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Industry often utilizes acoustical hoods to block noise emitted from reciprocating compressors. How-
ever, the hoods are large and bulky. Therefore, to diminish the size of the compressor, a compact discharge
muffler linked to the compressor outlet is considered. Because the geometry of a reciprocating compressor
is irregular, COMSOL, a finite element analysis software, is adopted. In order to explore the acousti-
cal performance, a mathematical model is established using a finite element method via the COMSOL
commercialized package. Additionally, to facilitate the shape optimization of the muffler, a polynomial
neural network model is adopted to serve as an objective function; also, a Genetic Algorithm (GA) is
linked to the OBJ function. During the optimization, various noise abatement strategies such as a reverse
expansion chamber at the outlet of the discharge muffler and an inner extended tube inside the discharge
muffler, will be assessed by using the artificial neural network in conjunction with the GA optimizer.
Consequently, the discharge muffler that is optimally shaped will decrease the noise of the reciprocating

compressor.

Keywords: finite element method; polynomial neural network model; genetic algorithm; group method
of data handling; reciprocating compressor; optimization.

Notations

In this paper the following notations are used:
B0, Bi, Bij , Bijk – the coefficient of the node function in the

ANN,

CPM – the product of the penalty function,

FSE – the deviation of mean square,

m – the number of the design parameters,

N – the number of training data,

Np – the total possible searching number
(= 2m),

Q – the number of the network’s coefficients,

xi, xj , xk – the input data in the ANN,

yk – the output value in the ANN,

kp – the penalty function in the ANN,

ŷi – the required data in the ANN,

yi – the predicted data for the ANN,

σp2 – the error variation in the ANN,

A1 – length of an external reverse expansion
chamber [m],

B1 – length of the connecting tube between the
reverse expansion chambers [m],

bit – bit length of chromosome,

itermax – maximum iteration during GA optimization,

L1 – the length of an extended inlet duct inside the dis-
charge muffler [m],

L2 – the length of an extended outlet duct inside the dis-
charge muffler [m],

Lei – the length of an inner inlet tube for an external re-
verse expansion chamber [m],

Leo – the length of an outer outlet tube for an external re-
verse expansion chamber [m],

pc – crossover ratio,

pm – mutation ratio,

pop – number of population,

TL – transmission loss [dB].

1. Introduction

An acoustical hood is often used for traditional
noise abatement (Cheremisinoff, Cheremisinoff,
1977), but it is bulky and influences compressor oper-
ation due to insufficient space. To overcome this draw-
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back, a compact silencing device connected at the in-
let/outlet is used. Research on simple shaped muf-
flers has been examined using theoretical derivations
(Chang et al., 2004; Yeh et al., 2006). However, be-
cause of the complicated geometry of the commer-
cial reciprocating compressor, the acoustical assess-
ment using theoretical analysis is not accessible.
Suh et al. (1998) analyzed the acoustical perfor-

mance of a reciprocating compressor by using a finite
element method. Dreiman et al. (2000) assessed the
influence of noise and vibration with respect to a pres-
sure pulse emitted from a reciprocating compressor via
a boundary element method analysis. Gosavi et al.
(2006) assessed a reciprocating compressor with a re-
vised shape by using the Taguchi method and a bound-
ary element method. Roozen et al. (2009) identified
the noise source and implemented the acoustical sim-
ulation of a reciprocating compressor using a finite el-
ement method. However, the optimization of the muf-
fler’s shape has been routinely neglected. Chang et al.
(2009) and Chiu & Chang (2009) developed an opti-
mization method for a muffler that had a simple ge-
ometrical shape by using a neural network and ge-
netic algorithm. In order to explore an appropriately
shaped reciprocating compressor, a commercialized re-
ciprocating compressor which is compact and compli-
cated in shape is assessed. To efficiently reduce the
noise emission of the compressor, COMSOL, a com-
mercialized software package that uses a finite element
method in conjunction with a neural network method
and a genetic algorithm is adopted in this paper.

