and L = ∣ r ∣ is the path length. Then, the cumulant ex-
pansion of the path integral is applied, where only the
first term is kept. Omitting the details of the deriva-
tion, we concentrate on the final expression for the
normalized ACF:

γ (k, τ) ≡
Γ (k, τ)

Γ (k,0)
= exp [−χ (k, τ)] . (6)

The decrement χ (k, τ) in the first cumulant ap-
proximation is calculated by replacing the correlation
functions in Eq. (5) with their spectral expansions; see
Eq. (36). This results in

χ (k, τ) = 2∫ dΩ [1 − exp (−iΩτ)] χ̂ (k,Ω). (7)

In its turn, χ̂ (k,Ω) entering the latter equation is
an integral transform of the spectral density,

χ̂ (k,Ω) = k3L∫ dq f(q,k)Ψε(q,Ω), (8)

with kernel f (q,k) of the form

f(q,k) = (4kL)
−1

L

∫
0

dξ1

L

∫
0

dξ2 exp [
i (ξ1−ξ2)q ⋅ k

k
]

⋅ exp{−i
[ξ1 (1−ξ1/L)−ξ2 (1−ξ2/L)] q

2

2k
}. (9)

Note that a finite value of the ACF for τ → ∞ is
due to a contribution of the mean field (the latter is,
of course, exponentially small in the mesoscopic scat-
tering regime we are interested in here).

To simplify the expressions for the filtering func-
tion, we introduce a new pair of integration variables,

Ξ = (ξ1 + ξ2)/2, ξ = ξ1 − ξ2. (10)

Then, the integration over Ξ is performed exactly,

f (q,k) = K−2

L

∫
0

dξ ξ−1 cos(
ξ q ⋅ k

k
)

⋅ sin [
ξ (1 − ξ/L) q2

2k
]. (11)

The solution obtained is valid far from the source,
under the conditions of weak to moderate scattering
(Samelsohn et al., 2008). Its detailed analysis in the
mesoscopic regime is performed in Sec. 3.

3. Analysis

Further simplification of the filtering function (11)
could be achieved if we increase the path length by
setting L→∞. Mathematically, this is possible due to
the factor cos (ξq ⋅ k/k), which becomes highly oscil-
latory for large ξ. Thus, we neglect the contributions
of the ξ/L term with respect to unity, and extend the
upper limit of the integral in Eq. (11) to infinity. By
changing also the integration variable as ξ = 2kt/q, and
using the integral representation of the Heaviside unit
step function,

ϑ (x − a) =
2

π

∞

∫
0

dt t−1 sin (xt) cos (at), a ≥ 0, (12)

we finally obtain

χ̂ (k,Ω)=
π

8
k3L∫ dq q−2ϑ(q−∣

2k ⋅ q

q
∣)Ψε (q,Ω). (13)

In fact, the procedure of deriving the latter equa-
tion can be justified only if the parameter Lq ⋅ k/k is
large. This condition is obviously violated for directed
(forward-scattered) waves, where vector q is not only
small, but is also perpendicular to k. Here, however, we
explore another situation: the radiation wavelength is
comparable with the correlation scale of the disorder,
and the wave undergoes large angle scattering. In this
case, not too much energy of the spectrum Ψε (q,Ω) is
concentrated near the origin of the q-space, and there-
fore the fraction of ballistic photons (phonons) con-
tributing to the registered field is vanishingly small.

It is worth noting that, as for the single-scattering
approximation, Eq. (13) is easily mapped onto the
Ewald construction (see Fig. 2), but is not local here.
Indeed, within the Born approximation, only one
Bragg lattice of the spectral density, Ψε (ks − ki,Ω),

Fig. 2. Spectral density Ψε (q,Ω) of a random medium for
fixed Ω is shown schematically as an ellipse in both config-
uration and Fourier space. The major axis of the ellipse in
configuration space corresponds to the direction of higher

correlation.
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contributes to the scattered field. In contrast, in order
to evaluate the decrement χ̂ (k,Ω) in our solution for
fixed values of k and Ω, we should integrate the spec-
tral density Ψε (q,Ω) outside the eight curve formed
by the two Ewald spheres, with a weighting factor q−2.

