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Diagnostics and decomposition of atmospheric disturbances in a planar flow are considered in this
work. The study examines a situation in which the stationary equilibrium temperature of a gas may
depend on the vertical coordinate due to external forces. The relations connecting perturbations are
analytically established. These perturbations specify acoustic and entropy modes in an arbitrary stratified
gas affected by a constant mass force. The diagnostic relations link acoustic and entropy modes, and they
are independent on time. Hence, they provide an ability to decompose the total vector of perturbations
into acoustic and non-acoustic (entropy) parts, and to establish the distribution of energy between the
sound and entropy modes, uniquely at any instant. The total energy of a flow is hence determined in its
parts which are connected with acoustic and entropy modes. The examples presented in this work consider
the equilibrium temperature of a gas, which linearly depends on the vertical coordinate. Individual profiles
of acoustic and entropy parts for some impulses are illustrated with plots.

Keywords: acoustics of non-uniform media; initialization of hydrodynamic field.
PACS No. 43.25.Cb, 43.28.Bj.

1. Introduction

Theoretical and numerical models that describe dy-
namics of gases and liquids affected by external forces,
are of great interest in geophysics, meteorology, and
wave theory (Brekhovskikh, Godin, 1990; Ped-
loski, 1987; Gordin, 1987; Borovikov, Kelbert,
1985; Leble, 1990). The main aim of this study is
the diagnostics and decomposition of the wave and
non-wave modes. This is helpful in interpretation of
experimental data, and may be useful in validation of
numerical models (Leble, Vereschagina, 2016). Es-
pecially, it is important in establishing location of the
sources of a wave, and modelling of the atmosphere’s
warming (Karpov et al., 2016). It is authors’ belief
that the analytical models are more desirable than nu-
merical methods, which are usually time-consuming,
require high-performance computer, and special atten-
tion to underlying algorithms, their convergence, and
stability. On the other hand, reasonably simple analyt-

ical models, also when complimented by a numerical
approach, are much more efficient. Theory should base
on the conservation equations and rely upon physi-
cally justified boundary conditions and simplifications.
Some problems of practical usage are considered in this
study. Among them, it is to distinguish the types of
fluid motion from the total perturbations and associ-
ated with them energies.

The external forces and sources of energy and
momentum make the background of a fluid non-
uniform. Hence, equilibrium thermodynamic parame-
ters depend on spatial coordinates, which drastically
complicates the definition of linear modes (motions
of infinitely small magnitude) taking place in such
non-uniform media. The number of roots of disper-
sion equation, if it is possible to determine them,
agrees with the number of types of motion, and
equals to the number of scalar conservation equations
(Pedloski, 1987). Each of conservation equations rep-
resents a PDE which contains the first-order derivative
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with respect to time. In the case of isothermal gas in
equilibrium with pressure and density depending expo-
nentially on the coordinate, and in the simplest case
of a planar flow, the dispersion relations may be in-
troduced over the total wave-length range. The non-
exponential case needs either consideration of the at-
mosphere as a layered medium or, for the short waves,
making use of the Wentzel, Kramers, and Brillouin
(WKB) method (Brekhovskikh, Godin, 1990). Ei-
ther way, there are three types of motion in one di-
mension: two acoustic modes of different direction of
propagation, and the entropy mode. The entropy mode
is not stationary in a fluid that conducts heat, but
also in multidimensional flows, or in a baroclinic fluid.
In the flows exceeding one dimension, the buoyancy
waves appear (Brekhovskikh, Godin, 1990; Ped-
loski, 1987). This work considers volumes of an ideal
gas with variable equilibrium temperature, affected by
a constant mass force. The first results that allow to
distinguish modes due to relations of specific perturba-
tions, have been obtained relative to the motion of an
exponentially stratified ideal gas in the constant grav-
itational field (Leble, 1990; Leble, Vereschagina,
2016).

