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The paper presents the application of Artificial Neural Networks (ANN) in predicting sound insula-
tion through multi-layered sandwich gypsum partition panels. The objective of the work is to develop an
Artificial Neural Network (ANN) model to estimate the Rw and STC value of sandwich gypsum construc-
tions. The experimental results reported by National Research Council, Canada for Gypsum board walls
(Halliwell et al., 1998) were utilized to develop the model. A multilayer feed-forward approach com-
prising of 13 input parameters was developed for predicting the Rw and STC value of sandwich gypsum
constructions. The Levenberg-Marquardt optimization technique has been used to update the weights in
back-propagation algorithm. The presented approach could be very useful for design and optimization of
acoustic performance of new sandwich partition panels providing higher sound insulation. The developed
ANN model shows a prediction error of ±3 dB or points with a confidence level higher than 95%.
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1. Introduction

The sound transmission through sandwich gypsum
constructions has always been a grey area of research
for its interior applications for noise abatement and
control. There have been many studies (Warnock,
1985; 1990; 1993; 1998; Warnock, Quirt, 1995; 1997;
Bradley, Birta, 2001; Bradley, Gover, 2011;
Guillen et al.., 2008; Uris et al., 1998; Halliwell
et al., 1998; Quirt et al., 1995; Roozen et al., 2015)
reported so far, especially those reported by National
Research Council (NRC), Canada, that focus on the
enhancement of sound transmission loss of sandwich
gypsum constructions and the use of masonry walls
in conjunction with the dry wall technology. Thus, the
parametric sensitivity of various factors controlling the
sound insulation is instrumental in designing sandwich
constructions for optimizing the sound insulation char-
acteristics (Garg et al., 2013a; 2013b; 2013c; 2014a).
The method of attachment of gypsum boards via steel
studs (staggered, with resilient channels or via double
studs), stud spacing, thickness and density of absorp-
tive material used etc. are the pivotal factors affect-

ing the sound insulation. The sound insulation char-
acteristics are shown in terms of single-number rat-
ing: Sound Transmission Class (STC) and weighted
sound reduction index, Rw. Also, there have been var-
ious analytical models reported so far for prediction
of sound insulation properties of sandwich multilay-
ered constructions (Sharp, 1978; Bradley, Birta,
2001; António et al., 2003; Wang et al., 2005; Pel-
licier, Trompette, 2007; Garg et al., 2013a; 2013b;
Zhou et al., 2013; Garg et al., 2014a; 2015a). Bal-
lagh (2004) studies evidently revealed a mean dif-
ference in STC/Rw between measurement and the-
ory less than 0.5 dB and 90% of results were found
to lie within ±2.5 dB. Kurra (2012) discussed the
suitability of three models: Insul SW based on Sharp
model with some modifications, Acousys SW using the
transfer matrix and windowing technique and FMu-
lay SW based on improved impedance model. Com-
parison of the calculated data with the experimental
data shows that Insul model yields in slightly better
compatibility with experimental results, however the
correlation coefficients are rather high for all the mod-
els. The Acousys and FMulay are capable of calcula-
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tions for more complex lagging structures, whereas In-
sul is limited to the applications of common building
elements (Kurra, 2001; 2012; Insul (2017); AcouSYS
(2017)). Statistical Energy analysis (SEA) has been
also employed by some researchers to predict the sound
transmission loss through sandwich panels (Lyon, De-
Jong, 1995; Crocker et al., 1999; Craik, Smith,
2000; Wang et al., 2010). Thus, it is evident from pre-
vious studies that analytical models to a larger extent
have filled the gap between the experimentation and
theoretical predictions and have thus minimized the
necessity of cumbersome and expensive experimenta-
tions required in reverberation chambers. However, in-
spite of all these facts, alternative strategies such as
soft computing skills play a very significant role in pre-
dictions as it has been proven in some previous stud-
ies reported in acoustic field (Lin et al., 2009; Nan-
nariello, Fricke, 1999; 2001; Nannariello et al.,
2001; Mungiole et al., 2006; Buratti et al., 2013).
Buratti et al. (2013) developed an Artificial Neural
Network (ANN) model to estimate the Rw value of
wooden windows based on a limited number of window
parameters. A 5-10-10-1 neuron configuration was de-
termined as optimal one with a test RMS error of 2.4%.
The dynamic behaviour of neural networks (Nucara
et al., 2002; Givargis Karimi, 2010), capability to
model non linear relationships and flexibility to use any
number of input and output parameters make them
useful for prediction of sound insulation characteris-
tics of multi-layered partition panel constructions. Be-
sides that the analytical models do have certain limita-
tions in prediction accuracy especially in case of multi-
layered constructions.

