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The scattering and transmission of sound by an elastic spherical shell is considered when it is subject to
an incoming monochromatic planar wave. It is aimed to cancel the sound scattering using combinations of
multi-pole sources located at the centre of a shell filled with compressible fluid. Assuming linear acoustics
and structural dynamics, exact solutions are derived for total elimination of the sound scattering for three
cases: a free-space, near a hard ground or near a free-surface, where in the last two cases it is assumed
that the incoming wave propagates normal to the interface to maximize sound reflection back unto the
source of the incoming wave. An elastic spherical shell of 1 m radius embedded in water and filled with
air or oil is analysed to show the dominance of low-mode numbers for frequencies of less than 10 kHz
and thus demonstrate the ability of this approach to damp acoustic scattering by means of low-order
multi-poles inside the shell. Contour and mode distribution plots are also given and analysed.
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1. Introduction

Sound scattering by a perfectly symmetric sphere
is a fundamental topic in acoustics that has attracted
significant attention since Lord Rayleigh had presented
an analytical solution using a Fourier-Legendre’ series
for scattering by a rigid (hard) sphere in free-space
(Rayleigh, 1945). This topic has a wide range of ap-
plications from underwater acoustics (Huang, Gau-
naurd, 1997) and room acoustics to particle dynam-
ics control (Barosch et al., 2016). Accounting for
the sphere’s structural flexibility adds another level
of complexity in terms of sound-structure interaction
and sound transmission through the structure. A com-
prehensive analysis for elastic plates, cylindrical and
spherical shells acting as sound radiators and scatter-
ers, was given by Junger and Feit (1972) within the

framework of linear acoustics and structural dynamics,
by employing a Fourier series based approach.

Sound scattering by an elastic spherical shell sub-
ject to an incoming planar wave was extended to
the case of a shell located near a free-surface or
a hard ground (Huang, Gaunaurd, 1997). The image
method and the collocation approach were pursued by
building elements on the shell’s surface. As in the case
of the solution for a plate embedded on a free surface
(Avital et al., 2012), a least-square operation had to
be used in order to overcome an ill-conditioned matrix
derived to compute the amplitudes of the Fourier se-
ries of the scattered pressure field. Acoustic scattering
by an elastic spherical shell filled with air and located
near the seabed or free surface was also pursued by
Sessarego el al. (2012) to find strong resonance in-
teraction between the shell and the interface which was
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located close to it. A similar conclusion was drawn by
Avital and Miloh (2015) who presented some practi-
cal solutions for cancellation of sound scattering using
pressure singularities embedded on the shell’s wall.

One important aim of the published studies of
sound-scattering studies is to achieve reduction of the
scattered sound field or transmitted sound, in order
to reduce the acoustic signature and avoid detection.
This was usually achieved using passive means, while
the new formulation of this study seeks to do so using
an active mean of a multi-pole sound-source. Passive
means include coating the body with material that will
absorb some of the acoustic energy, while minimizing
reflection by selecting the surface acoustic impedance
to be similar to that of the surrounding medium. Vis-
coelastic material is commonly used for this purpose
in underwater acoustic applications and Partridge
(1996) analysed the case of partly coated axisymmet-
ric bodies to show better scattering’s reduction at high
frequencies in water (> 2 kHz). A bi-layer of elastic
coating was demonstrated for a cylindrical shell to
reduce scattering for a certain target frequency (or
range of frequencies) by using an optimization proce-
dure (Dutrion, Simon, 2017). An alternative coating
can be achieved by a combination of small cavities and
channels acting together as Helmholtz resonators that
damp the incoming acoustic energy and reduce reflec-
tion. This approach goes back to the World War II
era and has recently re-emerged as part of the modern
meta-material approach (Meng et al., 2012). An in-
teresting approach of using the Janus sphere concept,
where part of the sphere is hard and the other is soft
was suggested by Kim el al. (2014) to reduce sound
scattering, where the soft/hard domain sizes could be
altered using the shape memory alloys (SMA) technol-
ogy. This approach was shown to have the potential
of significantly reducing the scattered acoustic energy
of the sphere when it is near a free-surface or a hard
ground, by masking the sphere as part of the reflection
coming from the free-surface or hard interfaces.