In this study, which develops ideas of Brezhnev,
Kshevetsky, and Leble (1994), the modes of a pla-
nar flow are determined by means of relations be-
tween specific perturbations that are time indepen-
dent. They are valid for arbitrary dependence of the
equilibrium temperature on a coordinate. These rela-
tions give ability to distinguish modes from the total
field analytically at any instant, to predict their dy-
namics, and to conclude about energy of any of them
(which remains constant in time). This is undoubt-
edly of importance in applications of meteorology and
diagnostics of atmospheric dynamics, including un-
derstanding of such phenomena as variations of the
equilibrium temperature of the stratosphere, e.g. so-
called warming (Sun et al., 2012). It may be explained
in the framework of non-linear interaction of sound
and entropy modes (Karpov et al., 2016; Perelo-
mova, 1998; 2000; 2009). The whole exposition is also
important in the diagnostics of wave and non-wave
modes in order to follow experimental observations
and numerical simulations (Leble, Vereschagina,
2016).

The case of non-exponential atmosphere in equilib-
rium permits to fix the entropy and acoustic modes
without subdivision into “upwards” and “downwards”
directed waves (Brezhnev et al., 1994). The par-
ticular case of the equilibrium constant temperature,
which has been investigated by the authors, is pro-
vided in Sec. 2, whereas Sec. 3 discusses typical ex-
amples of gas perturbations, relating to linear depen-
dence of the background temperature upon the ver-
tical coordinate, and in the field of constant gravity
force.

2. Conservation equations and modes of a flow

2.1. Basic equations

The equations governing fluid dynamics in absence
of the first, second viscosity, and thermal conduction,
in fact manifest conservation of momentum, energy,
and mass. They determine dynamics of all possible
types of motion which may occur in a fluid and are in
general non-linear. We start from the linearised conser-
vation equations describing one-dimensional flow along
the vertical axis z in terms of deviations of pressure and
density, p′ and ρ′, from equilibrium stationary values
p, ρ, which are no longer constants, but some functions
of the coordinate:

∂v

∂t
= −1

ρ

∂p′

∂z
− ρ′

ρ
g,

∂p′

∂t
= −v dp

dz
− γp∂v

∂z
, (1)

∂ρ′

∂t
= −v dρ

dz
− ρ∂v

∂z
.

The bulk flow is absent, so that the mean velocity
equals zero, v ≡ 0. The external force associates with
the constant gravity acceleration g which is directed
opposite to axis z, though it may refer to other mass
forces including non-inertial ones. The flow of an ideal
gas is considered, whose internal energy e in terms of
pressure and density takes the form

e =
p

(γ − 1)ρ
, (2)

where p = p + p′, ρ = ρ + ρ′, and γ = Cp/Cv denotes
the specific heats ratio. Equations (1) describe pertur-
bations of a small magnitude. The relation between the
equilibrium pressure and density follows from the zero
order stationary equality,

dp(z)
dz

= −gρ(z). (3)

The background density which supports the equilib-
rium distribution of temperature T (z), takes the form

ρ(z) =
ρ(0)H(0)

H(z)
exp

− z∫
0

dz′

H(z′)

, (4)

where the pressure scale height is given by the formula

H(z) =
p

ρg
=
T (z)(Cp − Cv)

g
. (5)

It is convenient to introduce the quantity ϕ′ instead of
perturbation in density,

ϕ′ = p′ − γ p
ρ
ρ′. (6)
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In a flow with g = 0, ϕ′ represents deviation of the
thermodynamic process occurring in a fluid from the
adiabatic one. The variation in specific entropy s of
a fluid’s element in a time unit is described by the
conservation of its energy along its trajectory:

T
ds
dt

=
de
dt
− p

ρ2
dρ
dt
. (7)

In the case of infinitely-small magnitude flow of an
ideal gas in the absence of an external force, Eq. (7)
takes the form

T (0)
∂s′

∂t
=

1

ρ(0)(γ − 1)

∂ϕ′

∂t
.