Let us illustrate the behavior of the decrement for
three-dimensional (3D), statistically isotropic media,
where spectral density Ψε (q,Ω) depends only on the
absolute value of vector q. After integrating over the
angular variables, Eq. (13) becomes

χ̂ (k,Ω) =
π2

4
k2L

∞

∫
0

dq min (q,2k)Ψε (q,Ω). (14)

There are many systems the dynamics of which is
described by different models, as for instance poly-
disperse colloids, interacting scatterers, particles dis-
persed in viscoelastic complex fluids, and convective
motions, including turbulence in fluids, etc. If Ψε (q,Ω)

is a non-separable function, the temporal dynamics de-
pends on the details of the spectrum behavior in the
q-space. Indeed, it is rather natural, for example, that
small inhomogeneities (with high spatial frequencies q)
are less correlated in time, i.e., they change their form,
orientation, or position more rapidly than the large-
scale perturbations. Apart from the intrinsic evolution
of the structure (as it is observed, e.g., in a turbulent
medium), other reasons (diffusion or flow) also lead to
strong space-time coupling.

Instead of going into the analysis of a variety of
possible physical models, we will consider a simple ex-
ample of the temporal evolution satisfying some gen-
eral conditions. First of all, we assume that the static
correlation function Bε(r) is of a Gaussian form,

Bε (r) = σ
2
ε exp(−

r2

`2ε
), (15)

with correlation length `ε and variance σ2
ε . In the 3D

case, this corresponds to the power spectrum

Φε (q) = (2
√
π)

−3
σ2
ε `

3
ε exp(−

`2εq
2

4
). (16)

Although the Gaussian function is not related di-
rectly to a specific physical mechanism responsible for
the formation of a heterogeneous medium, and fur-
ther cannot even correspond to any two-phase random
medium, it is an effective mathematical model widely
used to characterize wave propagation in a broad class
of random media, when the exact form of Bε(r) is not
known, or to perform qualitative analysis (Ishimaru,
1978).

Second, the most attractive model for the normal-
ized spectral density ψε (q,Ω) that conforms to these
requirements mentioned above is

ψε (q,Ω) =
1

√
2π Ωc (q)

exp [−
Ω2

2Ω2
c (q)

], (17)

where Ωc (q) is the characteristic evolution frequency
of inhomogeneities with linear scale q−1. For example,
in a random flow with isotropic Gaussian velocity fluc-
tuations Ωc (q) ∼ q2, while in turbulent media the dy-
namics is characterized by a fractal-type time depen-
dence Ωc (q) ∼ q2/3, at least within the inertial interval.

For simplicity, we adopt here the square law model,
which results in

χ (κ, τ)=

√
π

2
σ2
ε (

L

`ε
)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

A (κ,1)−A
⎛
⎜
⎝
κ,

¿
Á
ÁÀ1+

τ2

τ2
c

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (18)

Here, κ = k`ε is the normalized wave number, τc is
the characteristic time, the auxiliary function A (κ,x)
is given by

A (κ,x)=(
κ

x
)

2

[1−exp (−κ2x2)+
√
π κx erfc (κx)], (19)

and erfc (x) denotes the complementary error function.
The behavior of χ (κ, τ) is illustrated in Fig. 3. It is
seen that the dynamics of the medium depends essen-
tially on the wave number.

Fig. 3. The normalized decrement χ(κ, τ)/χ(1, τc) shown as
a function of delay time τ and normalized wave number κ.

Further analysis of the solution obtained for the
temporal ACF leads to two main conclusions. First, for
fixed k, the information content of cumulant χ (k, τ)
is, in a sense, similar to the corresponding ACF decre-
ment in the classical DWS theory. In fact, χ (k, τ) may
be interpreted as a (half of the) structure function of
the phase fluctuations in the measured field. Moreover,
there is another fact that makes our approach very sim-
ilar to the DWS technique: both provide us with only
a q-weighted average, in striking contrast to the weak
scattering experiments, where the registered quantity
is q-selective. Although much more sensitive to small
displacements, the multiple scattering and associated
q-averaging effect make it impossible to directly in-
vert the measured decrement for information on the
dynamics of the structure at a specific value of q.