Reduction of sound scattering using pressure ac-
tuators mounted on the shell’s wall and utilizing the
linear structural dynamics of the shell, was proposed
by Avital and Miloh (2011) for free- surface piercing
cylinders, a spherical shell (Avital, Miloh, 2015) and
a circular plate embedded on a free-surface (Avital
et al., 2012). Analytical solutions were shown to ex-
ist for the optimal distribution of the pressure actua-
tors, yielding total elimination of the sound scattering,
when assuming linear acoustics. Practically speaking,
when using a finite number of pressure actuators the
method was shown to have good capability of signifi-
cantly reducing sound scattering, especially for low to
mid-range frequencies, i.e. when the shell is compact
or mildly non-compact relative to the incoming wave
length. The mathematical rationale of this approach
can be found in the source substitution method used

to model sound scattering, replacing the body by a dis-
tribution of simple sources within the shell (Zannin,
2000). The effect of those simple sources is similar to
the effect of the pressure actuators, however the latter
affect the sound field not directly as the simple source
but indirectly through the structural dynamics of the
shell.

Alternatively, the source substitution method can
be based on a series of higher-order multi-poles located
at the centre of the body (Crighton et al., 1996),
and in the case of a rigid sphere this method simply
converges to Rayleigh’s solution for sound scattering
(Rayleigh, 1945). This leads to the aim of this study
to achieve reduction of sound scattering using active
means by locating a multi-pole source at the centre of
the sphere. Such source can be applied as a combina-
tion of simple sources located at a very short distance
of each other while acting asymmetrically towards each
other. Such approach requires the shell to be filled with
a compressible fluid and as in the case of the pressure
actuators method, it will be shown that there is an
exact solution for the forcing multi-poles to yield to-
tal cancellation of the sound scattering, However, for
practical reasons, the order of those multi-poles can
only be finite and low. Therefore special attention will
be given to examine the feasibility of using low- order
forcing multi-poles at the shell’s centre to significantly
reduce the scattered acoustic energy, i.e., by at least
10 dB.

Hence the aim of this paper is to present a new
formulation to reduce sound scattering using a multi-
pole source configuration and evaluate it for an elastic
spherical shell in free space or near a free or hard
surface.

The following section presents the methodology of
the Fourier-Legendre series approach used in this study
for an elastic spherical shell embedded in a free-space,
near a free-surface or a hard ground that is illustrated
in Fig. 1. This is followed by the Results section, in-
cluding verification cases and analysis of the three sce-
narios of an elastic shell in free-space, near a free-
surface and a hard ground.

Fig. 1. Schematic description of the problem
when the spherical shell is near an interface.
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2. Methodology

The governing equations and analytical solutions
are derived in this section for a spherical shell as il-
lustrated in Fig. 1. Linear acoustics and structural dy-
namics are assumed. The incident wave is considered
as monochromatic and planar, hence its actual source
is assumed to be located far from the shell (Avital,
Miloh, 2015; Kim et al., 2014). First the free-space
case is considered and then the derivation is extended
correspondingly both to the free- surface and hard
ground cases.

a. The spherical shell is in free space

Following Kim et al. (2014), the sound pressure pe
outside the sphere can be expressed as

pe(x, z, t) = p0e
i(kez−ωt)

+

N∑
n=0

bnh
(1)
n (ker)Pn(cos θ)e−iωt. (1)

The first term on the right hand side of Eq. (1)
represents the incident wave pressure and the second
term represents the scattered wave pressure. As linear
acoustics is assumed, the amplitude p0 can be taken
as unity without losing any generality. The incident
wave’s propagation direction is z, x is perpendicular
to z and t is time. In addition ke is the wave num-
ber, ω is the wave frequency, r is the spherical radius
measured from the sphere’s centre and θ is the polar
angle. Finally, h(1)n is the spherical Hankel function of
the first kind, Pn (cos θ) is the Legendre’ function and
bn are coefficients to be determined.

