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A non-classical model of interval estimation based on the kernel density estimator is presented in this
paper. This model has been compared with interval estimation algorithms of the classical (parametric)
statistics assuming that the standard deviation of the population is either known or unknown. The
non-classical model does not have to assume belonging of random sample to a normal distribution.
A theoretical basis of the proposed model is presented as well as an example of calculation process
which makes possible determining confidence intervals of the expected value of long-term noise indicators
LDEN and LN. The statistical analysis was carried out for 95% interval widths obtained by using each of
these models. The inference of their usefulness was performed on the basis of results of non-parametric
statistical tests at significance level α = 0.05. The data used to illustrate the proposed solutions and
carry out the analysis were results of continuous monitoring of traffic noise recorded in 2004 in one of the
main arteries of Kraków in Poland.
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1. Introduction

Directive 2002/49/EC of the European Parliament
(2002) obligates the European Union countries to im-
plement the common long-term policy of the environ-
ment protection against noise. Its realisation is based
on the estimation of long-term noise indicators in the
areas under protection. The two basic indicators are:
the average A-weighted long-term day-evening-night
level LDEN, and the average A-weighted long-term
night-time level LN.
The basis for creating noise maps for sites under

protection are the values of the above-mentioned long-
term noise indicators. Any plans to prevent and reduce
the harmful effects of noise in the environment are then
associated with their values. These indicators charac-
terise the acoustic climate over a long period. Most of-
ten it is assumed that this is one full calendar year, so
values of the indicators depend on many factors (i.e.
traffic intensity, structure of the vehicle stream, av-
erage vehicle velocity, type and technical condition of
the road surface, distance of the nearest buildings from
the road edge, technical condition of the vehicles). Es-
timation of long-term noise hazard indicators requires

access to results of an all-year-long sound level moni-
toring program. In practice, it is almost impossible to
meet such a requirement. Therefore estimations of in-
dicators are usually done on the basis of highly limited
random sample. They are obtained as results of envi-
ronmental sampling inspections. Sample size n is very
small and ranges from few to a dozen or so elements.
A point estimation of noise indicators has

been already performed (Kephalopoulos et al.,
2007; Makarewicz, 2011; Asensio et al., 2011;
Makarewicz et al., 2014). It should be noted that
the probability of point estimation of a parameter be-
ing equal to the actual value of the estimated parame-
ter is close to zero. There is no information about the
distance between expected value of the estimated pa-
rameter and the true value of the population parameter
in the point estimation. Overrating or underestimating
values of noise indicators can have notable social and
financial consequences.
For this reason, it seems to be necessary to examine

the issue of confidence intervals of the expected value
of long-term noise indicators. Because the point esti-
mate is unlikely to be exactly correct, a range of values
is usually specified in which the population parame-
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ter is likely to be. The confidence interval will include
the true value of the population parameter with some
probability. The interval estimation takes into account
the estimation error for a given confidence level, as op-
posed to the point estimation.
For this reason, the interval data analysis is used

in acoustics. This approach has been successfully ap-
plied, among other things, to real-time analysis of
acoustic signal (Heiss, Krapf, 2007). The interval
arithmetic finds application in modelling the railway
noise (Batko, Pawlik, 2012a) and in determination
of other acoustic parameters such as reverberation
time of rooms (Batko, Pawlik, 2012b) and partitions
sound insulation (Batko, Pawlik, 2013a) and its un-
certainty (Batko, Pawlik, 2013b). However, interval
estimation algorithms based on bootstrap resampling
method are used in the analysis of long-term noise in-
dicators (Stępień, 2016).
Results of acoustical measurements usually do

not meet such assumptions as normality of measure-
ments’ results, adequate sample size, lack of correlation
among elements of the sample, or observation equiva-
lence. According to Don and Rees (1985), Tang and
Au (1999), Batko and Stępień (2010; 2011; 2014),
Giménez and González (2009), the assumption on
normal distribution of measurement results is in gen-
eral false. Additionally, Wszołek and Kłaczyński
(2006) proved that the road traffic noise probability
distributions are not related to any statistical distri-
bution known in the literature. However, the proba-
bility density function of the average long-term sound
levels shows some asymmetry (Batko, Przysucha,
2011).
In practice, it is necessary to estimate the aver-