2. Mathematical model of the FEM

(run on the COMSOL package)

The boundary condition for the acoustical field of
the non-perforated tube (a solid boundary) used in the
acoustical model with the COMSOL package is

Fig. 1. Accuracy check of a straight internally tube-extended expansion chamber when compared to the Wang theory,
experimental data (Patrikar, Provence, 1996), and COMSOL.

n ·
{

1

ρc
(∇pt − q)

}
, (1)

where q (a dipole sound source) is set at zero, c (the
sound speed) is set at 343 m/s, ρ (air density) is set at
1.293 kg/m3.
Assuming that a plane wave with a sound pressure

(p) of 1 [Pa] propagates into the plenum’s inlet, the
governing equation of the sound wave yields

∇ · 1
ρc

(∇pt − q) +
k2eqpt

ρc
= Q, (2)1

where
pt = p+ pb, (2)2

k2eq =

(
ω

cc

)2

, (2)3

cc = c, (2)4

ρc = ρ. (2)5

Here, q is a dipole (normally set to be 0), Q is a mo-
nopole (normally set to be 0), pb is the background
pressure field.
The Sound Transmission Loss (TL) is calculated as

TL = 10 log
Win

Wout
, (3)

where Win is the inlet sound power and Wout is the
outlet sound power.

3. Model check

Before performing an acoustical simulation on a re-
ciprocating compressor, an accuracy check of the FEM
mathematical model on the fundamental elements of
a straight internally tube-extended expansion chamber
shown in Fig. 1 was performed using experimental data
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and analytical data fromWang (1992). As illustrated
in Fig. 1, the FEM (run on the COMSOL package) and
the analytical data for the muffler are in agreement.
Consequently, the simulation and optimization for two
kinds of mufflers (muffler A and muffler B) within
a fixed space are carried out in the following section.

4. Sensitivity analysis

The mechanism of a commercialized reciprocating
compressor is depicted in Fig. 2. The flow diagram of
the compressor is also illustrated in Fig. 3. In order
to investigate the sensitivity of the design parameters,
the adjustments of the design parameters are shown
in Figs. 4 and 5. The acoustical performances with
respect to frequencies using COMSOL (in FEM) are
shown in Figs. 6–9. Results in Fig. 6 reveal that in
the case of a fixed length of L2, the profiles of the TL
will be shifted to the left if the length of L1 increases.
Similarly, as indicated in Fig. 7, in the case of a fixed
length of L1, the peak value of the TL curve will move
up and down when the length of L2 varies. In addition,
Fig. 8 indicates that the profiles of the TL will shift
to the right if the length of Lei increases. Moreover, as
can be seen in Fig. 9, the profiles of the TL will also
shift to the right when the length of Loi increases.

Fig. 4. Mechanism and design parameters for muffler A.

Fig. 5. Mechanism and design parameters for muffler B.

Fig. 2. Mechanism of the reciprocating compressor.

Fig. 3. Flowing diagram for the reciprocating compressor.
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Therefore, these design parameters (L1, L2, Lei,
and Leo), which influence the TL curve, are selected
as the design parameters in the optimization process.

Fig. 6. TL profiles with respect to various values
of parameter L1 (muffler A).

Fig. 7. TL profiles with respect to various values
of parameter L2 (muffler A).

Fig. 8. TL profiles with respect to various values
of parameter Lei (muffler B).

Fig. 9. TL profiles with respect to various values
of parameter Leo (muffler B).

5. Artificial Neural Network (ANN) model

Artificial Neural Networks (ANNs) may serve as
universal approximators; however, the dependencies
are implicit and hidden within the neural network
structure. To avoid this inconvenience, an explicit func-
tion of a polynomial neural network is adopted. The
polynomial neural network developed by Ivakhnenko
(1971); one kind of predictor for fish populations in
rivers has been used here. With this, the interconnec-
tions between the layers of neurons are simplified, and
an automatic algorithm for the structure design and
weight adjustment can be built. On the basis of GMDH
(Group Method of Data Handling) feed-forward net-
works and short-term polynomial transfer functions,
the coefficients of the polynomial transfer functions
can be obtained via a regression process. The regres-
sion process will be combined by emulating the self-
organizing activity which precedes the artificial neu-
ral network’s (ANN) structural learning. The polyno-
mial neural network shown in Fig. 10 includes an input
layer, a hidden layer – Σ (summation), and an output
layer (product). Here, the hidden layer is the product

Fig. 10. Structure of an artificial neural network.
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of the input and weighted value (Suh et al., 1998).
zjk, the j-th output, is

zjk =
n∑

i=0

WijXij . (4)