The acoustic pressure inside the shell pi can be ac-
cordingly written as

pi(x, z, t) =

N∑
n=0

cnj
(1)
n (kir)Pn(cos θ)e−iωt

+

N∑
n=0

fnh
(1)
n (kir)Pn(cos θ)e−iωt. (2)

The first term on the right hand side of Eq. (2) repre-
sents the wave pressure transmitted into the shell’s in-
ner fluid and the second the pressure due to the multi-
poles at the centre of the shell. The wave number in the
fluid within the shell is denoted by ki, jn is the spheri-
cal Bessel function of the first kind. In this study we
will match the external sound pressure with the inter-
nal one in the Fourier-Legendre space. For this pur-
pose the exp(ikez) function in the incident wave term
of Eq. (1) can be expanded as

eikez =

N∑
n=0

(2n+ 1)injn(ker)Pn(cos θ). (3)

Similarly the shell’s deflection w can also be expressed
using a Legendre series;

w(θ, t) =

N∑
n=0

WnPn(cos θ)e−iωt. (4)

By relating the pressure discontinuity across the elastic
shell to its radial deflection, one gets

Wn =
cnjn(kia) + fnh

(1)
n (kia)− a∗

iωZn
, (5)

where

a∗ = [(2n+ 1)injn(kea) + bnh
(1)
n (kea)],

and Zn is the corresponding shell acoustic impedance
for mode n and its expression is given in Appendix A.
Closure is obtained by enforcing, the dynamic bound-
ary conditions relating the normal derivatives of the
external and internal pressures with the shell’s deflec-
tion (Avital, Miloh, 2011; 2015):

∂pe
∂r

= −ρe
∂2W

∂t2
,

∂pi
∂r

= −ρi
∂2W

∂t2
, (6)

where ρe and ρi denote the external and internal fluid
densities respectively.

Combining Eqs. (5) and (6) leads to the following
set of equations:

A11bn +A12cn +A13fn = F1, (7)

A21bn +A22cn +A23fn = F2. (8)

The expressions for A11, A12, A21, A22, F1 and F2 are
given in Appendix B. There are three unknowns in
Eqs. (7) and (8), the scattered pressure amplitude bn,
the transmitted pressure amplitude cn and the multi-
pole pressure amplitude fn. If there are no multi-poles
inside the shell, i.e. fn = 0, then bn and cn can be de-
termined uniquely. Alternatively, if the scattered am-
plitude is to be completely cancelled, i.e., bn = 0, then
the coefficients cn and fn can also be uniquely deter-
mined.

b. The spherical shell is near a free-surface
or a hard-ground interface

The extension of the free-space derivation to the
free surface case follows the methodology of Avital
and Miloh (2015). An illustration of the problem is
given in Fig. 1. The free surface effect can be modelled
by putting an anti-image of the shell above the free-
surface. In this derivation we will assume that the inci-
dent wave propagates perpendicular to the free surface
as in (Avital et al., 2012; Avital, Miloh, 2015; Kim
et al., 2014). This is the case where the sound source
of the incident wave and the receiver are located at the
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same place and the wave is sent perpendicular to the
free-surface to maximize reflections propagating back
to the receiver. Hence the acoustic pressure psct,img
scattered by the anti-image sphere can be expressed as

psct,img(x, z, t) = −
N∑
n=0

bnh
(1)
n (kerimg)

·Pn(cos θimg)e
−iωt. (9)

However, expression (9) is not convenient as rimg and
θimg are measured as relative to the centre of the anti-
image sphere. Therefore as in (Avital, Miloh, 2015;
Kim et al., 2014) a transformation matrix is used to
express the scattered pressure as a Legendre’ series on
the original sphere’s surface and relative to its centre:

psct,img(r = a, θ, t) =

N∑
n=0

enPn(cos θ)e−iωt,

en =

N∑
j=0

Enjbj .

(10)

Similarly one can express:

∂psct,img
∂r

(r = a, θ, t) =

N∑
n=0

gnPn(cos θ)e−iωt,

gn =

N∑
j=0

Gnjbj .

(11)

The transformation matrices Enj and Gnj can be
found by calculating the spatial distribution of each
mode in Eq. (9) or its radial derivative evaluated on
the sphere’s surface and decompose it into a Legendre
series.

