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Despite various speech enhancement techniques have been developed for different applications, existing
methods are limited in noisy environments with high ambient noise levels. Speech presence probability
(SPP) estimation is a speech enhancement technique to reduce speech distortions, especially in low signal-
to-noise ratios (SNRs) scenario. In this paper, we propose a new two-dimensional (2D) Teager-energy-
operators (TEOs) improved SPP estimator for speech enhancement in time-frequency (T-F) domain.
Wavelet packet transform (WPT) as a multiband decomposition technique is used to concentrate the
energy distribution of speech components. A minimum mean-square error (MMSE) estimator is obtained
based on the generalized gamma distribution speech model in WPT domain. In addition, the speech
samples corrupted by environment and occupational noises (i.e., machine shop, factory and station)
at different input SNRs are used to validate the proposed algorithm. Results suggest that the proposed
method achieves a significant enhancement on perceptual quality, compared with four conventional speech
enhancement algorithms (i.e., MMSE-84, MMSE-04, Wiener-96, and BTW).

Keywords: speech enhancement; speech presence probability; wavelet packet transform; two-dimensional
Teager energy operator.

1. Introduction

Single-channel speech enhancement technique has
been widely used for various applications, such as hear-
ing aid devices, mobile communication, hand-free tele-
phony, etc. However, for noisy environments with high
ambient noise levels, the estimation of clean speech
signals is still a great challenge with current speech
enhancement methods (Martin, 2002). The high-level
background noises are usually non-stationary and hard
to be tracked. In addition, due to low signal to noise
ratio (SNR), the estimated speech may be plagued by
distortions and fluctuating with residual background
noises.
Spectral estimation based on a priori knowledge

of the probability distribution of speech and noise is
a popular speech enhancement technique (Ephraim,
Malah, 1984; Ephraim, Van Trees, 1995; Hu,
Loizou, 2004; Park, et al., 2015). This type of
methods typically uses short time Fourier-transform
(STFT) to obtain the spectrum within consecutive
time windows of an input signal. Corresponding sta-

tistical models are developed based on optimal esti-
mation techniques, such as minimum mean square er-
ror (MMSE) (Boll, 1979) and maximum a posteri-
ori (MAP) (Hendriks, Gerkmann, Jensen, 2013).
Since the spectral estimators are based on the condi-
tional probability of that speech presents, speech pres-
ence probability (SPP) estimation can be helpful to re-
duce the music noise and enhance the perceptual qual-
ity of noisy speech (Fisher, Tabrikian, Dubnov,
2006;Gerkmann, Breithaupt, Martin, 2008), par-
ticularly avoiding the distortion of low SNRs speech
components.
To achieve accurate estimation of SPP, different

probabilistic latent components based models have
been investigated (Cohen, Berdugo, 2001; Cohen,
2003). Most of these techniques are developed based
on the statistical models of speech and noise signals
(Cohen, 2004). Previous studies showed that Teager
energy operator (TEO) was able to effectively detect
speech (Kandia, Stylianou, 2006) in wavelet trans-
form domain. Unlike those statistical methods that es-
timate the SPP (Loizou, 2013), TEO determines the
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energy distribution of speech components in an an-
alytic way, rather than relying on any prior knowl-
edge of speech or noise (Bahoura, Rouat, 2006).
It is considerably efficient for amplitude-modulated
(AM) and frequency-modulated (FM) signal extrac-
tion (Kandia, Stylianou, 2006). Because human
speech can be considered as a summation of modu-
lated signals, TEO has been widely used in speech pro-
cessing (Dunn, Quatieri, Kaiser, 1993; Bahoura,
Rouat, 2001; 2006; Sanam, Shahnaz, 2013). Con-
ventional TEO only detects speech transitions in time
domain without providing the frequency distribution
of speech components (Bovik, Maragos, Quatieri,
1993), and neglects the speech modulation structures.
In this paper, two-dimensional (2D) TEO has been
proposed to improve SPP estimator in wavelet packet
transform (WPT) domain. WPT is an effective tech-
nique for multiband noise suppression (Bahoura,
Rouat, 2001; Weickert, Benjaminsen, Kiencke,
2008). By applying WPT and 2D TEO, we can ob-
tain the improved SPP estimator in the joint time-
frequency (T-F) domain.
WPT based spectral estimation approaches have