This makes evident ϕ′ = 0 for the isentropic processes
with zero local variation in entropy, s′ = 0. The total
energy per unit cross section of a gas cylinder of the
height h

ε =
1

2

h∫
0

(
ρv2 +

p′2

γp
+

ϕ′2

γν(z)p

)
dz (8)

is constant, where h may be infinite. The energy den-
sity in (8) is positive if the parameter ν(z) is positive:

ν(z) = γ − 1 + γ
dH(z)

dz
> 0.

It readily follows from Eqs. (1)–(6), (8), that

dε
dt

= 0.

The independence of ε on time reflects conservation of
the total energy of a gas volume, which includes ki-
netic, barotropic, and thermal parts. The energy flow
through the total cylinder’s surface is zero. That im-
poses appropriate boundary conditions at its upper
and lower boundaries. For ε to be constant, there is
a certain freedom to establish the boundary condi-
tions at z = 0 and z = h: v(z = 0) = v(z = h) = 0,
p′ is any smooth function (condition of impermeability
across the boundaries), or, for example, v(z = 0) = 0,
p′(z = h) = 0. Introducing the new set of variables,

P = p′ · exp

 z∫
0

dz′

2H(z′)

,
Φ = ϕ′ · exp

 z∫
0

dz′

2H(z′)

, (9)

U = v · exp

− z∫
0

dz′

2H(z′)

,

one may rearrange Eqs. (1) into the following set:

∂U

∂t
=

1

ρ(0)

(
γ − 2

2γH(0)
− η(z)

∂

∂z

)
P +

Φ

γH(0)ρ(0)
,

∂P

∂t
= −γgH(0)ρ(0)

∂U

∂z
− gρ(0)

γ − 2

2η(z)
U, (10)

∂Φ

∂t
= −ν(z)

η(z)
gρ(0)U,

where

η(z) =
H(z)

H(0)
.

The analytical analysis of the dispersion relations and
modes determined by them, may be proceeded in the
case of constant T and hence, constant H. This case,
corresponding to η = 1 and ν = γ − 1, has been con-
sidered in detail by Leble, Perelomova (2013). In
this case of “exponential” atmosphere, the dispersion
relations which follow from the system (10), determine
three modes, or, in other words, possible motions of
a gas. Two of them are acoustic, differing in direction
of propagation, and the last one is the entropy mode.
In the absence of mass force, this mode is isobaric.

2.2. Diagnostic relations in the general case

The difficulty of the case of T dependent on z is
that the algebraic dispersion equation, valid over the
total wave-length domain, can no longer be introduced.
Equations (10), after the Fourier transformation to
frequency domain ω, determine the spectral problem
with the frequency as a spectral parameter. Generally,
the estimation of spectrum is fairly difficult. Never-
theless, we can extract important information about
modes from the conservation equations immediately.
The modes may be determined by relations linking per-
turbations in the general case as well. The complete-
ness of the set of eigenvectors of the system Eqs. (10)
allows to represent the total vector of perturbations as
a sum of acoustic and entropy contributions at any in-
stant (Brezhnev et al., 1994). For convenience, we re-
produce the modified relations in which directed acous-
tic branches are not subdivided:

Ψ(z, t) =

U
P
Φ

 = Ψa(z, t) + Ψ0(z, t)

=


Ua(

γ − 2

2η(z)
+ γH(0)

∂

∂z

)
η(z)

ν(z)
Φa

Φa



+


0

P0(
−γ − 2

2
+ γH(0)η(z)

∂

∂z

)
P0

. (11)
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We avoid a transition to the spectral problem as it
was undertaken by Brezhnev, Kshevetsky, and
Leble (1994), extracting the diagnostic relations from
Eqs. (10) directly. Expressing

U = − η(z)

gν(z)ρ(0)

∂Φ

∂t
, (12)

we plug it in the second equation of (10) with the re-
sult:

∂P

∂t
=

(
γgH(0)ρ(0)

∂

∂z
+ gρ(0)

γ − 2

2η(z)

)

· η(z)

gν(z)ρ(0)

∂Φ

∂t
. (13)

Integrating it and keeping in mind temporal indepen-
dence of the entropy part on the vector of state (this
part corresponds to zero frequency of dispersion re-
lation in the conventional description and hence it is
stationary), we arrive at