The present work describes the application of Ar-
tificial Neural Networks (ANN) in modelling sound
transmission characteristics of sandwich gypsum panel
constructions. The sound insulation characteristics of
these constructions are analyzed in terms of widely
used single-number ratings: Sound Transmission Class
(STC) and weighted sound reduction index, Rw. Both
quantities are based on shifting a prescribed rating
contour to match the measured values of sound trans-
mission loss versus frequency following rules that spec-
ify the maximum allowed sum of deficiencies below
the contour. For the STC rating, a limit on the max-
imum allowed deficiency below the rating contour
in a single frequency band is also specified (Park,
Bradley, 2009).

2. Materials and methods

The present work utilized the experimental results
reported by National Research Council, Canada for
Gypsum board walls (Halliwell et al., 1998; Quirt
et al., 1995). The measurements reported in NRC,
Canada reports (Halliwell et al., 1998; Quirt et al.,
1995) were made in the suite of reverberation cham-

bers in building of the Institute for Research in Con-
struction of the National Research Council, Canada.
The volume of the source room was 65 m3 and that
of adjacent receiving room was 250 m3. The wall test
opening measured 3.05× 2.44 m. Tests were done in
accordance with the requirements of ASTM E90-1990
and of ISO 140/III 1978 (E). The Sound Transmis-
sion Class was determined in accordance with ASTM
standard classification E413-1987. The number of gyp-
sum layers on either side was one or two, while the
stud types were wood or steel studs. The distance
between studs was varied at two levels: 406 mm and
610 mm on center. The number of resilient channels
was one, two or none and the spacing between the re-
silient channels was varied as 406 mm or 610 mm on
center. The surface density of partition panels tested
varied from 15.6 kg/m2 to 50.23 kg/m2. The sound ab-
sorbing material used was cellulose blown, mineral fi-
bre and glass fibre of varied thickness. 90 mm blown
cellulose of density 49.3 kg/m3 and airflow resistiv-
ity 33 000 mks rayls/m was used. The mineral fibre
batt used was 40 mm batt of density 51.9 kg/m3 and
airflow resistivity 15 000 mks rayls/m; 65 mm batt of
density 36.7 kg/m3 and airflow resistivity 11 400 mks
rayls/m and 90 mm batt of density 33.3 kg/m3 and
airflow resistivity 12 700 mks rayls/m. The glass fi-
bre batt used were 65 mm batt of density 11.7 kg/m3

and airflow resistivity 3600 mks rayls/m; 96 mm batt
of density 12.2 kg/m3 and airflow resistivity 4800 mks
rayls/m; 150 mm batt of density 11.2 kg/m3 and air-
flow resistivity 4300 mks rayls/m (Halliwell et al.,
1998).

Thirteen input parameters were chosen, i.e.: num-
ber of gypsum layer on one side, number of gypsum lay-
ers on another side, stud type, distance between studs
[mm], sound absorbing material type; sound absorbing
material [SAB] density [kg/m3], sound absorbing mate-
rial resistivity [mks rayls/m], sound absorbing material
thickness [mm], thickness of gypsum board [mm], sur-
face density [kg/m2], number of resilient channels, air
gap and spacing between the resilient channels; while
the output parameters considered were STC and Rw
exclusively. It may be noted that although the report
shows the sound insulation results for 350 sandwich
partition panel constructions, yet the present study
utilized the data of 283 partition panel constructions
only. This was due to the fact that some sandwich con-
structions don’t fit exactly with the input parameters
as required for developing the ANN model. For in-
stance, some partition constructions had cross brace
between two studs, some had different thickness of
sound absorbing material whereby the properties like
density, air flow resistivity are not clearly mentioned
in the NRC, Canada reports (Halliwell et al., 1998;
Quirt et al., 1995) and as such a uniform database of
283 tested materials only was utilized for developing
an ANN model.
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3. Development of ANN model