been developed based on the statistical models of
speech and noise derived from STFT coefficients (Hu,
Loizou, 2004; Ghanbari, Karami-Mollaei, 2006;
Johnson, Yuan, Ren, 2007; Tasmaz, Ercelebi,
2008). Although these methods have obtained signif-
icant speech enhancement by introducing the STFT
based statistical model directly, WPT coefficients with
respect to speech demonstrate different probability dis-
tribution (Simoncelli, Adelson, 1996). The statisti-
cal models of speech in WPT domain have been devel-
oped to obtain accurate clean speech estimator. Sev-
eral typical probability distributions, such as Gaussian,
Gamma, Laplacian, and super Gaussian, have been ap-
plied to represent the spectral magnitudes of speech
in STFT domain (Hendriks, Gerkmann, Jensen,
2013; Erkelens, et al., 2007; Martin, 2005). Re-
cent works reveal that the generalized gamma distribu-
tion model works better on describing speech distribu-
tion (Erkelens, et al., 2007;Martin, 2005;Moham-
madiha, Martin, Leijon, 2013). In this paper, con-
sidering that WPT coefficients of speech can be posi-
tive and negative values, a generalized two-side gamma
distribution model is introduced to fit the WPT coeffi-
cients. The gamma distribution can be estimated from
the clean speech in terms of different orders of moments
(i.e., mean value, variance and kurtosis) in WPT do-
main. In addition, the WPT coefficients of noise are
still assumed obeying Gaussian distribution.
In this paper, we propose a new algorithm, WPT-

MTEO, for speech enhancement in high noisy envi-
ronments. The proposed algorithm is based on the 2D
TEO improved SPP estimator in the WPT domain.
Two different forms of 2D TEOs are also compared
with respect to accuracy of speech components detec-

tion in the T-F domain. Moreover, a MMSE estimator
is obtained based on a generalized gamma prior dis-
tribution of speech. The speech samples corrupted by
environmental and occupational noises (i.e., machine
shop, factory and station) at different input SNRs are
used to validate the proposed algorithm (Langner,
Black, 2004). The performance of the proposed algo-
rithm is compared with other four existing speech en-
hancement algorithms, including Wiener96 (Scalart,
1996), MMSE-84 (Ephraim, Malah, 1984), MMSE-
04 (Cohen, 2004), and BTW (Chang, Yu, Vet-
terli, 2000).

2. Methods and materials

2.1. 2D TEO improved SPP estimator
in WPT domain

TEO is useful on processing amplitude modulated
(AM) or frequency modulated (FM) signals. For hu-
man speech, which can be regarded as a typical modu-
lated signal, TEO has been used to extract energy dis-
tribution (Ying, Mitchell, Jamieson, 1993). In Ref.
(Bovik, Maragos, Quatieri, 1993), TEO is pro-
posed to obtain time-adaptive noise threshold for the
extraction of the speech information based on WPT.
TEO can efficiently emphasize periodic signals while
depress the random signals. In this study, TEO is ap-
plied for speech components detection in the T-F do-
main. After applying WPT, the input noisy speech sig-
nal y(t) can be described as

wy(k, t) =WPk ∗ y(t), k = 1, ..., 2j , (1)

where j is the WPT level, decomposing the noisy signal
y(t) into 2j bands corresponding to WPT coefficients
wy(k, t). ∗ refers to convolution operation. WPT de-
composes the signal into the T-F domain, and concen-
trates the formants’ energy by its sparse representa-
tion. However, when SNR is low (e.g., SNR < −5 dB),
the energy ratio between noise and speech formant de-
creases. TEO is introduced to detect the subtle dif-
ferences, because it can efficiently extract the energy
distribution of speech components. In this study, two
types of 2D TEO are introduced to outline the distri-
bution of speech components in the following sections.

2.1.1. Independent 2D TEO

The generalized form of 1D TEO can be described
as

T (t, s) = w(t)2/s − (w(t− t0)w(t+ t0))
1/s

, (2)

where w(t) is the observation and T (t, s) is the TEO
kernel, reflecting the instantaneous energy of w(t). t0,
as a constant window width of samples, can be called
as the lag parameter (Kaiser, 1993). In this study,
we use s as the parameter to adjust the local mean
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value, as a result to control the energy contrast. Two
types of 2D TEOs, independent and intersectional 2D
TEOs, are proposed to develop the improved SPP es-
timator. For the independent 2D TEO, the time TEO
kernel T 1

k (t, s) and frequency TEO kernel T
1
t (k, s) are

independently obtained by

T 1
k (t, s) = w(k, t)2/s

− (w(k, t−∆t)w(k, t+∆t))
1/s

, (3)