The second important conclusion is that the tem-
poral ACF γ (k, τ) depends essentially on the wave
number k, or more precisely, on wave vector k, when
the random medium is statistically anisotropic. Hence,
considering wave vector k as a free parameter that can
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vary at will, we provide an additional dimension to
the data, which may result in a tomographic-type re-
construction of the space-time dynamics, rather than
a plain spectroscopic technique. We will explore this
idea in Sec. 4.

4. Inversion

As was conjectured in Sec. 3, in order to make the
inversion, we must measure the ACF, or simply its
decrement χ (k, τ), for waves of different frequencies
and a variety of angular orientations of the structure
with respect to the straight line connecting the source
with the observation point. Indeed, to recover the spec-
tral density Ψε (q,Ω), we should perform the two-step
procedure set forth below.

First, we differentiate both sides of Eq. (7) with
respect to τ and invert the resulting Fourier transform,
yielding

χ̂ (k,Ω) =
1

2πΩ

∞

∫
0

dτ sin (Ωτ)χ′(k, τ). (20)

The integral in Eq. (20) is convergent, if the deriva-
tive χ′ (k, τ) approaches zero for τ →∞, and also sat-
isfies the condition lim

τ→0
τ2χ′ (k, τ) = 0. This is compat-

ible, for instance, with a fractal τα time dependence,
when α < 1. For 1 ≤ α < 2 we should differentiate
twice, which leads to another inversion algorithm, see
(Rytov et al., 1989). In principle, this step may be
unnecessary, if our goal is to directly recover a struc-
ture function of the disorder; see Eqs. (29), (34), and
the related discussions below.

At the second step, having at hand χ̂ (k,Ω), which
can now be considered as a function of k for each
fixed value of Ω, we have to invert the integral trans-
form (13). At this point, it is worthwhile to recall that
in classical X-ray tomography, the integration is per-
formed over planes (or along straight lines in the 2D
case), the operation that constitutes the well-known
Radon transform (Natterer, Wübbeling, 2001). In
this case, the submanifold that represents the integra-
tion domain has dimensionality of one less than that of
the ambient manifold, over which the unknown func-
tion is defined. For the tomographic modalities based
on the so-called soft field (say, diffuse optical tomogra-
phy), where the influence domain constitutes a kind
of blurred banana-like region connecting the source
and receiver in the configuration space (Gibson et al.,
2005), analytical inversion based on the integral geom-
etry transforms is hardly to be expected (see, however,
the recent studies by Samelsohn (2016; 2017; 2018),
where an efficient Radon-to-Helmholtz mapping has
been proposed). Since the multiple scattering effects
are taken into account, our situation is not exceptional
in that sense, but surprisingly, integral transform (13)
can be reduced to an operator that is invertible. In

fact, performing the integration by parts (with respect
to the absolute value of the vector q) in Eq. (13), we
arrive at

χ̂ (k,Ω) =
π

8
k3L∫ dq δ (q − ∣2k ⋅

q

q
∣)Fε (q,Ω), (21)

where we have introduced an auxiliary function

Fε (q,Ω) = q1−m

∞

∫
q

dq qm−3 Ψε (q,Ω) (22)

(here m is the dimensionality of the problem). In or-
der to find the spectral density Ψε (q,Ω), provided the
auxiliary function is known, we multiply Eq. (22) by
qm−1 and then differentiate, which leads to

Ψε (q,Ω) = −q3−m d
dq

[qm−1Fε (q,Ω)]. (23)

The spectral density Ψε (q,Ω) and then Fε (q,Ω)

are both even functions, so that we can keep the inte-
gration over only one Ewald sphere and double the re-
sult. Therefore, Eq. (21) is nothing other than a spher-
ical mean of the function Fε (q,Ω) for a family of
spheres containing the origin (Cormack, Quinto,
1980). These are just the Ewald spheres constructed for
different frequencies and propagation directions (the
information contained actually in the wave vector k).
The spherical mean operator is known to be invertible
(Cormack, Quinto, 1980). In particular, it may be
converted into the classical Radon transform by us-
ing a geometric inversion of the q-space with respect
to a reference sphere centered at the origin (Yagle,
1992; Samelsohn, 2009).