The incident wave can be expressed as

pinc(x, z, t) = sin(ke(z − zs))e−iωt

=
e−ikezseikez − eikezse−ikez

2i
e−iωt, (12)

where the free surface is at a distance zs above the
sphere’s centre. Thus one can modify the free space
derivation to include the effect of psct,img and find the
amplitudes of the scattered, transmitted and multi-
pole source waves for exp(ikez) and exp(−ikez) sepa-
rately and then combine them as follows:

bn =
e−ikezsb

(1)
n − eikezsb(2)n

2i
, (13)

where b(1)n and b
(2)
n are the scattered wave amplitudes

for the incident waves exp(ikez) and exp(−ikez) re-
spectively. Similar relations can used for the transmit-
ted wave amplitude cn and the multi-pole amplitude

fn. The governing equations that account for the pres-
ence of the anti-image sphere and the incident wave
exp(ikez) are;

A11b
(1)
n +

N∑
j=0

(
Gnj −

ρeω

Zn

)
b(1)n

+A12c
(1)
n +A13f

(1)
n = F1, (14)

A21b
(1)
n − ρiω

Zn

N∑
j=0

Enjb
(1)
j

+A22c
(1)
n +A23f

(1)
n = F2. (15)

The expressions for A11, A12, A21, A22, F1 and F2

are the same as those for the free-space case and are
given in Appendix B. Equations (14) and (15) consist
of a matrix equation that can be solved using an LU-
solver. In order to solve for the case of the incident
wave exp(−ikez) one simply has to replace ke with
−ke in the expressions of Eqs. (14) and (15), yielding
the sought equations for b(2)n , c(2)n and f

(2)
n .

As in the free-space case, there are two distinct sce-
narios of interest. The first is without a multi-pole at
the centre of the sphere, i.e. f (1)n = f

(2)
n = 0 and the

second is for a nil scattered wave i.e. c(1)n = c
(2)
n = 0.

In both scenarios Eqs. (14) and (15) can be solved to
determine the rest of the wave amplitudes. The exten-
sion for a hard ground is straightforward, instead of
an anti-image of the sphere an image of the sphere is
used, i.e. the minus sign before the summation opera-
tor on the right-hand side of Eq. (9) disappears. The
incoming wave is expressed as a standing wave with
a cosine distribution instead of the sine distribution in
Eq. (12) to reflect that the pressure normal derivative
∂p/∂z is zero on the interface and not just the pressure
as in the free-surface case. Thus, the minus sign on the
right hand side of Eq. (13) is replaced by a plus sign
and the i disappears from the denominator. The rest
of the analysis remains the same.

3. Results and analysis

The Fortran code used for this study is based on
earlier published studies (Avital et al., 2012; Avital,
Miloh, 2015; Kim et al., 2014). Nevertheless, a ver-
ification study is presented in Fig. 2 for the sound
scattering by an empty flexible spherical shell that
was analytically solved by Junger and Feit (1972).
The shell has an Aluminium wall with 5 mm thickness
and the sphere’s radius is 1 m. The shell is assumed
to be embedded in free space of water with ambient
density and speed of sound (ρe, ce) = (1000 kg/m3,
1500 m/s) and the incoming wave frequency is
1500 Hz. A fictitious fluid of a very low acoustic
impedance was assumed to be inside the shell for
numerical purpose. Very good agreement is obtained
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Fig. 2. Far-field pressure directivity verification study, that
was calculated for an incoming wave frequency of 1500 Hz
and a flexible shell surrounded by water in free space. The-
oretically the shell is assumed to be empty and numerically

is filled with a fluid of a very low acoustic impedance.

between the numerical and analytical solutions, with
a mild difference at the trough of the directivity, which
is normal to the incoming propagation path. This
is believed to be associated with the inner fluid that is
accounted in the numerical solution, but absent in
the theoretical solution. Further reducing the acoustic
impedance of the inner fluid reduced the difference at
the trough of the directivity, but also led to numerical
instabilities in calculating high modes. When doing
so, one should also be careful not to confuse between
the dimensional frequency ω and the non-dimensional
frequency Ω of the shell’s impedance (see Appendix A)
to avoid over-stiffening of the shell (Avital, Miloh,
2015). Other verifications included comparison with
Rayleigh’s analytical solution for scattered sound
by a rigid sphere in free space (Rayleigh, 1945),
checking that the pressure behaved as expected at the
free-surface and hard ground, i.e. zero pressure and
zero pressure gradient respectively, and the pressure
distributions at arbitrary points in the sound field
fulfilled the Helmholtz equation.