T 1
t (k, s) = w(k, t)2/s

− (w(k −∆k, t)w(k +∆k, t))
1/s

, (4)

where w(k, t) is the WPT coefficient. k and t are the
frequency and time indexes, respectively. Therefore,
∆k and ∆t are corresponding frequency and time lag
window parameters. The outline of the independent
TEO can be obtained as

Sk(t, s) =

∣∣h(t) ∗ T 1
k (t, s)

∣∣
max (|h(t) ∗ T 1

k (t, s)|)
, (5)

St(k, s) =

∣∣h1(k) ∗ T 1
t (k, s)

∣∣
max (|h1(k) ∗ T 1

t (k, s)|)
, (6)

S1(k, t, s) = Sk(t, s)St(k, s). (7)

After applying low pass filters h(t) and h1(k) to TEO
kernels and normalization, Sk(t, s) and St(k, s) repre-
sent the energy outline of k-th WPT-band and the fre-
quency distribution at time t, respectively. S1(k, t, s)
refers to the independent 2D outline of the energy dis-
tribution of the independent TEO.

2.1.2. Intersectional 2D TEO

The intersectional 2D TEOs, with respect to
horizontal-vertical direction and diagonal direction,
are expressed as

TH{w(k, t)} =

{
∂w

∂k

}2

+

{
∂w

∂t

}2

−w

{
∂2w

∂k2
+
∂2w

∂t2

}
, (8)

TD{w(k, t)} = 2

{
∂w

∂k

}{
∂w

∂t

}
−w

{
∂2w

∂k∂t
+
∂2w

∂t∂k

}
, (9)

where TH{w(k, t)} and TD{w(k, t)} are horizontal-
vertical and diagonal 2D TEO kernels. With a discrete
form, a contrast parameter s incorporated nonlinear

2D version can be given by

T 2,H(k, t, s) = 2w(k, t)2/s

− (w(k −∆k, t)w(k +∆k, t))
1/s

− (w(k, t−∆t)w(k, t+∆t))
1/s

, (10)

T 2,D(k, t, s) = 2w(k, t)2/s

− (w(k −∆k, t+∆t)w(k +∆k, t−∆t))
1/s

− (w(k −∆k, t−∆t)w(k +∆k, t+∆t))
1/s

. (11)

Following the same procedures in (5)–(7), one can
obtain the 2D outline of the energy distribution of the
intersectional 2D TEO as

S2,1(k, t, s) =

∣∣H(k, t) ∗ T 2,H(k, t, s)
∣∣

max (|H(k, t) ∗ T 2,H(k, t, s)|)
, (12)

S2,2(k, t, s) =

∣∣H(k, t) ∗ T 2,D(k, t, s)
∣∣

max (|H(k, t) ∗ T 2,D(k, t, s)|)
, (13)

where 2D low pass filters H(k, t) is applied to TEO
kernel T 2(k, t, s), ‘*’ is convolution operation.

2.1.3. 2D TEO improved SPP estimator

Considering that TEO demonstrates higher energy
density for harmonic signals and lower energy density
for random noise, the energy density obtained by TEO
is frequently applied to representing the existence of
speech components or not. In this study, two outlines
of energy distribution for two different TEOs after the
normalization procedures as (5)–(7) and (12)–(13) can
be applied as the SPP estimator, which is defined as

SPPT(k, t, s) = Si(k, t, s), (14)

where i refers to the independent (type 1) or intersec-
tional (type 2) 2D TEO. By introducing the proposed
2D TEOs to detect the speech components, SPP es-
timation can be obtained without prior knowledge of
speech and noise signals. The proposed 2D TEO im-
proved SPP estimator can be very sensitive to noise.
To overcome this problem and obtain more accurate
SPP estimation, two groups of lag window parameter
(∆k, ∆t) are used to derive the SPP values, which rep-
resent local SPP and global SPP, respectively. There-
fore, a more robust SPP estimator is derived as

SPP(k, t, s) = SPPTl(k, t,∆k1,∆t1, s)

·SPPTg(k, t,∆k2,∆t2, s), (15)

where SPPTl refers to the local SPP. ∆k1, and ∆t1 are
set as unit values, representing high window resolution.
Comparatively, SPPTg refers to the global SPP. ∆k2,
and ∆t2 are selected as larger values, representing low
window resolution but more smooth transition. In this
study, due to the 64 subbands of WPT, ∆k2 is selected
as 4, and ∆t2 is 8. In addition, the contrast parameter