Pa =

(
γH(0)

∂

∂z
+
γ − 2

2η(z)

)
η(z)

ν(z)
Φa + C(z). (14)

The choice of the initial condition C(z) = 0 yields
the relation connecting P (z, t) and Φ(z, t) in the joint
acoustic mode,

Pa =

(
γ − 2

2η(z)
+ γH(0)

∂

∂z

)
η(z)

ν(z)
Φa. (15)

The first equation in the system (10) for U0 = 0 fixes
the diagnostic link in the stationary entropy mode,

Φ0 =

(
−γ − 2

2
+ γH(0)η(z)

∂

∂z

)
P0. (16)

In the case of non-zero mass force, in contrast to the
case g = 0, the non-zero Φa may represent perturba-
tion of ϕ′. It is connected with Pa by means of Eq. (14)
and propagates with the sound speed. Plugging the to-
tal variable P = Pa + P0, we arrive at the alternative
local diagnostic relation

∂Ua
∂t

= − η(z)

gν(z)ρ(0)

∂2Φa
∂t2

=

[(
γ − 2

2γH(0)
− η(z)

∂

∂z

)(
γ − 2

2η(z)
+ γH(0)

∂

∂z

)

· η(z)

ν(z)
+

1

γH(0)

]
Φa
ρ(0)

, (17)

which allows to extract the joint acoustic contribution
by measuring either the derivative of U with respect
to time or the second derivative of Φ with respect to

time along with derivatives of Φ with respect to z. The
wave equation

H(0)

γgν(z)

∂2Φa
∂t2

= −
[(

γ − 2

2γη(z)
−H(0)

∂

∂z

)
(
γ − 2

2γη(z)
+H(0)

∂

∂z

)
η(z)

ν(z)

+
1

γ2η(z)

]
Φa, (18)

points a way to establish the diagnostics of individ-
ual directed acoustic waves. It rearranges into the con-
ventional wave equation in the case of exponentially
stratified atmosphere in the limits η = 1, ν = γ − 1.

The acoustic variable Φa determines Pa and sta-
tionary quantity Φ0 = Φ − Φa uniquely along with
P0 in accordance to Eqs. (11), (16). Equations (15)–
(18) point a way to extract acoustic perturbations from
the total ones. The procedure is valid at any instant.
It may be readily applied in evaluations of the con-
tributions of acoustic and entropy parts in the total
energy. In contrast to the illustrations of Brezhnev,
Kshevetsky, and Leble (1994), we demonstrate the
structure of the localised perturbations. The initial ra-
tio of these energies keeps constant in time. As a refer-
ence perturbation, we use ϕ′ instead of excess density
ρ′. The reasons for this are following: in the case with
g = 0, the acoustic part of ϕ′ is proportional to the per-
turbation in acoustic entropy, ϕ′a = (γ − 1)ρ0T (0)s′a
and measures deviation of a thermodynamic process
from isentropic (that is not longer valid in the general
case if g 6= 0). Also, in terms of ϕ, the link between
acoustic perturbations (15) is simple and local. This is
the second reason to choose perturbation of ϕ instead
of excess density ρ′.

2.3. Comments on the wave modes

The relation between Pa and Ra in the case of iso-
thermal gas in equilibrium (where R = ρ′ exp(z/2H)),
has been derived by Perelomova (1998; 2000). This
relation is integro-differential with some kernel which
represents dispersive properties of sound waves in in-
homogeneous medium. In contrast to acoustic waves,
the entropy mode possesses stationary perturbation in
entropy. In the flows without an external force, the en-
tropy mode is isobaric with any smooth perturbation
of mass density, but if g 6= 0, it is not, in accordance
to the relation between Φ0 and P0, Eq. (16). In order
to conclude about velocity which specifies the sound,
the knowledge of its relation with Φa is required. The
relations differ in sign for various acoustic modes that
differ by direction of propagation (index 1 denotes the
wave propagating in the positive direction of axis z,
and index 2 refers to the wave propagating in the nega-
tive direction). It follows from the conservation system,
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that the variables are connected by the relations (10):
U1(z, t) = K̂Φ1(z, t), U2(z, t) = −K̂Φ2(z, t), where K̂
is some integro-differential operator (that is due to
asymmetry of acoustic branches ω1 = −ω2). This re-
mark gives a hint how to subdivide the total velocity
into “upward” and “downward” part in the general
case of z-dependent height scale. Each such link be-
tween Ui and Φi would be expressed by integral oper-
ators, parametrised by z, so that U1 + U2 = U . This
problem will be considered in a forthcoming study.