age long-term noise indicators LAeq.LT on the basis
of environment sampling inspections (Schomer, De-
Vor, 1981; Gaja et al., 2003; Romeu, 2006). More-
over, samples from inspections are small and corre-
lated. Extra-statistical information concerning occur-
rence of certain noise expositions in the environment,
especially at night-time (more than one maximum)
also discredits this assumption.
For this reason, it seems to be necessary to im-

plement solutions of non-classical statistics for solv-
ing these problems. This technique is based on non-
parametric statistical method, allowing to determine
the distribution of a random variable without any in-
formation on belonging or not to any specific class of
distributions and with a limited sample size. For this
reason, in what follows it is proposed to use kernel
density estimator for constructing confidence intervals.
The kernel density estimator has been successfully ap-
plied to point estimation of expected value and un-
certainty of noise indicators (Batko, Stępień, 2009;
2014; Batko et al., 2015).
This model has been compared with interval esti-

mation algorithms of the classical (parametric) statis-

tics assuming that the standard deviation of the pop-
ulation is either known or unknown.
Discussion of the algorithms, together with an ex-

ample illustrating their functioning, will be presented
further in this paper. The reference base comprises
the results of the constant noise monitoring recorded
in 2004 in one of the main arteries of Kraków in
Poland.

2. Selected models of interval estimation

While analysing the measurement data we need
to remember that estimation of the mean value and
standard deviation of the normal distribution or es-
timation of an exponential distribution parameter is
basically equivalent to the estimation of the proba-
bility distribution of population from which the ran-
dom sample is taken. Actually, the estimation of the
aforementioned parameters is equivalent to estimation
of the density function of population. The fact that
to estimate the probability density function it suffices
to calculate a finite number of numerical estimators
is the result of an assumption of a relatively accu-
rate knowledge of a probabilistic model which governs
the examined phenomenon – we have assumed that we
know this model with the accuracy to a finite num-
ber of numerical parameters. In the cases presented
above, the estimation of parameters which define the
unknown distribution of population can therefore be
called a parametric estimation of probability distribu-
tion. The parametric estimation requires an adequate
random sample size. In practice n ≥ 30 is often con-
sidered an adequate random sample size (Koronacki,
Mielniczuk, 2004).
At the same time, a histogram is another estima-

tion of the unknown population density. Being discrete,
a histogram can be replaced with a continuous estima-
tor, e.g., an adequate kernel density estimator or an es-
timator based on splines. These estimators of unknown
probability density function do not need any assump-
tions about the sought form of a function and there-
fore are called non-parametric estimators. This family
includes also distribution estimators based on the jack-
knife and bootstrap methods and on the Bayes’ theo-
rem widened to include the probability distributions.
The basic advantage of non-parametric estimators is
possibility to draw inference from a small random sam-
ple of a few to a dozen elements which does not have
asymptotic properties. It is due to this advantage that
non-parametric estimators are increasingly used in the
probabilistic analysis of environmental noise.
Below, two generally used parametric models and

one non-parametric model based on the kernel prob-
ability density estimator (kernel model) will be pre-
sented in detail. The discussed parametric models are
based on the assumption that the analysed sample
comes from the normal distribution population with
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a known (Nσk model) or unknown (Nσu model) stan-
dard deviation.

2.1. Parametric models (Nσk and Nσu models)

Consider a random sample x = (x1, x2, . . . , xn)
from a normal distribution N(µ, σ) with a known stan-
dard deviation σ (Nσk model). It is known that the

mean from the sample x = 1
n

n∑
i=1

xi has a normal dis-

tribution N (µ, σ/
√
n). Therefore, the random variable

Z =
x− µ

σ/
√
n
≈ N(0, 1) (1)

has a standard normal distribution N(0, 1)
(Koronacki, Mielniczuk, 2004). The interval
to which values of random variable Z belong with
probability 1 − α, where α is a known number from
the interval (0, 1) is given

p
(
zα/2 ≤ Z ≤ z1−α/2

)
= 1− α, (2)

where zα/2 and z1−α/2 are the (100 · α/2)th and
100 · (1 − α/2)th percentile points of a standard nor-
mal distribution, respectively. These values are given in
the standard normal table (e.g. z0.025 = −1.960). After
substituting the right-hand side of the expression (1)
in place of Z and rearranging, the confidence interval
for the Nσk model is given by (Koronacki, Miel-
niczuk, 2004)

p (−z1−α/2 ≤ Z ≤ z1−α/2) = p

(
x− z1−α/2

σ√
n

≤ µ ≤ x+ z1−α/2
σ√
n

)
= 1− α. (3)