The contours of the scattered and transmitted
pressure-amplitude fields are plotted in Fig. 3 for the
Aluminium spherical shell of 1 m radius and wall thick-
ness of 5 mm embedded in a free-space surrounded by
water. No multi-pole forcing is applied at the centre
of the shell to damp the sound scattering. The incom-
ing planar wave propagates at the positive direction
of z as in Fig. 1 at frequency of 6000 Hz, i.e. the in-
coming wave length is 0.25 m. The shell is filled with
air in Fig. 3a and oil (octane) in Fig. 3b, where the
ambient density and speed of sound are (ρi, ci) =
(1.225 kg/m3, 343 m/s) for air and (703 kg/m3,
1171 m/s) for octane. The amplitude of the incoming

a)

b)

Fig. 3. Scattered near-field pressure-amplitude contours
that are plotted for the spherical shell when it is placed in
free space of water subject to an incoming wave of 6000 Hz
propagating at the z direction. The sphere is a) filled with
air and b) filled with oil (octane). No sound forcing is ap-
plied at the shell’s centre for cancellation of the scattering.

planar wave p was taken as 1 Pa as in all following
figures, thus the amplitude contours can be seen as
normalised by the amplitude of the incoming wave.

The scattered field creates a wake behind the
sphere, which is clearer for the shell filled with air in
Fig. 3a. On the other hand, the levels of the transmit-
ted pressure inside the shell are very low as compared
to the scattered pressure for the shell filled with air.
This is better illustrated in Fig. 4, focusing on the pres-
sure field inside the shell filled by air. Such low pressure
levels can be explained by the low acoustic impedance
of the air as compared to the water and thus the air’s
interface with shell behaves similarly to a free-surface,
reflecting most of the transmitted sound back into the
shell and the water. Standing waves inside the shells
of Fig. 4 are revealed with patterns close to spherical
and with higher amplitude level on the side that faces
the incoming planar wave, i.e. z ∼ −1 m.
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Fig. 4. Transmitted pressure-amplitude contours inside the
spherical shell that are plotted for the condition of Fig. 3a.

Changing the inner fluid from air to oil significantly
increases the pressure levels, particularly inside the
shell as seen in Fig. 3b. This is caused by the bet-
ter match between the inner and outer fluid acoustic
impedances, thus more energy enters the shell and is
contained there. A similar finding was made for cylin-
drical shells filled with a liquid similar to the outer
liquid (Avital, Miloh, 2011). It can lead to a shorter
scattered wake as more energy is captured by the inter-
nal fluid, but on the other hand it can cause resonance
effects at certain frequencies, making the shell act more
as a radiator than a scatterer (Avital, Miloh, 2011).

The pressure fields caused by the forcing multi-
poles when they totally eliminate the externally scat-
tered sound field are plotted in Fig. 5 for the air-filled
shell of Fig. 3. It is clearly seen that the pressure fields
are dominated by low-order multi-poles, as a source
of a few rays of troughs in Fig. 5a, leading to skewed
field of an octopole that can be generated by a combi-
nation of a dipole and quadrupole. Similar behaviour
was observed for the oil-filled shell and thus the follow-

Fig. 5. Pressure-amplitude contours that are due to the
forcing multi-poles acting at the centre of the air-filled
spherical shell to cancel the external scattered sound field.

The rest of the conditions are as in Fig. 3a.

ing results focus on the air-filled shell. The transmitted
pressure contours for the case with forcing multi-poles
cancelling the scattered sound are shown in Fig. 6.
They are also dominated by low order modes, showing
a pattern as of a strong horizontal dipole (n = 1) at the
centre of the shell surrounded by almost perfect spher-
ical standing waves resembling a monopole-generated
(n = 0) pressure field in Fig. 6.

Fig. 6. Transmitted pressure-amplitude contours inside the
air-filled spherical shell that are plotted when the multi-
poles are acting at the centre of the shell in order to cancel
the external scattered sound field. The rest of the condi-

tions are as in Fig. 3a.

The distributions of the modes of the scattered,
transmitted and forcing multi-pole source pressures are
shown in Fig. 7 for the air-filled shell. Dominance of the
low modes is revealed whether the forcing multi-poles
are present or not. Auxiliary computations showed
that increasing the frequency also increased the order
of the dominant modes. The main conclusion from all
scattered and forced mode distributions is that they
are dominated by low modes which is of importance if
we want to achieve a substantial damping of the scat-

Fig. 7. Sound pressure amplitude modes variation with the
mode number that is plotted for the air-filled shell of Fig. 3a
in free space and without or with multi-pole sound-source

forcing.
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tered wave field using low-order multi-poles, a point
that will be further discussed at the end of this sec-
tion.