582 Archives of Acoustics – Volume 41, Number 3, 2016

s was chosen with different values: for SPPTl, s is 1;
for SPPTg, s is 2.
WPT coefficients in T-F domain of the clean speech

and the noisy speech are shown in Figs. 1a and 1b, re-
spectively. Figures 1c and 1d illustrate the detected

a)

b)

c)

d)

Fig. 1. The T-F distribution for: a) clean speech, b) noisy
speech (SNR = −5 dB factory noise), and applied pro-
posed SPP estimators improved by c) the independent and

d) intersectional 2D TEOs.

speech in the T-F domain by applying the proposed
SPP estimators, improved by independent and inter-
sectional 2D TEOs. One can see that the intersectional
2D TEO improved SPP estimator displayed a better
detection result than the independent 2D TEO im-
proved SPP estimator. Results indicate that the inter-
sectional 2D TEO improved SPP estimator can more
effectively suppressed the noise under low SNR scenar-
ios (SNR < −5 dB). In this study, we focus on speech
enhancement in high noise environments. Therefore,
the intersectional 2D TEO is selected for the develop-
ment of the proposed SPP estimator.

2.2. Generalized speech model and clean speech
estimator in WPT domain

Several statistical models, including Gamma,
Laplacian and super Gaussian functions have been
used to describe the probability density of speech in the
STFT domain (Erkelens, et al., 2007). In this study,
noise signals in WPT domain are assumed to obey
Gaussian distribution. The statistical model of speech
signals in WPT domain has been obtained by introduc-
ing a two-side generalized Gamma model (Erkelens,
et al., 2007). This generalized Gamma model achieves
high accuracy on predicting speech spectrum distribu-
tion, and accordingly can be defined as (Erkelens, et
al., 2007)

p(w) =
γβν

2Γ (ν)
|w|γν−1 exp(−β|w|γ), (16)

where Γ (·) is gamma function, β is scale parameter
that also related with prior SNRs, and ν is shape pa-
rameter for the generalized Gamma function, and w
represents WPT coefficient. Two-side form of gamma
model is used because speech coefficients in WPT do-
main display a symmetrical probability distribution in
[−∞ 0] and [0 +∞].

2.2.1. Optimization of parameters
of the generalized speech model

In (16), three parameters (i.e., γ, β, and ν) signifi-
cantly affect the shape of probability distribution with
respect to the WPT coefficients. γ is usually chosen to
be 1 or 2. β and ν are estimated based on input speech
samples, and relationships among the three parameters
can be found in (Erkelens, et al., 2007). In terms of
different γ values, the other two shape parameters can
be estimated in WPT domain. When γ = 1, the pa-
rameters β and ν can be obtained by solving (17)

1

β

Γ (ν + 1)

Γ (ν)
= wγ=1 ,

ν(ν + 1)

β2
= σ2

γ=1 , (17)

where σ2 is the speech spectral variance, and w is the
mean value of speech coefficients. When γ = 2, there
is no explicit solution (close form) for ν based on first
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and second moment. Thus, kurtosis K as a high order
moment parameter is introduced to estimate ν:

K =
µ4

µ2
=

∞∫
0

w4
k,tp(wk,t) dwk,t

∞∫
0

w2
k,tp(wk,t) dwk,t

, (18)

where p(wk,t) refers to the probability of speech co-
efficients in (16). Then β and ν can be derived
through (19)

ν + 1

ν
= Kγ=2 ,

ν

β
= σ2

γ=2 . (19)

One arbitrarily selected speech sample is used to
subjectively evaluate the parameter γ. As shown in
Fig. 2, the histogram of the WPT coefficients of clean
speech sample in the second subband w2,t is compared
with the estimated statistical models when γ = 1 and
γ = 2, respectively. p(w) is the normalized histogram
value. The parameters for each statistical model are
obtained according to (17) and (19). It can be found
that the model with γ = 1 in (17) shows a better fitting
on the histogram of WPT coefficients than that with
γ = 2 in (19).

Fig. 2. The histogram of the-second-subband WPT coef-
ficients of clean speech (bar), and the speech probability
distributions in terms of the model in (10) when γ = 1 and

γ = 2.

