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The article presents the results concerning the use of clustering methods to identify signals of acoustic
emission (AE) generated by partial discharge (PD) in oil-paper insulation. The conducted testing featured
qualitative analysis of the following clustering methods: single linkage, complete linkage, average linkage,
centroid linkage and Ward linkage. The purpose of the analysis was to search the tested series of AE
signal measurements, deriving from three various PD forms, for elements of grouping (clusters), which
are most similar to one another and maximally different than in other groups in terms of a specific
feature or adopted criteria. Then, the conducted clustering was used as a basis for attempting to assess
the effectiveness of identification of particular PD forms that modelled exemplary defects of the power
transformer’s oil-paper insulation system. The relevant analyses and simulations were conducted using
the Matlab estimation environment and the clustering procedures available in it. The conducted tests
featured analyses of the results of the series of measurements of acoustic emissions generated by the
basic PD forms, which were obtained in laboratory conditions using spark gap systems that modelled the
defects of the power transformer’s oil-paper insulation.
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1. Introduction

The notion of maintaining fault-free operation of
power transformers, which constitutes one of the cru-
cial elements of a power system, remains one of the sub-
stantial problems in the contemporary power industry
(Singh et al., 2008; Boczar et al., 2014). From an
economic and technical point of view (Yadav et al.,
2008; Majchrzak, 2017; Borucki, 2009) it is jus-
tified, and even necessary, to search for and develop
modern diagnostic methods, the primary purpose of
which is early detection, localisation and assessment of
the hazard of irreversible damage in the transformer’s
insulation system due to a defect developing inside its
tank. Currently, classic diagnostic methods, amongst
others, are being applied in this case: the so-called
basic electrical methods (insulation resistance, capac-
ity, dielectric loss measurements), gas chromatogra-
phy (DGA) or the analysis of the transformer oil’s
physical and chemical properties (Akbari et al., 2010;
Basak, 1999; Borucki et al., 2010; 2012; Kaźmier-
ski et al., 2013). The above methods are also becom-

ing supplemented with the acoustic emission method
(AE), which is being more commonly applied for cru-
cial transformers operating in a power system, and
which allows detecting, locating and assessing the in-
tensity of partial discharges (PD) generated in their
oil-paper insulation system. At the current stage of
using the AE method for assessing PD’s in the condi-
tions of normal transformer operation, the problem is
not the measurement execution itself (selection of mea-
suring instruments and their metrological parameters,
elimination of interference, etc.), but the correct anal-
ysis and interpretation of the recorded acoustic signals
(Rubio-Serrano et al., 2012; Soltani et al., 2012;
Rodrigo et al., 2011; Olszewska et al., 2012). The
direction for future work on the development of the AE
method, which is used in the diagnostics of transformer
units, is the attempt to search for effective methods
of analysing the obtained measurement results, among
others, in order to effectively identify the so-called ba-
sic PD forms, which can be used to assess the degree of
degradation of the insulation system. Until now, such
attempts were executed based on the results of the
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frequency, time and frequency, statistical or correla-
tion analyses. Artificial intelligence elements were also
used to identify the basic PD forms (Boczar, 2001;
Borucki et al., 2007; Fuhr, 2005; Lalitha et al.,
2002). Due to the complexity of the diagnostic pro-
cess, the use of the aforementioned methods required
a relatively long time to process and analyse the ob-
tained measurement results and often resulted in ob-
taining ambiguous results in terms of identifying the
measured AE signals.

The article presents the results of an attempt to use
the clustering methods to identify AE signals gener-
ated by laboratory-modelled PD’s in oil-paper insula-
tion. The conducted testing featured qualitative analy-
sis of the following methods of clustering the recorded
AE signals: single linkage, complete linkage, average
linkage, centroid linkage and Ward linkage (Zalewski
et al., 1997). The purpose of the conducted analy-
sis was to search the tested series of AE signal mea-
surements, deriving from three various PD forms, for
cluster elements, which are most similar to one an-
other and maximally different than in other groups
in terms of a specific feature or adopted criteria. The
conducted clustering was used as basis for attempting
to assess the effectiveness of identification of particu-
lar PD forms that modelled exemplary defects of the
power transformer’s oil-paper insulation system.