Although in the general case the inversion proce-
dure is rather involved, for statistically isotropic 3D
media, the final results are unexpectedly simple. In-
deed, after integrating over the angular variables, in-
tegral transform (21) is reduced to

χ̂ (k,Ω) =
π2

4
k2L

2k

∫
0

dq q2Fε (q,Ω), (24)

so that the inversion becomes straightforward,

Fε (2k,Ω) =
1

2π2 k2L
∂k [k

−2χ̂ (k,Ω)], (25)

where ∂k means the derivative with respect to k. Then,
as follows from Eq. (23),

Ψε (2k,Ω) = −
1

π2L
∂2
k [k

−2χ̂ (k,Ω)]. (26)

Note that for isotropic media, we can avoid cal-
culating the auxiliary function and directly arrive at
Eq. (26). Indeed, if we divide Eq. (14) by k2 and then
differentiate, we have

∂k [k
−2χ̂ (k,Ω)] =

π2

2
L

∞

∫

2k

dq Ψε (q,Ω). (27)
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The second differentiation leads to Eq. (26).
Finally, converting Eq. (26) into the time domain,

Dε (2k, τ)=2

∞

∫
−∞

dΩ [1−exp (iΩτ)]Ψε (2k,Ω), (28)

we obtain the temporal structure function taken at
a specific value of the spatial wave number (namely,
at q = 2k):

Dε (2k, τ) = −
1

π2L
∂2
k [k

−2χ (k, τ)]. (29)

By definition, Dε (q, τ) characterizes how quickly
the contribution of spatial harmonic q is changed in
time. It is reminiscent of the “image structure func-
tion” used within the framework of DDM (Cerbino,
Trappe, 2008). However, the DDM approach im-
plies that the q-information is captured directly (via
Fourier transformation of the two-dimensional differen-
tial images). This setup is easily realized in optics, but
is hardly possible in acoustics. Our solution permits
probing the structure by recording the signal in one
point only but sweeping the wavenumber (frequency)
of the radiation used.

As follows from Eq. (29), to recover the spectral
density, we need to differentiate the noisy sampled data
twice. As is known, calculating the derivative is a nu-
merically unstable operation. In principle, we can avoid
the evaluation of one derivative by converting the spec-
tral density Ψε (q,Ω) into a true structure function
Dε (ρ, τ) at the outset, and then applying an integra-
tion by parts.

Let us illustrate this approach for a statistically
isotropic 3D structures. In this situation, the spectral
expansion (38) of the structure function, after integra-
tion over angular variables, becomes

Dε (ρ, τ) = 8π

∞

∫
−∞

dΩ
∞

∫
0

dq q2

⋅ [1 − exp (−iΩτ) sinc (qρ)]Ψε (q,Ω), (30)

where sinc (x) = sin (x)/x. Changing the integration
variable q = 2k in the latter equation, we substitute
the solution (26) for the spectral density Ψε (2k,Ω),
and arrive at

Dε (ρ, τ) = −
64

πL

∞

∫
−∞

dΩ
∞

∫
0

dk k2

⋅ [1 − 2 exp (−iΩτ) sinc (2kρ)]

⋅∂2
k [k

−2χ̂ (k,Ω)]. (31)

As follows from Eq. (27), for any reasonable spec-
tral density Ψε (q,Ω), the first derivative of k−2χ ap-
proaches zero faster than k−2 as k tends to infinity,
such that the integration by parts gives

Dε (ρ, τ) =
128

πL

∞

∫
−∞

dΩ
∞

∫
0

dk k

⋅ [1 − exp (−iΩτ) g (ρ, k)]

⋅∂k [k
−2χ̂ (k,Ω)], (32)

where
g (ρ, k) = cos (2kρ) + sinc (2kρ) . (33)

The integration over Ω may also be performed, and
the unknown structure function is then expressed di-
rectly via the measured quantity χ (k, τ):

Dε (ρ, τ) =
64

πL

∞

∫
0

dk k {[1 − g (ρ, k)]∂k [k
−2χ (k,∞)]

+ g (ρ, k)∂k [k
−2χ (k, τ)]} . (34)

Unfortunately, the value of k−2χ (k, τ) is not zero at
infinity, and we cannot use the same trick as has been
applied to Eq. (31). Anyway, the kernel of the inte-
gral operator that arises here is an oscillatory function,
and therefore appropriate interpolation and smoothing
of raw data should be a critically important ingredi-
ent of the CWT inversion, irrespective of the domain
(configuration or Fourier) in which the inversion is per-
formed.