To generally compare the models with parameter
γ = 1 and γ = 2, 30 speech samples from CMU
database (Langner, Black, 2004) are used to com-
pute the normalized fitting errors in 64 subbands. In
each subband, the lowest normalized fitting error of
different models for each speech sample is selected.
The mean values and standard deviations of these low-
est normalized fitting errors are calculated as well. As
shown in Fig. 3, in each subband, the model in (16)
with γ = 1 shows lower minimal normalized fitting
errors than speech model with γ = 2 at all subbands.
Moreover, the ν value is also optimized. Instead of

estimating from the WPT coefficients, ν is incremen-

Fig. 3. The mean value and standard deviation values for
the minimal normalized fitting errors of speech corpus in
each WPT band. The statistical models are fitting to the
WPT coefficients of speech corpus in each subband with

respect to γ = 1 and γ = 2.

tally selected in the range [0, 2], and β is still estimated
according to (17) and (19). Normalized fitting error,
defined as ‖p(wk,t)− h(wk,t)‖, is used to evaluate how

Fig. 4. The distribution of normalized fitting error for
speech statistical models with different values in each WPT
band with respect to γ = 1 and γ = 2. The color bar on the
right show that bottom color represents small error values

and the top color represents large error values.
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well each statistical model explains the distribution of
WPT coefficients. Here 6-levels WPT decomposes the
signal into 64 subbands, in which the normalized fitting
error between the estimated probability p(wk,t) and
the histogram h(wk,t) is calculated when ν is chang-
ing. Figure 4 reveals that for γ = 1, the lowest fitting
errors are achieved when ν is in the range [0.4, 0.6]; for
γ = 2, the lowest fitting errors are achieved when ν is
in the range [0.1, 0.3]. Therefore, γ = 1 and ν = 0.4
are selected as the speech statistical model parameters
in WPT domain in this study.

2.2.2. MMSE clean speech estimator

Based on the estimated generalized speech model in
WPT domain, a clean speech estimator can be derived
(Erkelens, et al., 2007). Considering a signal model
with the form

wy(k, t) = wx(k, t) + wr(k, t), (20)

where wy(k, t), wx(k, t) and wr(k, t) are WPT coef-
ficients in k-th subband at time t obtained from the
noisy speech, clean speech, and noise, respectively. As-
suming that wx(k, t) and wr(k, t) are statistically inde-
pendent across time and frequency, X and Y are used
to represent the coefficients, then the following MMSE
estimator can be obtained:

E(X|Y ) =

+∞∫
−∞

Xp(Y |X)p(X)dX

+∞∫
−∞

p(Y |X)p(X)dX

=

+∞∫
−∞

Xpr(Y −X)px(X) dX

+∞∫
−∞

pr(Y −X)px(X)dX
, (21)

where px(X) obeys the generalized gamma distribution
in (16), and pr(Y −X) obeys the Gaussian distribution.
When γ = 1, the estimator is defined as

(Erkelens, et al., 2007):

E(X|Y ) = σrν

[
exp

(
1

4
Y 2
−

)
D−(ν+1)(Y−)

− exp

(
1

4
Y 2
+

)
D−(ν+1)(Y+)

]/[
exp

(
1

4
Y 2
−

)
D−ν(Y−)

+ exp

(
1

4
Y 2
+

)
D−ν(Y+)

]
, (22)

where D−ν(·) is a special function, called as the
parabolic cylinder function of order ν, and

Y± = βσr ±
Y

σr
, (23)

σr is the estimated variance of noise. For ν = 0.4 in
this study, β can be calculated by (17), where the priori
SNR is estimated by the Decision-Directed approach
(Ephraim, Malah, 1984).

2.3. Implementation

As shown in Fig. 5, in the proposed algorithm,
WPT was initially applied to noisy speech, and based
on the WPT coefficients the intersectional 2D TEO
was obtained to yield the 2D SPP estimator. In paral-
lel, the WPT coefficients of clean speech samples were
used to develop the pre-learned statistical model. Sec-
ond, both the pre-learned speech model and SPP were
fed into the MMSE estimator to estimate the clean
speech from noisy speech. Finally, the estimated clean
speech components in T-F domain were transformed
by inverse WPT to obtain the enhanced speech.

Fig. 5. The flow chart of implementation of the proposed
algorithm.