2. Considered forms of partial discharges
and the measurement station

In order to obtain the models of AE signals gen-
erated by the basic PD forms, which occur in actual
transformer insulation systems, the Insulation Sys-
tem Diagnostics Laboratory of the Opole University
of Technology has prepared suitable modelling spark
gaps. The spark gaps were immersed in insulation oil
that filled the transformer tank and then were supplied
with high voltage from the test transformer. As part
of the conducted research, it was proposed to generate
PD’s and record the AE signals for three modelling
spark gap systems:

• discharges in the blade-blade spark gap system im-
mersed in oil, which may correspond to PD’s that
occur due to damage to the insulation of two ad-
jacent transformer winding coils (highlighted as
Class 1),

• discharges in the blade-plate spark gap system im-
mersed in oil, which may correspond to PD’s that
occur between the damaged part of insulation of
the transformer winding and the grounded flat
parts, such as elements of the core, yoke, tank,
magnetic screens (highlighted as Class 2),

• discharged in the surface spark gap system with
one flat electrode, one multi-blade electrode, with

oil-paper insulation between them, which may cor-
respond to PD’s that occur at the contact of
copper wires and the oil-paper insulation system,
which features irregularities in the winding sur-
faces (highlighted as Class 3).

The insulation systems described above allowed
generating PD’s with the apparent charge Qp in the
scope of a dozen or so pC to approx. 2 nC (values con-
firmed using the electrical method). In order to main-
tain the overall quality of the obtained measurement
results of AE signals from the measured PD’s and for
the analyses to enable comparing and reproducing, the
value of the discharge generation voltage was adopted
at 80% of the breakdown voltage (Up) of each of the
used modelling spark gaps. Figure 1 presents the di-
agram of the blade-plate spark gap system used for
generating PD’s and AE signal recording (Class 2).

Fig. 1. Measurement system diagram: 1 – tank with insu-
lation oil, 2 – modelling spark gap, 3 – measurement trans-
ducer, 4 – measurement filter and amplifier, 5 – computer

and measurement card.

The AE signals generated by the PD’s were mea-
sured using the WD AH17 type piezoelectric trans-
ducer from Physical Acoustics Corporation, mounted
to the tank. The used transducer has a sensitivity
of 55± 1.5 dB (in relation to V/ms−1) and a trans-
mission band of 100 kHz to 1 MHz in the range of
± 10 dB. In order to amplify the measurement signal,
the transducer outputs were connected to the differen-
tial inputs of the AE Signal Conditioner amplifier from
EA System. The amplifier featured a 40 dB amplifi-
cation and a transmission band of 1 kHz÷ 2.0 MHz.
The measurement system was additionally equipped
with a band-pass filter with cut-off frequencies of
20 kHz and 1.0 MHz. The use of the aforementioned
filtering band was necessary due to the necessity of
eliminating interference signals present in the bottom
and top frequency band, and to eliminate the alias-
ing phenomenon. The observance and recording of the
measured AE signals was executed using a computer
equipped with the NI 5911 measurement card from Na-
tional Instrument. The measurements were conducted
at the sampling frequency of 2.56 MHz and resolution
of 14 bits.
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3. Specification of the tested clustering methods

Data clustering, also known as grouping or cluster
analysis, belongs to the methods of data exploration
and machine learning related to document clustering.
It is one of the methods of the so-called unsupervised
learning, based on grouping of elements into relatively
homogenous classes, the basis of which is the simi-
larity between the elements, defined by the similar-
ity function, known as metrics. The purpose of con-
ducting the cluster analysis is the organisation of the
observed data into coherent structures or groups by
way of analysing the similarities in elements undergo-
ing testing according to the adopted criteria. Particu-
lar elements included in the group should be as similar
as possible and maximally different from the elements
in other groups. In general, the clustering methods can
be divided into hierarchical and k-means methods. The
clustering methods used as part of the execution of this
research include the following: single linkage, complete
linkage, average linkage, centroid linkage, Ward linkage
(Cichosz, 2000; Krzyśko et al., 2008).