Concluding, we claim that the relations linking U
with P and Φ in a fluid’s flow which is affected by
the constant mass force, are integro-differential in gen-
eral. The exact links of excess pressure, density, and
velocity in unbounded volumes of gas with constant
H, are derived exactly with regard to one-dimensional
flow by Perelomova (1998). In the case of dynam-
ics of fluid different from an ideal gas, the equation of
state (2) should be corrected. Deviation of the ther-
modynamic state from that for an ideal gas also cor-
rects the dynamic equation governing an excess pres-
sure, the second one from Eqs. (1), and hence, def-
initions of P , Φ and U (Eqs. (9)) and definition of
modes (Perelomova, 2000). The linear projecting is
helpful also in studies of weakly non-linear dynam-
ics of a fluid and, in particular, in investigations of
non-linear interaction of modes. Application of the
corresponding projector at the system of conserva-
tive equations (Eqs. (11), supplemented by non-linear
terms), allows to derive coupled dynamic equations
for interacting modes. The example of that in un-
bounded volume of gas was considered by Perelo-
mova (1998; 2000). Perelomova (2009) applied the
theory to short acoustic perturbartions. The method
proposed by the authors is successful in the solution of
some problems of fluids flows in wave-guides (Leble,
1990).

3. The particular case of linear
dependence H on z

The complete investigation of wave and entropy
modes spectra and evolution for arbitrary dependence
H on z is fairly difficult, hence we fix our attention on
the simplest non-trivial case of linear function, which
is a particular case of constant parameters η and ν.
This case is realistic and shows how a diagnostics
could be performed. Illustrations from Sec. 3 corre-
spond to αH(0), which takes values −0.1, 0 or 0.1.
In the model of the standard atmosphere (U.S. Stan-
dard Atmosphere, 1976) there are some extended do-
mains of almost linear dependence of H on z: αH(0)
is about −0.2 over the domain of z between 0 and 10
kilometers, αH(10) ≈ 0 between 10 and 20 kilome-
ters, and αH(30) ≈ 0.1 between 30 and 45 kilometers,
see Fig. 39 of U.S. Standard Atmosphere (1976). These

quantities and domains may considerably vary depend-
ing on season, daytime, and meteorological conditions.
In this case, η = 1 + αz, where α is some non-zero
constant, ν = 1 − γ + γαH(0), and R1, R2 take the
following forms:

R1(z) =

(
1

1 + αz

)1/2αH(0)

,

R2(z) = H(0)

(
1

1 + αz

)1/2αH(0)

(19)

· (1 + αz)1+1/αH(0) − 1

1 + αH(0)
.

We make use of Eqs. (11) in order to separate acous-
tic and entropy contributions in any vector of total
perturbations. Some simple conclusions illustrate the
application of the theory.

3.1. Contribution of only entropy mode
in the total perturbations

Commencing with isolated entropy mode, we rear-
range the relation (16) for the parameters in the form
(19)

Φ ≡ Φ0 =

(
−γ − 2

2
+ γH(0)(1 + αz)

∂

∂z

)
P (20)

at any instant. In evaluations, we consider the station-
ary perturbation P ≡ P0(z) as a Gaussian impulse (a)
or its derivative multiplied by H(0)β (b),

(a) P ≡ P0 = Π exp

(
− (z − z0)2

β2H(0)2

)
,

(b) P ≡ P0 = −2Π(z − z0)

H(0)β
exp

(
− (z − z0)2

β2H(0)2

)
,

(21)

where β, Π denote the characteristic dimensionless
width (in units H) and magnitude of an impulse.
It would be superfluous to mention that relations
between field perturbations specifying every mode,
Eqs. (15), (16), are valid at any instant. So, we do
not determine the time which the samples of perturba-
tions (21) correspond to. For definiteness, z0 = 3H(0),
β = 0.3, and γ = 1.4. Figure 1 shows dimensionless
perturbations specifying sound and entropy modes.