3. Results and evaluation

In our study, the proposed algorithm is employed
in a speech enhancement framework. The noisy speech
signals were synthesized by adding different back-
ground noise samples to randomly selected speech sam-
ples at different input SNRs. The background noise
signals were selected from industrial noise database
(AudioMiCro, 2015) and environmental noise database
(Hu, Loizou, 2007), including machine, factory,
and station. 30 adult Enginsh speech samples were
randomly selected from CMU database (Langner,
Black, 2004). The noisy speech signals were synthe-
sized with 16 kHz sampling rate and at various input
SNRs from −10 dB to 10 dB. Moreover, the perfor-
mance of the proposed WPT-MTEO algorithm was
compared with four speech enhancement algorithms,
including MMSE-84, MMSE-04, Bayesian estimation
based thresholding and the improved Wiener filter.
MMSE-04 (Cohen, 2004) and MMSE-84 (Ephraim,
Malah, 1984) are compared in terms of the amplitude
estimation approach in the STFT domain (Ephraim,
Malah, 1984). Bayesian thresholding is one typical
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algorithm for Bayesian estimation in wavelet domain
(Chang, Yu, Vetterli, 2000). Wiener-96 filter is
a very classical algorithm for speech enhancement in
many applications (Scalart, 1996).

3.1. Algorithm assessment based on PESQ
and SegSNR

Two objective metrics, perceptual evaluation of
speech quality (PESQ) and Segmental SNRs (SegSNR)
as implemented in (Hu, Loizou, 2007), are used to
quantitatively evaluate the performance of the speech
enhancement algorithms in this study. PESQ is orig-
inally developed for assessing perceived quality of
coded speech. It demonstrates high correlation with

a) b)

c) d)

e) f)

Fig. 6. Averaged PESQ scores and SegSNRs with standard deviations obtained from 30
speech corpus corrupted by different noises (i.e., factory noise in (a), (b), machine shop noise
in (c), (d), and station noise in (e), (f)) for five algorithms at five input SNR levels (i.e.,

[−10 dB 10 dB]).

speech quality in the speech enhancement context.
The maximum PESQ and improved SegSNR for five
algorithms are summarized in Table 1. At all in-
put SNRs (−10 dB < SNRs < 10 dB), the pro-
posed algorithm shows the best performance compared
with other four algorithms. Specifically, at low SNRs
(−5 dB and −10 dB), the proposed WPT-MTEO al-
gorithm achieves remarkable higher PESQ than the
other four algorithms as well as obtains highest SNR
improvement for all three background noises. Results
indicate that the proposed algorithm has the capabil-
ity to enhance the speech quality in high noise envi-
ronment (low SNRs).
Figure 6 shows the averaged improvements of

PESQ and SegSNR of noisy speech by applying five
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Table 1. The maximum PESQ and improved SegSNR obtained by applying the proposed WPT-MTEO and other four
existing algorithms for three different background noises at various input SNRs.