In the single linkage method, the distance between
a newly created cluster and an external unit is defined
as the smallest distance from the distances between the
units in this cluster and the external unit. If we assume
that in an n-dimensional space we have a set X = {xi},
where xi are the set elements and a point P , which does
not belong to set X, then the distance of point P from
set X is defined with the following formula:

d(P,X) = min
i
d(P, xi). (1)

In this method, the distance between two clusters
is established as the smallest distance of the distances
between the units from the first and second cluster.

In the complete linkage method, the distance be-
tween a newly created cluster and an external unit is
defined as the biggest distance from the distances be-
tween units in this cluster and the external unit. For
point P , which does not belong to set X, the distance
of point P from set X is defined with the following
formula:

d(P,X) = max
i
d(P, xi), (2)

where xi are elements of set X in a n-dimensional
space.

In the average linkage method, the distance be-
tween a newly created cluster and an external unit
is defined as the arithmetic mean of the distances be-
tween the units in this cluster and the external unit.
For point P , which does not belong to set X, the dis-
tance of point P from set X is defined with the follow-
ing formula:

d(P,X) =
1

k

k∑
i=1

d(P, xi), (3)

where k is the number of elements in set X.

In the centroid linkage method, the centroid is es-
timated for each of the groups – as the mean value of
all objects (vectors) belonging to the given group. The
distance between the clusters is defined as the distance
between the cluster’s centroids. The main concept of
this algorithm is the specification of the k centroids
– for each of the groups, and then assignment of all
the objects to the nearest centroid – creation of k –
clusters. In the next algorithm cycle, each of the ini-
tially obtained clusters will feature the estimation of
new centroids and the objects are distributed anew.
The operation is repeated until no object changes the
assigned cluster.

In the Ward linkage method, two groups of objects
are merged into a single group to minimise the sum
of squared deviations of all objects in the two groups
from the centre of gravity of the new group created as
result of their merging. At each stage of merging, from
all the applicable groups, merging is executed within
groups that, as result, creates a group of objects with
the smaller variation in terms of their characteristic
variables.

An important element of the clustering process is
the selection of the method of determining the similar-
ity between the elements of the analysed sets, i.e. spe-
cification of the similarity function referred to as the
metric. The following metrics are applied (Krzyśko
et al., 2008):
• Euclidean metric, defined with the following for-

mula:

d(X,Y ) =

(
n∑
i=1

(xi − yi)2
)1/2

, (4)

where X, Y are set points in an n-dimensional
space, and xi and yi are the coordinates of those
points,

• standardised Euclidean metric, defined with the
following formula:

d(X,Y ) =

(
n∑
i=1

1

ŝ2i
(xi − yi)2

)1/2

, (5)

where ŝ2i is a variation of the i point coordinate,
• Cityblock metric or Manhattan distance, defined

with the following formula:

d(X,Y ) =

n∑
i=1

|xi − yi|, (6)

• Mahalanobis distance, also referred to as the
weighted Euclidean distance, defined with the fol-
lowing formula:

d(X,Y ) =
(

(X − Y ) · C−1 · (X − Y )
T
)1/2

, (7)

where C is the covariance matrix:

C = cov(X,Y ), (8)
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• Minkowski metric, defined with the following for-
mula:

d(X,Y ) =

(
n∑
i=1

|xi − yi|p
)1/p

, (9)

where p is parameter which decides about impor-
tance of difference between objects on each clus-
ters.