Most frequently, the standard deviation of popula-
tion density is unknown (Nσu model). Therefore, the
random variable Z given by the Eq. (1) can be replaced
with the random variable (Koronacki, Mielniczuk,
2004)

T =
x− µ

S/
√
n
≈ tn−1. (4)

This idea is not only natural but appropriate as well
because the distribution of the random variable T does
not depend on the unknown parameter σ and is known.
Namely, it is a so-called t-distribution (also called Stu-
dent’s distribution or Student’s t-distribution) with
n−1 degrees of freedom.
Knowing the random variable T and its distribu-

tion tn−1, the confidence interval for µ can be writ-
ten analogously to the previous case. The Nσu confi-
dence interval of intended coverage 1−α is defined by
(Koronacki, Mielniczuk, 2004) as

p

(
x − t1−α/2,n−1

ŝ√
n
≤ µ

≤ x+ t1−α/2,n−1
ŝ√
n

)
= 1− α, (5)

where t1−α/2,n−1 indicates the 100 · (1 − α/2)th
percentile point of a tn−1 distribution and
p
(
T ≤ t1−α/2,n−1

)
= 1 − α/2, whereas ŝ is an

unbiased estimator of standard deviation which value
is defined as

ŝ =

√√√√ 1

n− 1

n∑
i=1

(xi − x)
2
. (6)

2.2. Non-parametric model (kernel model)

The idea of the density estimator is to spread out
the weight of a single observation in plot of the em-
pirical density function. The histogram, then, is the
picture of a density estimator that spreads the proba-
bility mass of each sample item uniformly throughout
the interval (i.e., bin) it is observed in. Note that the
observations are in no way expected to be uniformly
spread out within any particular interval, so the mass
is not spread equally around the observation unless it
happens to fall exactly in the centre of the interval.
This subsection describes the kernel density estima-

tor (Rosenblatt, 1956; Parzen, 1962) that spreads
out the probability mass of each observation more
fairly, not arbitrarily in a fixed interval, but smoothly
around the observation, typically in a symmetric way.
Consider an observed random sample x =

(x1, x2, . . . , xn) from an unknown probability distri-
bution. The kernel density estimator is defined by
(Kulczycki, 2005)

f̂(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
, (7)

for x = xi, i = 1, . . . , n. The kernel function K(•) rep-
resents how the probability mass is assigned, so for
the histogram, it is just a constant in any particular
interval. This function controls the shape. The ker-
nel normal function is defined as (Kulczycki, 2005)
K(x) = 1√

2π
exp(−x2

2 ), and was used in this experi-
ment. The smoothing function h is a positive sequence
of bandwidths analogous to the bin width in a his-
togram. The h controls the spread of the kernel. This
parameter was calculated on the basis of the algorithm
(Bowman, Azzalini, 1997) which was implemented
in Matlab package.
With the probability density function, it is possible

to determine the interval C in which the sought value
x̂ occurs at the set probability 1−α. For a given value
of α there are many such intervals, so we can look
for the least of them C∗ which satisfies the following
conditions:

1) p(x ∈ C∗) = 1− α,

2) for all x1 ∈ C∗ and x2 /∈ C∗ we have p(x1) ≥
p(x2).
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Therefore, from among all intervals C can discrim-
inate one interval for which all points from inside the
interval have a greater value of the probability density
function than the points from outside of it. This means
that any point from this region is more probable that
any point from outside of this region.
Using the defined above regions, the kernel confi-

dence interval can be defined as follows:

p (xd ≤ x̂ ≤ xg) =

xg∫
xd

f̂(x) dx = 1− α, (8)

where xd is the lower limit, and xg is the upper limit
of the confidence interval. The confidence interval thus
determined satisfies one more condition p(x1) ≥ p(x2)
which results from item 2.