A neural network consists of interconnected group
artificial neurons organized into multiple layers: one
input, one or more hidden layers and one output
layer. The basic processing elements of neural net-
works are the artificial neurons. The inputs multiplied
by the connection weights (adjusted) are combined
and passed through a transfer function to produce the
output for that neuron (Ghaffari et al., 2006). The
activation function acts on the weighted sum of the
neurons inputs. Thus, a neural network is trained to
map a set of input data and output data by itera-
tive adjustments of the weights. The most commonly
used transfer function is the sigmoid (logistic) func-
tion, wherein the activation signal is passed through
transfer function to produce a single output of the
neuron. The back propagation algorithm used widely
trains a given feed-forward multilayer neural network
for a given set of input patterns. When each entry of
the sample set is presented to the network, the net-
work examines its output response to the sample in-
put pattern. The output response is then compared
to the known and desired output and the error value
is calculated, based on which the connection weights
are adjusted until error reaches a specified level of ac-
curacy. Once the network is trained, tested and val-
idated, it is ready for predictions. The details of the
ANN modelling can be found in (Garg et al., 2015b;
Zhang et al., 1998; Cai et al., 2009 and Garg et al.,
2016). In present study, the data set of sound insula-
tion of sandwich gypsum board partition panel mea-
surements (283 observations) is divided into training
data (70%), testing data (15%) and validation data
(15%). The multilayer feed forward back propagation
(BP) neural network has been trained by Levenberg-
Marquardt (L-M) algorithm to develop an Artificial
Neural Network (ANN) model for predicting STC and
Rw of sandwich multi-layered constructions. A com-
plete representation of all the training data (input
and target data) is known as epoch which is repeated
until the network reaches a predefined goal of least
mean squared error.Trainlm is the network training
function that updates weights and bias values accord-
ing to Levenberg-Marquardt (L-M) optimization. It is
often the fastest back propagation algorithm and is
highly recommended as a first choice supervised al-
gorithm, although it does require more memory than
other algorithms (https://in.mathworks.com). The ac-
tivation functions used in the learning algorithms for
feed forward ANN training play an important role in
determining the speed of training (LeCun et al., 1998;
Duch, Jankowski, 1999). The logsig activation func-
tion used in the present case to introduce non linearity
in the model was observed to provide the lowest mean
squared error. The training set consists of examples
used for learning i.e. fitting the weights for desired

output, validation data is used to tune the network
parameters and the test dataset is used to assess the
performance after leaning (Cai et al., 2009). The num-
ber of hidden layers is difficult to decide, but typically
no more than one hidden layers is used in a network
(Hush, Horne, 1993). The network is run with vari-
ous trials using different number of neurons in hidden
layer. The optimum number of neurons in hidden layer
for which the performance criteria, i.e. Mean Squared
Error (MSE) and correlation coefficient (R) between
the measured and predicted data is chosen. The Mean
Squared Error is expressed by following equation:

MSE =
1

k

k∑
p=1

δ2op, (1)

where the error δop is the difference between the tar-
geted output vector when compared with the neural
network simulated vector for k number of training sam-
ples. In the case when the MSE is less than the desired
error, the neural network training is complete and the
network is ready for prediction (Kumar et al., 2014).
A program supporting the generalized ANN GUI in
MATLAB software has been developed. Thus, the val-
idated network so developed can be used for reliable
predictions using the test data set. Figure 1 shows the

Fig. 1. Flow Chart of methodology for development
of an ANN Model (Garg et al., 2015b).
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flow chart of methodology for development of an ANN
Model (Garg et al., 2015b). The learning rate and
momentum constant also play an important role in
choosing an optimum model. The learning rate defines
the size of the changes that are made to the weights
and biases at each epoch. Generally, smaller value of
learning rate increases the number of epochs and slows
down the network convergence but produces better ac-
curacy. Conversely, large value of learning rate leads
the network to fast convergence but with less accu-
racy (Mustafa et al., 2015). The better and efficient
convergence depends upon the choice of learning rate
coefficient and momentum factor. The other way to im-
prove the convergence with large learning rate is to add
momentum factor to the previously changed weights as
it smoothens the oscillatory behaviour of weights and
leads to efficient rapid learning (Kumar et al., 2014).
A high momentum factor can however cripple the net-
work adaptability. Nevertheless, there is no theory that
can be used to guide the selection of optimal ANN pa-
rameters. The trial-and-error methodology for specific
problems is typically adopted by the most researchers
which is the primary reason for inconsistencies in lit-
erature (Zhang et al., 1998).