In conclusion, one important remark is in order.
Our analysis is based on the simplest model, Eq. (2),
which describes propagation in a medium with vari-
able wave velocity. Density fluctuations have been ne-
glected. In principle, the latter can be easily included in
consideration, if we use an appropriate substitution for
the acoustic pressure (Bergmann, 1946). The problem
is then reduced again to Eq. (2), but with a new, gen-
eralized, potential ε̃ (r, t) that depends now on both
sound velocity and the density of the medium. Thus,
the solution of the direct problem, i.e., finding the co-
herence function for a given ACF of the medium, re-
mains intact. However, a new situation arises if we try
to make the inversion, since the generalized potential
will be frequency-dependent. Likewise, the spectral de-
pendence of the decrement χ (k, τ) can be altered by
the effects of frequency dispersion of materials consti-
tuting the random medium. Overall, these phenomena
may lead to artifacts in the reconstruction of space-
time dynamics, and the subject deserves further re-
search.

5. Summary

In this paper, we have developed a new concept of
probing the space-time dynamics of time-varying ran-
dom structures. The solution of the direct problem has
a clear physical interpretation. In contrast to the DWS
technique, our results have been derived from first prin-
ciples, without using any phenomenological parame-
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ters, such as a diffusion constant. Our theory of tem-
poral correlation is valid for situations where the size
of the scattering system is comparable to the trans-
port mean-free-path, i.e., it is suitable for filling the
gap between a ballistic regime, on the one hand, and
a diffusion regime, on the other. The better accuracy
is predicted to occur for long and intermediate time
scales (relatively short paths), where diffusion approx-
imation fails to describe the wave transport correctly.

Concerning the inversion, the CWT concept ex-
tends the conventional diffraction tomography tech-
nique to the mesoscopic scattering regime. Indeed, we
have arrived at the tomographic-type reconstruction
based, after all, on a classical Radon transform. In
principle, the CWT technique permits recovery of the
full space-time dynamics of the structure under study.
The disordered systems are not required to be com-
posed of identical particles; statistically anisotropic
and fractal density fluctuations can be probed equally
well, with no a priori information needed. The CWT
technique may find applications in various areas of
soft condensed matter science, structure analysis, and
biomedical research, to name a few.

Appendix

For a statistically homogeneous random field
ε̃ (r, t), the correlation function is defined as

Bε (ρ, τ) = ⟨ε̃ (r, t) ε̃ (r + ρ, t + τ)⟩ . (35)

Its spectral expansion is of the form

Bε (ρ, τ)=∫ dq∫ dΩ exp [i (q ⋅ ρ −Ωτ)]Ψε(q,Ω).

(36)
Note that hereafter we follow the Fourier trans-

form convention adopted in the book by Rytov et al.
(1989).

The locally homogeneous random field can be char-
acterized by a structure function

Dε (ρ, τ) = ⟨[ε̃ (r + ρ, t + τ) − ε̃ (r, t)]
2
⟩ . (37)

The spectral expansion of the structure function is
given by

Dε (ρ, τ) = 2∫ dq∫ dΩ

{1 − exp [i (q ⋅ ρ −Ωτ)]}Ψε (q,Ω). (38)

For a homogeneous medium, the structure function
is related to the correlation function by the obvious
relation

Dε (ρ, τ) = 2 [Bε (0,0) −Bε (ρ, τ)]. (39)

Moreover, if Bε (∞,∞) = 0 then Dε (∞,∞) =

2Bε (0,0), and we arrive at the inverse relation

Bε (ρ, τ) =
1

2
[Dε (∞,∞) −Dε (ρ, τ)] . (40)

Integration of Ψε (q,Ω) over all frequencies Ω re-
covers a static spatial spectrum Φε (q) of the random
medium, while the integration over all q-space reduces
Ψε (q,Ω) to a temporal spectrum Sε (Ω), measured at
a fixed point in the configuration space. Note that only
for separable spectra,

Ψε (q,Ω) = Φε (q)Sε (Ω) , (41)

the temporal and spatial statistics are decoupled.
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