The effects of hard ground and free-surface, are il-
lustrated in the pressure contour plots of Fig. 8 when
subject to an incoming wave frequency of 6000 Hz.
No forcing multi-pole was applied to cancel the sound
scattering. The distance of 2.1 m between the shell’s
centre and the interface was chosen to avoid strong
resonant standing waves between the shell and the in-
terface. Nevertheless, strong interaction between the
shell and the interface is revealed through substantial
standing waves as was already discussed in other stud-
ies (Sessarego et al., 2012; Avital, Miloh, 2015;
Kim et al., 2014). The free-surface enhances the scat-
tered field more than the hard ground as can be seen
by comparing Figs 8a with 8b. Nevertheless, both in-
terfaces cause a significant increase in the level of the
pressure inside the shell, resulting in an almost uni-
form distribution of the transmitted pressure. Similar
behaviour was also found with the shell having oil in-
side.

a)

b)

Fig. 8. Scattered near-field pressure-amplitude contours
that are plotted for the air-filled spherical surrounded by
water and near a) hard ground, and b) free surface at
z = 2.1 m. The incoming wave frequency is 6000 Hz and

there is no forcing at the centre of the shell.

The corresponding pressure fields induced by the
forcing multi-poles which are required to eliminate or

partially reduce the sound scattering, are shown for
the hard interface case in Fig. 9. They show a pattern
similar to that seen for the shell in free space of Fig. 5,
which is the dominance of low-order multi-poles. The
hard ground causes the few radial rays of trough seen
in Fig. 5a to disappear.

Fig. 9. Pressure-amplitude contours that are due just to
the forcing multi-poles acting at the centre of the spherical
shell to cancel the external scattered sound field shown in

Fig. 8a.

The mode distributions corresponding to the shell
of Figs. 8 and 9 are shown in Fig. 10. The distribu-
tions are similar to the free space distributions shown
in Fig. 7a; (i) the low modes dominate all forms of the
sound, i.e. scattered, transmitted and forced, (ii) the
amplitude levels are the same as of the free-space and
(iii) the forcing multi-poles cause a significant increase
in the amplitudes of the transmitted sound. Inter-
estingly, although the modes’ amplitude levels of the
transmitted sound are at the same level of the free-
space case when no forcing is applied , the level of the
transmitted pressure inside the shell is much higher

Fig. 10. Sound pressure amplitude modes variation with
the mode number that is plotted for the air-filled shell of
Fig. 8 near hard ground and without or with multi-pole

sound-source forcing.
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than in the free- space as can be seen by comparing
Fig. 8 with Figs. 4 or 3. This means that the modes of
the transmitted pressure are more in phase with oth-
ers when there is an interface as hard ground or free
surface nearby, than when there is none.

To investigate the effect of using a finite number of
low-order forcing multipoles to damp the sound scat-
tering, the damping of the scattered acoustic energy
in dB as relative to the non-damped energy was cal-
culated as a function of the wave frequency including
the highest mode that was cancelled in the scattered
noise. This is plotted in Fig. 11 for the air-filled shell in
free space and near hard ground. A behaviour close to
a linear dependence between the wave frequency and
the highest mode of the cancelled scattered sound, is
found when gaining a specific damping, say of 10 dB.
This is clearer for the free space plot of Fig. 11a, but
it is also evident in Fig. 11b for the case of a nearby
hard ground. Hence, for 10 dB damping in the scat-
tered acoustic energy one needs to eliminate less than
the first five modes of the scattered sound for the wave
frequency of 6000 Hz and less than the first fifteen
modes for wave frequency of 20 kHz. One should note
that in free space there is no dependence between the

a)

b)

Fig. 11. The variation of the damped scattered energy with
the highest mode of sound cancellation for the air-filled
shell in a) free space and b) near the hard ground of Fig. 8a.

modes by Eqs. (7) and (8) and thus a clear cut between
the damped modes and the non-damped is straightfor-
ward. On the other hand, there is an interaction be-
tween the modes when an interface is nearby as seen
by the matrix Eqs. (14) and (15). Nevertheless, using
an optimisation procedure as of Powell, concentration
on the low modes is achievable (Avital et al., 2012;
Avital, Miloh, 2011; 2015), which is helped by the
dominance of the low modes that was seen in the plots
of the mode distributions in Figs. 7 and 10.