4. Results and discussion

Extensive simulations were performed to deter-
mine the best combination of parameters involving
the network architecture and other parameters such
as: learning rate, momentum constant, number of
hidden neurons, learning algorithm and activation
function. The network was trained with varying the
neurons in a single hidden layer from 4 to 20 and
each time the MSE and R between the measured and
predicted data were analyzed. The number of hidden
neurons, number of hidden layers, learning rate, and
momentum rate were sequentially optimized. Table 1
shows the network parameters used while training
the network. An 13:14:1 architecture (13 neurons
in input layer, 14 in hidden layer and 1 in output
layer) provided the best prediction for the test data
set. The optimal learning rate and momentum factor
used in developing the ANN model were 0.6 and
0.1 respectively. Figures 2a and 2b show the mean
squared error and correlation coefficient of measured
versus predicted data for different number of neurons

Table 1. Neural network paradigm used in training.

Sound insulation
parameter

Structure
of ANN model

Training
algorithm

Activation
function

MSE
(in dB(A)2 for Rw

and points2 for STC)

Correlation coefficient
R

Training Testing Training Testing

STC 13:14:1 trainlm logsig 1.96 7.33 0.98 0.89

Rw 13:14:1 trainlm logsig 1.88 6.62 0.98 0.92

a)

b)

Fig. 2. Variation of Mean Squared Error (in point2) and
correlation coefficient with number of neurons in a single
hidden layer while training for development of an ANN

model exclusively for STC predictions.

for the ANN model so developed for STC. It is evident
that with 14 neurons in the hidden layer, both MSE
and R are optimized for testing and training data
set. These investigations were repeated by training
the network with changing the output parameters as
Rw, while all other input parameters were kept the
same. Training the network with varying number of
neurons from 4 to 20 in a single hidden layer reveals
that for 14 neurons, optimized performance is sought.
Figures 3a and 3b show the mean squared error and
correlation coefficient of measured versus predicted
data for different number of neurons for the ANN
model so developed for Rw. Training network with
14 neurons in a single hidden layer shows that the
MSE of 1.96 dB(A)2 in training and 7.33 dB(A)2

in testing STC, while a MSE of 1.88 dB(A)2 in
training and 6.62 dB(A)2 in testing is observed for
Rw. The correlation coefficient is observed to be 0.98
in training and 0.89 in testing for STC; while for Rw,
the correlation coefficient is observed to be 0.98 in
training and 0.92 in testing. Thus, the network archi-
tecture is finally chosen as 13:14:1 as shown in Fig. 4.
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a)

b)

Fig. 3. Variation of Mean squared error (in dB(A)2) and
Correlation coefficient with number of neurons in a single
hidden layer while training for development of an ANN

model exclusively for Rw predictions.

Fig. 4. Architecture of ANN model developed exclusively
for STC and Rw.

Table 2. Error analysis of the developed ANN model for sound reduction index and sound transmission class.

Sound
insulation
parameter

Minimum
error

(in dB(A)
for Rw

and points
for STC)

Maximum
error

(in dB(A)
for Rw

and points
for STC)

Mean squared
error, MSE

(in dB(A)2 for Rw
and points2

for STC)

Root mean
squared

error, RMSE
(in dB(A) for Rw

and points
for STC)

Mean absolute
percentage
error [%]

Coefficient
of determination

R2

STC −7.0 10.0 3.4 1.9 0.1 0.92

Rw −6.0 11.0 2.8 1.7 0.3 0.92

Table 2 shows the error analysis of developed ANN
models for STC and Rw. The Root Mean Squared
Error (RMSE) observed in both cases is less than
2.0 dB(A) and the coefficient of determination between
the measured and predicted data is higher than 0.90,
which validates the suitability of the ANN model so
developed. Thus, the results showed a good agree-
ment with experimental data for both STC and Rw of
sandwich gypsum panels. The scatter plot of measured
value of STC and Rw in laboratory and the predicted
value from the ANN model developed are shown in
Figs. 5 and 6.