3. The research material

With the intention to solve increasing environmen-
tal noise problems and broaden the knowledge about
acoustic phenomena observed in the Kraków urban
area, a system of continuous noise monitoring has
been put into operation as early as in the year 1996.
The solution was implemented by the Małopolskie
Voivodeship Environment Protection Inspectorate in
co-operation with academics from AGH-UST’s Depart-
ment of Mechanics and Vibroacoustics and Depart-
ment of Robotics and Mechatronics. Location for the
measuring station was selected bearing in mind the ne-
cessity to diagnose the acoustic climate in the vicinity
of the most crowded traffic arteries in Kraków. The se-
lected street crosses a dense urban development area.
The measuring probe is situated in the middle of the

Fig. 1. Noise annoyance indicators time history during the year 2004.

green median belt separating two carriageways of the
road with three lanes in each direction, with the traffic
density exceeding 4000 vehicles per hour.
The study on usefulness and effectiveness of the

above-presented algorithms in real-life situation was
carried out with the use of data representing actual
measurement results. To this end, A-weighted sound
levels recorded by the above-mentioned noise monitor-
ing system throughout the year 2004 were used. The
analysis covered a total of 331 days of the year for
which complete 24-hour-long records of the A-weighted
equivalent sound levels were available. For the remain-
ing days, the daily records were incomplete or did not
exist at all.
On the ground of the recorded A-weighted sound

levels, values of 24-hour day-evening-night sound lev-
els LDEN,i and night-time sound levels LN,i were cal-
culated which constituted the examined populations
with the size 331. The values were used to deter-
mine long-term (annual) noise indicators. The ob-
tained value of the long-term average day-evening-
night sound level is LDEN = 77.2 dB with the stan-
dard deviation σ(LDEN,i) = 0.9 dB. The long-term
night-time sound level was also determined as equalling
LN = 69.5 dB together with its standard deviation
σ(LN,i) = 1.0 dB.
Time plots of these quantities throughout the year

are presented in Fig. 1. On the other hand, Figs. 2a
and 2c show histograms of the indicators. Analysing
the graphs it can be noted that they reveal features
characteristic for negatively skew distributions, the
fact being confirmed by calculated skewness values,
which are −0.81 for LDEN,i and −0.47 for LN,i.
Kurtosis (excess kurtosis) for these populations is 6.38
(3.38) and 5.20 (2.20) for LDEN,i and LN,i, respectively.
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a) b)

c) d)

Fig. 2. Noise annoyance indicators during the year 2004: a) histogram of LDEN,i; b) normal probability plot
of LDEN,i; c) histogram of LN,i; d) normal probability plot of LN,i.

The obtained values show that distributions of the ex-
amined populations are not normal. The same con-
clusion can be drawn from normality plots shown in
Figs. 2b and 2d, as observations of the noise annoyance
indicators do not follow the grey dashed lines drawn
in these figures.
A number of normality tests have been carried

out with the objective to confirm that the analysed
population did not come from any normal distribu-
tion. The analysis included performing the Shapiro-
Wilk test, the Jarque-Bera test, the Lilliefors test, and
the Kolmogorov-Smirnov test at the significance level
α = 0.05. Probability values for the performed tests
are summarised in Table 1. The obtained values are

Table 1. p-values of normality tests.

Normality test
p-values

LDEN LN

Shapiro-Wilk 8.49e-9 1.64e-7

Jarque-Bera 1.0e-3 1.0e-3

Lilliefors 1.0e-3 1.0e-3

Kolmogorov-Smirnov 3.64e-291 3.64e-291

much lower than the assumed significance level. This
is an evidence of significant “distance” between the dis-
tribution of probability of the variable describing the
24-hour day-evening-night sound levels and the normal
distribution.

4. Results of comparing the models

Results of multiple comparison of 95% confidence
intervals obtained by three different techniques for con-
structing confidence intervals using the methods were
described earlier in this paper.
One thousand simple random samples of size

n = 10 were sampled from the populations mentioned
above. The sample sizes were chosen with the inten-
tion to simulate the number of controlled days on the
basis of which the levels LDEN and LN are to be es-
timated. The reconstruction of the probability density
function of long-term noise indicators was done sep-
arately on the basis of each sample. This way, 1000
distributions were obtained. From these distributions,
95% confidence intervals were calculated for each of the
presented models. Widths of confidence intervals were
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calculated as the difference between the upper and the
lower confidence limits.
This way, 1000-element distributions of 95% con-

fidence interval widths of long-term noise indicators
were obtained for each of the models described in
Sec. 2.
All the obtained distributions are presented in the