The total output of the neural network yields

yk =

h∏

j=1

zjk, (5)

where h is the unit’s number in a hidden layer.
Plugging Eq. (4) into (5) yields

yk = B0 +

n∑

i=1

Bixi +

n∑

i=1

n∑

j=1

Bijxixj

+

n∑

i=1

n∑

j=1

n∑

k=1

Bijkxixjxk+ . . . , (6)

where yk is the output value, xi, xj , xk are the input
data, and B0, Bi, Bij , and Bijk are the coefficient of
the node function.
Two kinds of acoustical devices (muffler A in Fig. 4

and muffler B in Fig. 5) are examples.
For muffler A, using the theoretical data of the

FEM as the input data (muffler A: L1 and L2; muf-
fler B: Lei and Leo) and the output data (TL) in
the proposed ANN (Artificial Neural Network) model,
a trained ANN model can be achieved using both the
training data bank and the polynomial calculation in
conjunction with the PSE standard (deviation of mean
square) where PSE is in the form of

PSE = FSE + kp, (7)

FSE =
1

N

N∑

i=1

(ŷi − yi)
2
, (8)

kp = CMP
2σp2Q

N
. (9)

Here, FSE is the deviation of the mean square, kp is
the penalty function, N is the number of training data,
ŷi is the required data, yi is the predicted data for the

Fig. 11. Steps in the ANN model.

ANN model, CPM is the product of the penalty func-
tion, σp2 is the error variation, and Q is the number
of the network’s coefficients.
The flow diagram of the ANN model is depicted in

Fig. 11. The predicted TL can be obtained by inputting
arbitrary design data into the ANN model, a simplified
OBJ function. With this, the optimal process of the
mufflers can be performed by using the ANN model
and the GA method.

6. Genetic Algorithm

Genetic Algorithms (GA) were first formalized by
Holland (1975) and later developed and applied in
functional optimization by Jong (1975). Based on the
concept of Darwinian natural selection, GA’s search
strategies involve population size, selection method,
mutation ratio, crossover ratio, maximum iteration,
parameter numbers, length of the chromosome, and
searching ranges of the parameters. Each new candi-
date parent will be selected by the coding/decoding
transformation and the fitness (i.e. objective func-
tion) calculation. The precision (M) of the parameter
search is

M =
Pmax − Pmin

Np − 1
, (10)

where Np(= 2m) is the total possible searching num-
ber, m is the number of the design parameters, Pmax

is the maximum range of the parameter, and Pmin is
the minimum range of the parameter. Here, the tour-
nament selection serves as the elitism mechanism in
the GA optimization. Also, the uniform crossover is
adopted in the optimization process. Moreover, in or-
der to generate a better offspring, the range of the chro-
mosome will be widened by using a mutation scheme.
The GA operations are illustrated in Fig. 12. The pro-
cess was terminated when the number of generations
reached a pre-selected itermax.

Fig. 12. GA optimization flow diagram.
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7. Case study

Two kinds of acoustical devices (muffler A in Fig. 4
and muffler B in Fig. 5) are considered for reducing the
targeted tones of 2750 Hz and 2950 Hz, respectively.
As indicated in Fig. 4, the length of the extended in-
let tube inside the discharge muffler is set at L1 and
the extended outlet tube inside the discharge muffler
is set at L2 when muffler A is used in the noise elim-
ination. Similarly, as indicated in Fig. 5, the length
of the inner extended inlet tube inside the reverse ex-
pansion chamber is set at Lei and the inner extended
outlet tube inside the reverse expansion chamber is set
at Leo when muffler B is used in the noise elimination.

7.1. Muffler A

To optimize the acoustical performance within
a limited space, two kinds of design parameters – L1

Table 1. The range and schedule levels of the parameters
(muffler A).

Design
parameters

Min
[mm]

Max
[mm]

5 level [mm]

L1 30 40 30 32.5 35 37.5 40

L2 9 21 9 12.0 15 18.0 21

Table 2. TL with respect to twenty-five training data sets
(muffler A).