4. Concluding remarks

Sound scattering by an elastic spherical shell sub-
ject to an incoming monochromatic planar wave was
analysed using linear acoustics and structural dyna-
mics. The shell’s wall was taken as isotropic and ho-
mogeneous material. The shell was assumed to be filed
with fluid and embedded in free space or near a hard
ground or a free-surface. The incoming wave was taken
as propagating perpendicular to the interface of hard
ground or free surface as to maximize the reflection
back to the source of the incoming wave.

The solutions were derived in the Fourier-Legendre
space where the method of images was used to account
for the effect of an interface as hard ground or free
surface. This led to scalar equations for the Fourier-
Legendre’ modes of the free-space case and matrix
equations for the cases of nearby interfaces of hard-
ground or free-surface, showing complete independence
between the modes for the free-space case and some
dependence between the modes for the interface cases.

Three main conclusions can be drawn:
(i) The multi-pole sources located at the centre of

the shell can totally eliminate the scattered sound
field within the limits of linear theory.

(ii) The sound scattered by the shell and to less
extent the sound transmitted into the shell are
dominated by low modes. Thus several multi-pole
sources located at the centre of the shell can be
effective in significantly damping low frequency
scattered acoustic energy.

(iii) For higher frequencies when the shell is highly
non-compact as relative to the incoming wave
length, the high number of modes needed to be
damped, makes this approach less attractive as
similar to the approach of using pressure actua-
tors mounted on the shell’s wall (Avital, Miloh,
2011). Hence the current approach should be com-
bined with a passive approach such as viscoelastic
coating that excels better at high frequencies in
order to provide a wide frequency range solution.

Appendix A

The acoustic impedance Zn of a spherical shell in
the Fourier-Legendre space was derived by Junger
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and Feit (1972) assuming linear acoustics and struc-
tural dynamics, and the shell’s material being isotropic
and homogeneous. This led to the follow expression:

Zn = − iρscph[Ω2 − (Ω
(1)
n )

2
][Ω2 − (Ω

(2)
n )

2
]

Ωa[Ω2 − (1− β2)(ν + λn − 1)]
, (16)

where ρs, h and a are the shell’s density, thickness and
radius respectively. We also define β2 = h2/(12a2),
c2p = E/(ρs(1−ν2)) with E representing Young’s mod-
ulus and ν the Poisson ratio. Using n to denote the
mode’s number as in Sec 2 and defining λn = n(n+1),
Ω = ωa/cp, where it Ω(1)

n and Ω(2)
n are the normalized

resonance frequencies. The latter are also the positive
roots of the following quartic equation:

Ω4 − [1 + 3ν + λn − β2(1− ν − λ2n − νλn)]Ω2

− (λn − 2)(1− ν2)

+ β2[λ3n − 4λ2n + λn(5− ν2)− 2(1− ν2)]=0. (17)

The resonant frequencies are defined such that
Ω

(2)
n > Ω

(1)
n for n > 0, and for n = 0 only one res-

onant frequency exists which is here denoted as Ω(2)
0 .

Appendix B

Below we provide the explicit expressions for the
coefficients A11, A12, A21, A22, F1 and F2 used in
Eqs. (7), (8), (14) and (15):

A11 = keh
′(1)
n (kea)− iρeω

Zn
h(1)n (kea), (18)

A12 =
iρeω

Zn
jn(kia), (19)

A13 =
iρeω

Zn
h(1)n (kia), (20)

A21 = − iρiω
Zn

h(1)n (kea), (21)

A22 = kij
′
n(kia) +

iρiω

Zn
jn(kia), (22)

A23 = kih
′(1)
n (kia) +

iρiω

Zn
h(1)n (kia), (23)

F1 = −(2n+ 1)inkej
′
n(kea)

+
iρeω

Zn
(2n+ 1)injn(kea), (24)

F2 =
iρiω

Zn
(2n+ 1)injn(kea). (25)
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