form of histograms in Fig. 3. Panels (a) through (b)
show histograms of confidence interval widths obtained
for long-term day-evening-night average sound level
LDEN, while panels (c) through (d) correspond to long-
term night-time sound level LN. To make direct visual
comparison easier, histograms for LDEN and LN were
plotted in the range from 0 dB to 9 dB. All histograms
were drawn with the abscissas divided into 30 intervals.
Figure 3 does not present of histograms for Nσk

model, because the confidence intervals obtained using
this model have a constant width (lack of variation).
The obtained value of the confidence interval width
for the analysed populations is 1.13 dB and 1.29 dB
for LDEN and LN, respectively.
The basic statistical parameters (minimum, maxi-

mum, mean, median, variance, kurtosis, and skewness)

a) b)

c) d)

Fig. 3. Histograms of 95% confidence interval widths: a), b) for LDEN; c), d) for LN. These histograms were
obtained using: a), c) Nσu model; b), d) kernel model.

for the analysed populations are summarised in Ta-
ble 2.
Shapes of all histograms are similar. They com-

prise a large group of observations clustered around the
mean value and a small tail extending towards higher
values. This is a feature typical for distributions show-
ing positive skewness, which is confirmed by skewness
values listed in Table 2. The tail is rather short for the
all models.
Kurtosis (excess kurtosis) and skewness values

for the examined populations differ significantly from
those characterising the normal distribution (3 (0) and
0, respectively). The obtained values of these parame-
ters allow to state that the examined populations have
distributions differing from normal.
Model Nσu is characterised with most stable

results, i.e., showing the smallest variance. This
means that the model is resistant to occurrence of
outlying observations in the sample based on which
the confidence interval for the expected value of long-
term noise indicators is determined. This property is
also confirmed by confidence interval widths obtained
when this model is used. They fall into the ranges from
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Table 2. Basic statistical parameters of 95% confidence interval widths for the presented models. The last column
presents the coverage probability of confidence intervals. The desired coverage probability value is 95%.

Indicator Model
Min Max Mean Median Variance

Skewness
Kurtosis Coverage

[dB] [dB] [dB] [dB] [dB2] (excess kurtosis) probability

LDEN

Nσk 1.13 1.13 1.13 1.13 0.00 –
–

96.6%
(–)

Nσu 0.30 2.85 1.22 1.18 0.18 0.83
3.94

97.6%
(0.94)

kernel 0.88 8.21 3.68 3.56 1.55 0.70
3.66

100.0%
(0.66)

LN

Nσk 1.29 1.29 1.29 1.29 0.00 –
–

95.8%
(–)

Nσu 0.39 2.86 1.40 1.34 0.21 0.49
2.87

95.9%
(−0.13)

kernel 1.01 8.72 4.19 4.03 1.80 0.49
2.96

100.0%
(−0.04)

0.30 dB to 2.85 dB for LDEN and from 0.39 dB to
2.86 dB for LN. Variance of the distribution obtained
with the use of kernel model is the largest from among
those presented in this study. This is a result of poor
resistance of the algorithm to outlying values occur-
ring in the sample. The outliers have a very substantial
effect on arguments of the kernel probability density
function and consequently on the values of the lower
and upper confidence interval limits.
When analysing the results presented in Table 2,

it can be seen that the analysed populations deter-
mined with the use of presented models (Nσk, Nσu,
kernel) have different statistical parameters. To deter-
mine whether the revealed differences are statistically
significant, the distributions were subjected to further
statistical analysis.
First, the Kruskal-Wallis non-parametric test has

been performed at confidence level α = 0.05. The test
is one of the most popular alternatives for single-factor
ANOVA and can be considered an extension of the
Mann-Whitney U test for larger numbers of compared
groups (i > 2). The Kruskal-Wallis test, contrary to
ANOVA, fails to meet a number of restrictive assump-
tions.
The probability values obtained from this test were:

0 for LDEN and LN. The results are much lower
than the adopted significance level and indicate that
there are statistically significant differences among
the compared models. To find out between which
groups the differences actually occur, it was neces-
sary to perform multiple comparisons. For this pur-
pose, the Tukey-Kramer non-parametric test has been
performed at the significance level α = 0.05. The prob-
ability values obtained from the test are presented in
Table 3, whereas a graphical representation of the mul-
tiple comparisons among analysed populations is pre-

Table 3. p-values of the Tukey-Kramer test.
Values for LN are marked in bold.