4. Analysis of obtained results

In order to attempt identifying the AE signals gen-
erated by three basic PD forms modelled in labora-
tory conditions using clustering tools, suitable numeri-
cal procedures were developed and implemented in the
Matlab environment. The conducted testing featured
a comparative analysis of all clustering methods spec-
ified in Sec. 3 and the relevant metrics (distance mea-
sures). As the parameter of the measured AE signal
used in the clustering process, the authors have pro-
posed the power spectrum density (PSD), which was
determined for experimentally selected two limit fre-
quencies, 90 kHz and 990 kHz, respectively. The fol-
lowing figures present the exemplary characteristics
and histograms constituting the result of clustering of
three basic PD forms, whereby Class 1 describes dis-
charged in the blade-blade spark gap system immersed
in oil, Class 2 – discharges in the blade-plate spark
gap system immersed in oil, and Class 3 – discharges
in a surface spark gas system. Figure 2a illustrates
the original distribution of measurement data of AE
signals from three PD forms under analysis, whereas
Fig. 2b presents the distribution of the same measure-
ment data, but as result of clustering conducted using
the Ward and standardised Euclidean metric methods.

a) b)

Fig. 2. Exemplary distribution of measurement data of AE signals from three PD forms for two selected PSD frequencies:
a) original measurement data, b) data after clustering using the Ward and standardised Euclidean metric methods.

The analysis of the above figures demonstrated an
accurate reconstruction, by way of clustering, of the
analysed Class 3 data and high accuracy in the recon-
struction of the Class 1 and 2 data layout. These con-
clusions are also confirmed by the analysis conducted
by way of comparing the quantity of particular class
elements for the original distribution of measurement
data and the distribution obtained by way of clustering
(Figs. 3–5).

The following figures present the histograms of the
distribution of original measurement data, data sub-
jected to clustering and the comparison of the quantity
of particular elements for particular PSD values. Com-
ponent X concerns the assessment of the variation of
the AE signal defined for the streak of the power spec-
trum density with the frequency of 90 kHz, whereas
component Y – for the PSD streak with the frequency
of f = 990 kHz. Figure 3 illustrates the comparison of
the quantity of Class 1 elements for the original data
distribution and the distribution obtained by way of
clustering; Fig. 4 – respectively for Class 2, whereas
Fig. 5 – for Class 3. The histograms also present the
PSD’s mean value and standard deviation for particu-
lar data sets (original data and data subjected to clus-
tering), as well as their dispersion measure – absolute
difference of the Mean value ∆ and standard devia-
tion ∆ (STD). The minimisation of the two above pa-
rameters (∆Mean, ∆STD) was used by the authors
to assess the degree of matching the given clustering
method and metric in terms of the possibility of iden-
tifying particular PD forms.

The obtained results of comparing the quantity
of Class 1 elements at the level of ∆Mean = 0.0963
and ∆STD = 0.057 in the case of component X, and
∆Mean = 0 and ∆STD = 0 in the case of component
Y demonstrate a relatively accurate reconstruction of
the original distribution of Class 1 elements by way
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a) b)

Fig. 3. Comparison of the quantity of Class 1 elements for the original measurement data distribution and the distribution
obtained by way of clustering using the Ward and standardised Euclidean metric methods: a) PSD parameter’s frequency

component X, b) PSD parameter’s frequency component Y .

a) b)

Fig. 4. Comparison of the quantity of Class 2 elements for the original measurement data distribution and the distribution
obtained by way of clustering using the Ward and standardised Euclidean metric methods: a) PSD parameter’s frequency

component X, b) PSD parameter’s frequency component Y .

of clustering using the Ward and standardised Eu-
clidean metric methods.

The comparison of the quantity of Class 2 ele-
ments provided results at the level of ∆Mean = 0.335
and ∆STD = 0.198 in the case of component X, and
∆Mean = 0.000126 and ∆STD = 0.00000744 in the
case of component Y . The results are slightly worse
than in the case of Class 1 (Fig. 3), but similarly
demonstrate a relatively accurate reconstruction of the
original distribution of Class 2 elements by way of clus-
tering.