−10 dB −5 dB 0 dB 5 dB 10 dB

∆SNR PESQ ∆SNR PESQ ∆SNR PESQ ∆SNR PESQ ∆SNR PESQ

Wiener 8.70 1.90 7.52 1.82 6.45 2.29 5.35 2.84 2.63 3.16

Machine
BTW 6.43 1.66 7.33 1.93 5.66 2.13 3.80 2.37 1.65 2.72

Shop
MMSE-04 7.36 1.67 7.07 1.89 5.83 2.18 4.03 2.76 1.25 2.99

MMSE-84 5.55 1.92 5.54 1.90 4.46 2.07 3.29 2.58 1.05 2.88

WPT-MTEO 8.77 2.04 7.65 2.12 7.35 2.39 6.56 2.91 5.58 3.21

Wiener 8.68 1.91 7.57 1.97 6.40 1.83 5.11 2.05 5.08 3.26

BTW 7.28 2.29 7.77 2.51 6.36 2.63 4.94 2.83 3.15 3.09

Factory MMSE-04 8.31 2.03 7.50 2.13 6.77 2.35 5.69 2.68 4.61 3.24

MMSE-84 5.93 2.09 5.58 2.20 4.44 2.32 4.12 2.56 3.25 3.07

WPT-MTEO 8.76 2.30 8.21 2.56 7.33 2.75 6.08 2.97 5.84 3.35

Wiener 8.45 1.92 7.56 1.96 5.61 2.05 4.85 2.32 4.79 3.20

BTW 6.19 2.00 4.18 2.30 4.67 2.46 4.53 2.79 2.77 3.03

Station MMSE-04 8.37 2.11 7.71 2.31 5.67 2.53 5.34 2.82 4.22 3.19

MMSE-84 5.56 2.16 5.30 2.22 4.45 2.43 4.01 2.71 3.34 3.22

WPT-MTEO 8.54 2.39 7.78 2.56 6.01 2.77 5.46 2.95 5.64 3.25

speech enhancement algorithms for three different
types of background noises at various SNRs (-10 dB
< SNRs < 10 dB). As shown in Figs. 6(a), (c),
and (e), the proposed WPT-MTEO algorithm demon-
strates significant enhancement on PESQ, compared
with other four algorithms. In Fig. 6(b), (d) and (f),
the SegSNR improvement results show that our de-
veloped algorithm is comparable with other four algo-
rithms.

Table 2. The maximum Csig, Cbak and Covl for Wiener, BTW, MMSE84, MMSE04, and proposed WPT-TEO at 30 speech
samples.

−10 dB −5 dB 0 dB 5 dB 10 dB

Csig Cbak Covl Csig Cbak Covl Csig Cbak Covl Csig Cbak Covl Csig Cbak Covl

Wiener −0.05 1.90 0.21 −0.24 1.94 0.36 −0.33 1.96 0.62 −0.50 2.12 0.98 0.53 2.93 2.41

Machine
BTW 0.56 1.80 0.30 0.87 2.03 0.83 1.08 2.30 1.43 1.05 2.65 1.94 0.93 2.96 2.53

Shop
MMSE-04 0.68 1.61 0.29 0.92 1.87 0.80 0.99 2.17 1.37 1.08 2.57 2.14 1.23 2.84 2.69

MMSE-84 0.34 1.93 0.44 0.43 2.12 0.83 0.51 2.35 1.31 0.67 2.66 1.98 0.74 2.93 2.56

WPT-MTEO 1.06 1.99 1.23 1.39 2.20 1.53 1.58 2.38 1.84 1.79 2.68 2.22 1.87 3.02 2.75

Wiener −0.17 1.81 −0.21 −0.36 1.85 −0.07 −0.45 1.93 0.35 −0.13 2.21 1.03 0.68 3.07 2.43
BTW 0.76 1.39 0.25 0.93 1.99 0.66 1.11 2.21 1.17 0.99 2.43 1.80 0.90 2.68 2.49

Factory MMSE-04 0.79 1.59 0.12 0.99 1.91 0.65 0.97 2.26 1.29 1.18 2.64 2.08 1.21 2.91 2.62

MMSE-84 0.44 1.92 0.31 0.53 2.08 0.61 0.53 2.31 1.10 0.80 2.67 1.83 0.85 2.93 2.45

WPT-MTEO 1.23 1.97 1.43 1.94 2.18 2.14 2.73 2.51 2.25 2.81 3.05 2.51 3.22 3.35 2.65

Wiener 0.05 1.80 −0.36 0.25 1.81 0.14 0.56 2.30 0.97 0.69 2.64 1.70 1.10 2.98 2.46

BTW 0.88 1.66 −0.06 1.08 1.88 0.52 1.17 2.14 1.17 1.17 2.42 1.79 1.03 2.64 2.43

Station MMSE-04 0.86 1.56 −0.24 0.93 1.81 0.44 1.00 2.18 1.27 1.03 2.49 1.90 0.91 2.89 2.42

MMSE-84 0.52 1.88 0.00 0.62 2.00 0.35 0.66 2.19 1.11 0.71 2.54 1.84 0.91 2.96 2.45

WPT-MTEO 1.69 1.92 1.16 2.17 2.16 1.63 2.55 2.45 1.95 2.57 2.78 2.28 2.71 3.13 2.63

3.2. Algorithm assessment based on three composite
objective measures

In this study, three composite objective measures
have been used to evaluate the performance of
our developed speech enhancement algorithm (WPT-
MTEO). These three composite objective measures are
introduced to predict the quality of noisy speech en-
hanced by noise suppression algorithms (Hu, Loizou,
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2007). They can be described as follows: (a) Csig is
the measurement of signal distortion (SIG), which is
a linear combination of log-likelihood ratio (LLR),
PESQ, and weighted–slope spectral distance (WSS);
(b) Cbak is the measurement of noise distortion (BAK),
which linearly combines the SegSNR, PESQ, andWSS;
and (c) Covl is defined as the overall quality, and
it is formed by linearly combining PESQ, LLR, and
WSS (Ying, et al., 1993).
Figure 7 shows the improvements of three objec-

tive measures by five speech enhancement algorithms.
The proposed WPT-MTEO algorithm shows the high-
est improvements for all three metrics (Csig, Cbak, and
Covl). Compared to other four algorithms, the WPT-
METO algorithm gains averagely about 0.3 higher
point on noise distortion measure Cbak, and it is aver-

a) b) c)

d) e) f)

g) h) i)