No. of exp. Lin [mm] Lout [mm]

1 30.0 9

2 30.0 12

3 30.0 15

4 30.0 18

5 30.0 21

6 32.5 9

7 32.5 12

8 32.5 15

9 32.5 18

10 32.5 21

11 35.0 9

12 35.0 12

13 35.0 15

14 35.0 18

15 35.0 21

16 37.5 9

17 37.5 12

18 37.5 15

19 37.5 18

20 37.5 21

21 40.0 9

22 40.0 12

23 40.0 15

24 40.0 18

25 40.0 21

and L2 – are chosen as the tuned variables. The range
and schedule levels of the parameters are depicted in
Table 1. Therefore, using the FEM run on the COM-
SOL package, the TL with respect to twenty-five train-
ing data sets shown in Table 2 is calculated. Taking L1

and L2 as the input data and the resulting TL as the
output data in the ANN model and inputting a series
of training data into the ANN model system, the fit-
ness functions of the targeted frequency of 2750 Hz is
established and shown below.

7.1.1. Target frequency – 2750 Hz

N12750 = −9.69948+ 0.277128 · L1, (11)1

N22750 = −3.4641 + 0.23094 · L2, (11)2

N32750 = −0.44721+ 0.465843 · N122750, (11)3

N42750 = 1.00282 + 1.52496 · N32750
− 1.33402 ·N22750 − 5.47798 ·N322750
− 0.245745 · N222750
+ 0.568317 · N32750 ·N22750
+ 0.478358 · N232750, (11)4

TL2750 = 70.445 + 11.3277 ·N42750. (11)5

7.2. Muffler B

Similarly, to optimize the acoustical performance
within a limited space, two kinds of design parame-
ters – Lei and Leo – are chosen as the tuned variables.
The range and schedule levels of the parameters are
depicted in Table 3. Therefore, using the FEM run on
the COMSOL package, the TL with respect to twenty-
five training data sets shown in Table 4 is calculated.
Taking Lei and Leo as the input data and the result-
ing TL as the output data in the ANN model and in-
putting a series of training data into the ANN model
system, the fitness functions of the targeted frequency
of 2950 Hz is established and shown below.

Table 3. The range and schedule levels of the parameters
(muffler B).

Original
dimension

Min
[mm]

Max
[mm]

4 level [mm]

Lei 0 15 0 5 10 15

Leo 0 15 0 5 10 15

7.2.1. Target frequency – 2950 Hz

N12950 = −1.29904+ 0.173205 · L1, (12)1

N22950 = −1.29904+ 0.173205 · L2, (12)2
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Table 4. TL with respect to twenty-five training data sets
(muffler B).

No. of exp. L1 [mm] L2 [mm]

1 0 0

2 0 5

3 0 10

4 0 15

5 5 0

6 5 5

7 5 10

8 5 15

9 10 0

10 10 5

11 10 10

12 10 15

13 15 0

14 15 5

15 15 10

16 15 15

N32950 = 1.0355 + 0.587243 ·N12950
− 0.693328 · N22950
− 0.572918 · N122950 − 0.531615 · N222950
− 0.201774 · N12950 · N22950
− 0.495696 · N132950
− 0.479031 · N232950, (12)3

N42950 = 1.84374 · N32950 − 0.573725 ·N332950, (12)4
N52950 = −0.57432+ 0.616243 · N422950

+ 0.725829 · N432950, (12)5

TL2950 = 113.693+ 17.7842 ·N52950. (12)6

8. Results and discussion

8.1. Results

By using the trained ANN model in conjunction
with the GA optimizer, an optimized design is obtained
and shown in Table 5. Plugging the original data and
the optimal design data into COMSOL, the TL profiles
before and after optimization was performed are plot-
ted in Fig. 13. The best GA set is (pop, bit, itermax,
pc, pm) = (100, 20, 500, 0.6, 0.5). As can be seen in
Fig. 13, the TLs of muffler A at a targeted frequency

Table 5. The range and level of the design parameters
(muffler A).

L1 [mm] L2 [mm]

Original dimension 35.00 9.00

Optimal dimension
[targeted tone: 2750 Hz]

38.91 11.64

Fig. 13. TL before and after optimization at the targeted
tone of 2750 Hz (muffler A).

of 2750 Hz before and after performing an optimiza-
tion are 57.69 dB and 82.16 dB. Similarly, using the
same GA control parameters for muffler B’s shape op-
timization, the resulting design data is shown in Ta-
ble 6. The TL profiles before and after optimization
was performed are plotted in Fig. 14. As can be seen
in Fig. 14, the TLs of muffler B at a targeted frequency
of 2950 Hz before and after performing an optimization
are 130.01 dB and 150.17 dB.