Fig. 5. Scatter plot of measured value in laboratory and
predicted value of STC from the ANN model developed.

Fig. 6. Scatter plot of measured value of Rw in laboratory
and predicted value from the ANN model developed.
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The ANN models developed are further validated
with the results of paired t test conducted (Table 3)
for the predicted and measured single number ratings,
STC and Rw. In this test, test statistic (t-stat) is com-
pared with t critical and if t-stat value is within the ±t
critical value for two-tailed test, it reveals that there is
no significant difference between the two samples (ac-
cept null hypothesis). It is observed that for the ANN
model, t-stat values are less than and far away from the
critical values and are within the non-rejection region,
which implies that predicted and measured data fits
well (Montgomery, Runger, 2011; Pamanikabud,
Vivitjinda, 2002). Figures 7 and 8 show the frequency
histogram indicating the frequency (in %) of predic-
tion error, i.e. difference between the measured and
predicted STC and Rw for 283 sandwich gypsum con-
structions. It is observed that for STC parameter, 88%
observations show the prediction error of ±2 dB, while
94.7% observations show the prediction error of ±3 dB.
27.6% observations show no error between the mea-
sured and predicted STC value. Similarly for Rw pa-
rameter, 90.8% observations show the prediction error
of ±2 dB, while 98.2% observations show the predic-
tion error of ±3 dB. 34.6% observations show no error
between the measured and predicted Rw value. Thus,

Table 3. Paired t-test for measured and predicted sound
reduction index and sound transmission class.

Statistical parameter
Predicted values from ANN model

STC Rw

Mean absolute error 0.10 0.21

Pearson correlation 0.96 0.96

df 282 282

t Stat 0.40 0.14

P(T<= t) one-tail 0.34 0.23

t critical one-tail 1.65 1.65

P(T<= t) two-tail 0.69 0.38

t critical two-tail 1.97 1.97

Fig. 7. Histogram showing the frequency (in %) of predic-
tion error, i.e. difference between the measured and pre-

dicted STC for 283 sandwich gypsum constructions.

Fig. 8. Histogram showing the frequency (in %) of predic-
tion error, i.e. difference between the measured and pre-

dicted Rw for 283 sandwich gypsum constructions.

it can be concluded that the developed ANN model
shows a prediction error of ±3 dB or points with a con-
fidence level higher than 95%. Also it is evident that
the present ANN model shall be helpful for predic-
tions of sound transmission loss properties of multi-
layered sandwich gypsum constructions with a reason-
able accuracy without experimentation. Future efforts
shall be focused on predicting the spectrum adaptation
terms and single-number quantities proposed in the ex-
tended frequency range of 50 Hz to 5 kHz using ANN
modelling as described in the present work (Scholl
et al., 2011; Garg et al., 2014b; Garg, Maji, 2015a).

5. Conclusions

This paper aims to show an application of the Ar-
tificial Neural Networks technique in order to predict
the acoustic performance of sandwich partition pan-
els. The output of the developed ANN model is the
STC and Rw values of sandwich partition panels. The
network was trained and tested on the basis of an ex-
perimental database consisting of 283 sandwich gyp-
sum board panels tested at the Acoustics Laboratory,
Institute for Research in Construction, National Re-
search Council, Canada. The 13–14–1 neurons config-
uration was found to be optimal one. The validity of
the model so developed is ascertained using statisti-
cal tests. The developed ANN model shows a predic-
tion error of ±3 dB or points with a confidence level
higher than 95%. The presented model can be thus ap-
plied to design and optimize acoustic performance of
new products, by giving the appropriate values for in-
put parameters of sandwich partition panels. The dy-
namic nature of ANN model thus offers an effective
approach for predicting sound insulation properties of
sandwich constructions. Undoubtedly, the inclusion of
more experimental database of sandwich multi-layered
constructions for training the network shall give a more
comprehensive model at the price of feeding a more
rigorous database. However, despite many advantages,
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there are some disadvantages too. Construction of an
ANN model depends on the size of training data and
network structure and sometimes it is like a black-box
wherein one can’t adjudge the weights and biases de-
veloped while training the network. However, in spite
of these shortcomings, ANN can serve as vital substi-
tute for analytical models for developing sandwich par-
tition panels providing higher sound insulation, thus
saving both money and time incurred on experimental
testing in reverberation chambers.
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