p-values

LDEN

Nσk Nσu kernel

Nσk 0.0131 9.5606e-10

Nσu 0.0160 9.5606e-10

kernel 9.5606e-10 9.5606e-10

LN

sented in Fig. 4. The graphs show the average value of
rank (symbol) together with the confidence level (hor-
izontal line) for each of the models. Any two compared
group averages are statistically different when their in-
tervals are disjoint. Overlapping intervals mean that
there are no statistically significant differences among
the compared group averages.
The results of post-hoc tests clearly indicate that

widths of confidence interval calculated with the use
of presented algorithms are statistically significantly
different from each other.
The confidence intervals obtained using the Nσk

model have a constant width regardless of the structure
of random sample on the basis of which they were de-
termined. The width is 1.13 dB for LDEN and 1.29 dB
for LN. This is a result of applying constant values of
parameters used to determine the confidence interval
on the basis of expression (3). These parameters com-
prise standard deviation σ, 100 · (1−α/2)th percentile
point of a standard normal distribution N(0, 1), and
size of random sample n. As a result, the variance of
the width distributions of confidence intervals is 0 and
it is impossible to determine the skewness and kurtosis
of such distributions.
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a)

b)

Fig. 4. Results of multiple comparisons made with the use
of the Tukey-Kramer test: a) for LDEN; b) for LN. The
model significantly different from the others is marked in
bold. The upper and lower limits of the confidence interval
for Nσk model used to Tukey-Kramer test are marked with
dashed lines. This demonstrates that intervals for Nσk and

Nσu models are disjoint.

One of the parameters used to describe proper-
ties of confidence intervals is the degree of coverage
of the measured (actual) value with the determined
confidence intervals. Values of this parameter fall into
ranges from 96.6% to 100.0% for LDEN and from 95.8%
to 100.0% for LN. From the coverage probability val-
ues listed in Table 2 it can be seen that they are
higher from the theoretical value of 95%. In the case of
the long-term average sound level LDEN and long-term
night-time sound level LN, the highest degree of cover-
age at the level of 100.0% is obtained from the kernel
model. This is a result of relatively large confidence
interval widths obtained with the use of this model.
Analysing further properties of the obtained confi-

dence intervals it should be also mentioned that per-
centiles of distribution N(0, 1) used to determine the
confidence interval limits in theNσk andNσu methods

are symmetrical with respect to 0 (zero). As a result,
the obtained confidence intervals are symmetrical with
respect to point estimate of long-term noise level in-
dicators. In the kernel model the obtained confidence
intervals are asymmetrical with respect to 0 (zero).
This is the reason for which intervals shifted more or
less to the left or right with respect to the point esti-
mate are obtained. This algorithm is characterised by
a higher degree of coverage with the measured (actual)
value than the Nσk and Nσu methods for which the
intervals are symmetrical with respect to the expected
value. This asymmetry reflects probabilistic properties
of the examined noise indicators and results in a better
coverage of the measured (actual) value with the de-
termined confidence level which is confirmed by results
quoted in the last column of Table 2.

5. Conclusions

The non-classical model and two classical models of
interval estimation were compared in this paper on the
basis of widths of 95% confidence intervals. The statis-
tical analysis was carried out on the basis of Kruskal-
Wallis test. Next, multiple comparison procedures were
used for pairwise comparisons between the means us-
ing non-parametric Tukey-Kramer test at significance
level α = 0.05.
Based on the simulation experiment described

above it can be concluded that width differences are
statistically significant for all three models, i.e., Nσk,
Nσu, kernel, presented in Sec. 2, at significance level
α = 0.05.
The narrowest confidence intervals for the expected

value of long-term noise indicators were obtained using
the Nσk model. Interval widths calculated on the basis
of kernel model turned out to be the largest.
The confidence intervals obtained using the Nσk

model have a constant width. This is a result of apply-
ing constant values of parameters (σ, z1−α/2, n) used
to determine the confidence interval in this model.
A major advantage of the kernel model is the lack

of assumption about the probability distribution of
statistics in population. Additionally, it must be em-
phasised that the kernel method can be successfully
applied to a small random sample without any asymp-
totic properties.
The confidence intervals of the kernel model is

asymmetric with respect to the point estimate x̂. These
asymmetric intervals show probabilistic properties of
the examined populations.
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