In the case of Class 3, the result was the full recon-
struction of the original distribution of measurement

data of AE signals from the PD’s by way of cluster-
ing. This is confirmed by the zero values of the results
of ∆Mean and ∆STD differences, both for the PSD’s
component X and Y . The full reconstruction of the
original distribution of Class 3 elements results from
the clear separation of particular PSD frequency com-
ponents of the AE signal for this PD form from the
elements of the other defined classes.

The conducted research experiment featured anal-
ogous analyses for all clustering methods and metrics
specified in Sec. 3. The results obtained this way, es-
pecially the ∆Mean and ∆STD parameters, are pre-
sented in Tables 1–6.
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a) b)

Fig. 5. Comparison of the quantity of Class 3 elements for the original measurement data distribution and the distribution
obtained by way of clustering using the Ward and standardised Euclidean metric methods: a) PSD parameter’s frequency

component X, b) PSD parameter’s frequency component Y .

Table 1. Results of clustering using various methods of Class 1 elements
and the standardised Euclidean metric.

No. Clustering method
∆Mean ∆STD

Component X Component Y Component X Component Y

1. Single 0.5730 0.3360 5.2800 5.2800

2. Complete 0.0546 0.0000 0.0323 0.0000

3. Average 0.0546 0.0000 0.0323 0.0000

4. Centroid 0.0546 0.0000 0.0323 0.0000

5. Ward 0.0963 0.0000 0.0570 0.0000

Table 2. Results of clustering using various metrics of Class 1 and the Ward method.

No. Metric
∆Mean ∆STD

Component X Component Y Component X Component Y

1. Euclidean 0.1230 0.0000 0.0728 0.0000

2. Seuclidean 0.0963 0.0000 0.0570 0.0000

3. Cityblock 0.0546 0.0000 0.0323 0.0000

4. Mahalanobis 0.2630 0.0000 0.1560 0.0000

5. Minkowski 0.1230 0.0000 0.0728 0.0000

Table 3. Results of clustering using various methods of Class 2 elements
and the standardised Euclidean metric.

No. Clustering method
∆Mean ∆STD

Component X Component Y Component X Component Y

1. Single 0.5450 0.0000 0.3220 0.0000

2. Complete 0.4850 0.0098 0.2870 0.0085

3. Average 0.4850 0.0098 0.2870 0.0085

4. Centroid 0.4850 0.0098 0.2870 0.0085

5. Ward 0.3350 0.0001 0.1980 0.0000
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Table 4. Results of clustering using various metrics of Class 2 and the Ward method.

No. Metric
∆Mean ∆STD

Component X Component Y Component X Component Y

1. Euclidean 0.5910 0.0098 0.3500 0.0058

2. Seuclidean 0.3350 0.0001 0.1980 0.0000

3. Cityblock 0.4850 0.0098 0.2870 0.0085

4. Mahalanobis 0.2170 0.0001 0.1280 0.0001

5. Minkowski 0.5910 0.0098 0.3500 0.0058

Table 5. Results of clustering using various methods of Class 3 elements
and the standardised Euclidean metric.

No. Clustering method
∆ Mean ∆STD

Component X Component Y Component X Component Y

1 Single 0.0000 0.0000 0.0000 0.0000

2 Complete 0.0000 0.0000 0.0000 0.0000

3 Average 0.0000 0.0000 0.0000 0.0000

4 Centroid 0.0000 0.0000 0.0000 0.0000

5 Ward 0.0000 0.0000 0.0000 0.0000

Table 6. Results of clustering using various metrics of Class 3 and the Ward method.