3.2. Contribution of sound only
in the total perturbations

In accordance to Eq. (15),

P ≡ Pa =

(
γ − 2

2(1 + αz)
+ γH(0)

∂

∂z

)
· 1 + αz

1− γ + γH(0)α
Φ. (22)
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a)

b)

Fig. 1. Case of exclusive contribution of the entropy mode
in the total perturbation. Dimensionless excess pressure
P0/Π (bold line) and Φ0/Π (normal lines) in the entropy
mode for different αH(0) (−0.1, 0, 0.1). Cases of symmetric

(a) and asymmetric (b) impulses.

Φ ≡ Φa is taken in the particular case of symmetric or
asymmetric impulses,

(a) Φ ≡ Φa = Π exp

(
− (z − z0)2

β2H(0)2

)
,

(b) Φ ≡ Φa = − 2Π

H(0)β
exp

(
− (z − z0)2

β2H(0)2

)
.

(23)

The values of z0, β, and γ are the same as in the above
subsection. Figure 2 represents dimensionless pertur-
bations which correspond to the case of zero entropy
mode contribution.

3.3. Zero total Φ

Specific perturbations in pressure for the stationary
mode are taken in the form (a,b) of Eq. (23), with the
correspondent Φ0 which is determined by Eq. (16). As
for sound, Φa = −Φ0, and the excess pressure relates
to Φa by means of Eq. (15). Figure 3 shows excess
pressure in acoustic and entropy modes in the cases
(a) and (b) for different α and for the same β and γ as
in the previous subsections.

a)

b)

Fig. 2. Case of zero contribution of the entropy mode
in the total perturbation. Dimensionless perturbations
Pa/Π (normal lines), Φa/Π (bold line) for different αH(0)
(−0.1, 0, 1). Cases of symmetric (a) and asymmetric (b)

impulses.

a)

b)

Fig. 3. Case of zero total entropy. Dimensionless perturba-
tions Pa/Π (normal lines), P0/Π (bold line) for different
αH(0) (−0.1, 0, 1). Cases of symmetric (a) and asymmetric

(b) impulses.
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3.4. Zero total excess pressure

The specific perturbation Φa for sound is taken in
the form of symmetric or asymmetric impulses in ac-
cordance to Eq. (23). Pa relates to Φa by means of
Eq. (15). Perturbation in pressure for the stationary
mode is P0 = −Pa, and Φ0 is expressed in terms of P0

in agreement with Eq. (16). Figure 4 exhibits excess
pressure for acoustic and entropy modes in the cases
(a) and (b) for different α.

a)

b)

Fig. 4. Case of zero total pressure. Dimensionless perturba-
tions Φ0/Π (normal lines), Φa/Π (bold line) for different
αH(0) (−0.1, 0, 1). Cases of symmetric (a) and asymmetric

(b) impulses.

The resulting curves for the various modes demon-
strate a difference between their vertical profiles for
typical modal perturbations, which can help to recog-
nise them during a diagnostics.

4. Concluding remarks

The main result of this study is establishing and il-
lustrating of diagnostic relations, Eqs. (15)–(18), which
enable recognition of a mode by means of simultane-
ous evaluation of perturbations for velocity, pressure,
and entropy. The results that correspond to the linear
dependence of H on z, are illustrated by the relative
plots. The figures show dependences of the principal
variables (P , Φ) on z for acoustic and entropy modes.
The diagnostic process presented in this work allows
for estimation of specific energies of different modes,

and thus their contribution in the atmosphere energy
balance. The brief description of modes definition and
diagnostics process by projecting in the case of con-
stant H is presented in Sec. 2.
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