Fig. 7. Improvements of Cbak, Csig, and Covl obtained from 30 noisy speech signals with three different background noises
(i.e., factory noise in (a), (b), (c), machine shop noise in (d), (e), (f), and station noise in (g), (h), (i)) applied five speech

enhancement algorithms at various input SNRs (−10 dB < SNRs < 10 dB).

agely about 1 higher point on signal distortion measure
Csig. For the overall speech enhancement quality mea-
sure Covl, the WPT-MTEO algorithm also obtains the
best performance. At low SNRs one can found that the
WPT-MTEO algorithm obtains significant improve-
ments over all three metrics. Specifically, the WPT-
MTEO algorithm demonstrates remarkable improve-
ments on Csig and Covl at low SNRs. It indicates that
the proposed algorithm can not only enhance speech in
high noise environments, but also can keep high quality
of enhanced speech.
Moreover, the maximum values of Csig, Cbak, and

Covl, obtained by applying five speech enhancement
algorithms are summarized in Table 2. Same as the
results shown in Fig. 7, the WPT-MTEO algorithm
achieves advantages over the other four algorithms.
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With all three background noises, the WPT-MTEO
algorithm demonstrates the highest improvements of
three metrics among five speech enhancement algo-
rithms.

a) b)

c) d)

e) f)

g)

Fig. 8. Spectrums of (a) clean speech, (b) noisy speech with factory
background noise (SNR = −5 dB), and enhanced speech by applying
five algorithms, including (c) MMSE84, (d) MMSE04, (e) Wiener96,

(f) BTW, and (g) WPT-MTEO, respectively.

In addition, Fig. 8 shows the spectrograms of
clean speech, noisy speech (SNR = −5 dB) with
factory background noise, and the enhanced speech
by applying five speech enhancement algorithms,
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respectively. It can be subjectively found that the pro-
posed WPT-MTEO algorithm (as show in Fig. 8g)
achieves high noise cancellation whereas retains high
quality of enhanced speech. In contrast, three algo-
rithms: MMSE84, MMSE04, and BTW, (as shown in
Figs. 8c, 8d and 8f, respectively) cannot effectively
eliminate the noise components in the frequency range
around 1.8 kHz – 4.5 kHz. As shown in Fig. 8e, an-
other algorithm (Wiener96) suppresses noise compo-
nents but also significantly distorts speech compo-
nents. Results suggest that the proposed algorithm
is able to successfully separate speech from high-level
industrial noise, and can achieve high quality of en-
hanced speech.

4. Conclusions

In this paper, we have developed a new algo-
rithm, WPT-MTEO, for speech enhancement in high
noise environments. The WPT-MTEO combines a 2D
TEO improved SPP estimator in WPT domain with a
MMSE estimator based on a generalized gamma prior
of speech. Two different types of 2D TEOs, indepen-
dent and intersectional 2D TEOs, have been intro-
duced for the development of the energy-density based
SPP estimator. By utilizing the statistic characteris-
tics of speech samples, parameters of the generalized
speech model in WPT domain are optimized. The cor-
responding MMSE amplitude estimator is applied as
well. Selected speech samples corrupted with differ-
ent types of background noises (i.e., machine shop,
factory, and station) at various SNRs, are used to
validate our developed algorithm. The performance
of the developed algorithm is compared with other
four existing speech enhancement algorithms, includ-
ing Wiener96 (Scalart, 1996), MMSE-84 (Ephraim,
Malah, 1984), MMSE-04 (Cohen, 2004), and BTW
(Chang, Yu, Vetterli, 2000). Results show that
our developed algorithm achieves remarkable improve-
ments on speech perceptional quality improvement
with respect to various metrics. Particularly, the per-
formance at low SNR is in great advantage, com-
pared with four other existing algorithms. It indicates
that the proposed algorithm can successfully enhance
speech at low SNRs with high quality of enhanced
speech. The proposed algorithm is promising for speech
enhancement applications in high noise environments.
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