No. Metric
∆Mean ∆STD

Component X Component Y Component X Component Y

1. Euclidean 0.0000 0.3040 0.0000 0.1800

2. Seuclidean 0.0000 0.0000 0.0000 0.0000

3. Cityblock 0.0000 0.0000 0.0000 0.0000

4. Mahalanobis 0.0000 0.0000 0.0000 0.0000

5. Minkowski 0.0000 0.3040 0.0000 0.1800

In the case of Class 1 elements, when using the simi-
larity function (metric) in the form of standardised Eu-
clidean distance, three clustering methods – complete
linkage, average linkage and centroid linkage – gave
the same effect. Slightly worse results were obtained
in the case of the Ward linkage method, whereas the
largest discrepancies between the original data distri-
bution and the distribution obtained by way of clus-
tering were obtained in the case of the single linkage
method.

The most effective metric for Class 1 elements, us-
ing the Ward linkage clustering method, turned out to
be the so-called Cityblock metric. Slightly worse re-
sults were obtained for the so-called Seuclidean, i.e.
standardised Euclidean metric, whereas for the other
three tested similarity functions, the obtained ∆Mean
and ∆STD values are characterised by a higher value
by nearly an order (for the PSD’s frequency compo-
nent X).

Similarly, as in the case of Class 1 elements, the
use for Class 2 elements of the metric of standardised
Euclidean distance has given the same effect for three

clustering methods – complete linkage, average linkage
and centroid linkage. The best clustering results were
obtained however for the Ward linkage method. The
largest discrepancies between the original data distri-
bution and the distribution obtained by way of cluster-
ing, similarly as in the case of Class 1, were obtained
for the single linkage method. These discrepancies are
however smaller than in the case of clustering of the
Class 1 elements.

Based on the conducted testing, it was concluded
that the most effective similarity function for Class 2
elements, using the Ward linkage clustering method,
is the Mahalanobis metric, also referred to as the so-
called Euclidean distance. Slightly worse results were
obtained for the Seuclidean and Cityblock metrics.
The worst results were obtained for the Euclidean and
Minkowski probability functions.

In the case of Class 3 elements, for which the orig-
inal distribution of the measurement data was charac-
terised by a clear deviation from the other two analysed
Classes, the selection of the clustering method had no
impact on the obtained ∆Mean value and ∆STD pa-
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rameters (Table 5). The value of the determined pa-
rameters amounted to zero for each of the applied and
tested clustering methods. However, based on the as-
sessment of the change in the similarity function for
Class 3 elements, using the Ward linkage clustering
method, it was concluded that the most effective met-
rics for this clustering method are the Euclidean and
Minkowski functions.

5. Conclusion

The results presented in this article concerning the
use of clustering for analysing and classifying AE sig-
nals, confirm the possibility of using this method to
identify the basic PD forms occurring in the trans-
former’s oil-paper insulation system. Based on the con-
ducted testing, it was proven that the use of various
clustering methods and similarity functions (metrics)
allowed reconstructing, with substantial degree of ac-
curacy, the original distribution of measurement data
of the AE signals, deriving from the three modelled
PD forms. It is, however, necessary to note that the
effective identification of particular PD forms based
on the AE signal analyses and the clustering meth-
ods discussed in the article is also largely dependent
on the correct selection of the recorded signal’s PSD
frequency components X and Y . As part of this arti-
cle, two selected PSD streak frequencies were adopted
for the experiment. Currently, the team is conduct-
ing further testing aimed at minimising the deter-
mined ∆Mean and ∆STD indicators, amongst others,
by changing the frequencies of components X and Y
of the determined PSD.

An important feature of the method of identifying
the basic PD forms proposed in this article is the possi-
bility of further optimisation and selection of the most
effective clustering methods and metrics, and there-
fore the possibility of more accurate reconstruction of
the original measurement data by using numerical in-
dicators, which include the difference of the ∆Mean
and ∆gSTD values. In the authors’ opinion, thanks to
the possibility of further optimisation, the methodol-
ogy presented in the article can be more reliable and
effective in identifying damage occurring in oil-paper
insulation systems of PD transformers.
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