Table 6. The range and level of the design parameters
(muffler B).

Lei [mm] Leo [mm]

Original dimension 10.00 0.00

Optimal dimension
[targeted tone: 2950 Hz]

10.12 5.06

Fig. 14. TL before and after optimization at the targeted
tone of 2950 Hz (muffler B).

The accuracy checks of the ANN model for muf-
fler A (at 2750 Hz) and muffler B (at 2950 Hz) have
been verified by using the COMSOL package. The re-
sults for muffler A and muffler B are depicted in Ta-
ble 7 and Table 8, respectively. As indicated in Table 7,
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Table 7. The accuracy check of ANN model (muffler A).

TL [dB] Error [%]

Optimal TL[ANN] at 2750 Hz 89.92
8.62

Optimal TL[COMSOL] at 2750 Hz 82.16

error = TL(COMSOL)−TL(ANN)
TL(ANN)

∗ 100%

Table 8. The accuracy check of ANN model (muffler B).

TL [dB] Error [%]

Optimal TL[ANN] at 2950 Hz 147.793
1.49

Optimal TL[COMSOL] at 2950 Hz 150.171

error = TL(COMSOL)−TL(ANN)
TL(ANN)

∗ 100%

the accuracy of the ANN model in muffler A reaches
8.62%. Likewise, as illustrated in Table 8, the accuracy
of the ANN model in muffler B reaches 1.49%.

8.2. Discussion

In order to simplify the numerical assessment of
a reciprocating compressor with a complicated shape,
a finite element model (FEM) used in predicting the
muffler’s TL is adopted. Moreover, to find an optimally
shaped muffler, a simplified objective function (OBJ)
with respect to the muffler at specified tones is estab-
lished by linking the finite element model (FEM) with
the artificial neural network (ANN) model.
As described in Sec. 4, for muffler A, the influence

of the TL with respect to parameters L1 and L2 shown
in Figs. 6 and 7 is substantial. Also, for muffler B,
the influence of the TL with respect to parameters Lei

and Leo shown in Figs. 8 and 9 is also substantial.
Therefore, two sets of design parameters – (L1, L2) for
muffler A and (Lei, Leo) for muffler B – are adopted
in the optimization process. The numerical results of
muffler A and muffler B shown in Figs. 13 and 14 also
indicates that the optimized TLs are precisely located
at the targeted frequencies of 2750 Hz and 2950 Hz.
Figure 13 indicates that the noise reduction of muf-
fler A can be improved by 24.47 dB after optimiza-
tion is performed. Similarly, as indicated in Fig. 14,
the noise reduction of muffler B can be improved by
20.16 dB after optimization is carried out. Moreover,
as indicated in Tables 7 and 8, the accuracy check be-
tween the ANN model and the FEM is between 1.49–
8.62%. Therefore, the assessment of optimally shaped
muffler A and muffler B used in a reciprocating com-
pressor is valid.
As can be seen in Figs. 13 and 14, the TL’s broad-

band of muffler A and B is similar. However, the pro-
file’s peak value of muffler B is better than that of the
muffler A.

9. Conclusion

Sensitivity analysis reveals that muffler A’s design
parameters of an inner extended inlet tube’s length
(L1) and an inner extended outlet tube’s length (L2)
are essential. Also, muffler B’s design parameters of
an inner extended inlet tube’s length (Lei) and an
inner extended outlet tube’s length (Leo) are impor-
tant in the shape optimization process. To speed up
the optimization for a reciprocating compressor that
has a complicated shape, a simplified OBJ function
using a FEM model (run on COMSOL) in conjunc-
tion with a neural network (ANN) model is built. Af-
ter the training and testing for the ANN model, the
optimization process will be performed by linking the
ANN model with the GA optimizer. Results reveal that
muffler A and muffler B can be precisely optimized at
a targeted frequency using the ANN model in concert
with the GA method by adjusting the mufflers’ shape
under certain space constraints. In addition, muffler A
and B’s TL’s broadband are similar. Note though, the
profile’s peak value of the TL will increase when using
muffler B.
Consequently, the study proposed in this paper can

provide a quick and easy way to reduce noise emitted
from a reciprocating compressor that has a compli-
cated shape.
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