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A fault diagnostics system of three-phase induction motors was implemented. The implemented system
was based on acoustic signals of three-phase induction motors. A feature extraction step was performed
using SMOFS-20-EXPANDED (shortened method of frequencies selection-20-Expanded). A classification
step was performed using 3 classifiers: LDA (Linear Discriminant Analysis), NBC (Naive Bayes Classifier),
CT (Classification Tree). An analysis was carried out for incipient states of three-phase induction motors
measured under laboratory conditions. The author measured and analysed the following states of motors:
healthy motor, motor with one faulty rotor bar, motor with two faulty rotor bars, motor with faulty
ring of squirrel-cage. Measured and analysed states were caused by natural degradation of parts of the
machine. The efficiency of recognition of the analysed states was good. The proposed method of fault
diagnostics can find application in protection of three-phase induction motors.
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1. Introduction

Diagnostics of machines is a very interesting topic
of research (Attoui, Omeiri, 2015; Bedkowski,
Baranski, 2014; Glowacz, 2015; Hemmati et al.,
2016; Hwang et al., 2015; Irfan et al., 2015;
Jena, Panigrahi, 2015; Jiang et al., 2016; Kluska-
Nawarecka et al., 2014; Krolczyk et al., 2016a;
2016b; Li et al., 2016; Sapena-Bano et al., 2015; Van
Hecke et al., 2016; Yoon, He, 2015; Zhang et al.,
2015). Therefore, fault diagnosis techniques should
be developed to prevent sudden stops in the indus-
try. Breakdowns may result in economic losses, so it
is important to analyse various faults and machines.
Recently some methods based on vibration, acous-
tic, thermal, and electrical signals were developed to
check the mechanical and electrical condition of ma-
chines (Figlus et al., 2014; Glowacz, Glowacz,
2007; Glowacz, Zdrojewski, 2009; Glowacz et al.,
2012; Gonzalez-Cordoba et al., 2016; Jozwik,
2016;Mika, Jozwik, 2016; Kang et al., 2015; Krol-
czyk et al., 2014; Lara et al., 2015; Michalak
et al., 2013; Perun, Stanik, 2015; Smalcerz, 2013;
Wegiel et al., 2007). Some of them had a high effi-
ciency of signal recognition. However, the results were
obtained for limited data. This is a motivation to de-

velop better methods of fault diagnosis of induction
motors. In this paper the author measured and anal-
ysed rotor faults. The analysed rotor faults were as fol-
lows: one faulty rotor bar, two faulty rotor bars, faulty
ring of squirrel-cage. The author implemented a sys-
tem of recognition of acoustic signals. This system was
based on a microphone and a computer (Fig. 1).

Fig. 1. Analysed three phase induction motors and system
of fault diagnostics.
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2. Method of recognition of acoustic signal
of three phase induction motor

The analysed method of recognition of acoustic sig-
nals of three phase induction motor consists of 6 steps
of data processing (Fig. 2). Step 1 is recording of sig-
nal of three phase induction motor. Various types of
condenser microphones and computers can be used for
this step (Kulka, 2011). The distance from the mi-
crophone to induction motor was essential. The mi-
crophone was set at a distance of 0.02 to 0.05 m from
the machine. Placement of the microphone will have
impact on the outcome of the research. If the micro-
phone is placed 10 meters from the machine, the re-
sults of recognition may be different. The results are
related to the training set (samples of sounds). Test
samples and training samples should be measured at
the same distance from the machine. The obtained
soundtrack should have sampling frequency 44100 Hz,
one channel (mono) and uncompressed audio format.
Next, the obtained soundtrack is split into small sam-
ples. After that amplitude normalisation is carried out.
The FFT algorithm is conducted at step 4 (Duspara
et al., 2014; Stepien, 2014). Calculation of SMOFS-
20-EXPANDED is carried out at step 5. The pattern
creation process and the identification process are ex-
ecuted at step 6.

Fig. 2. Analysed method of recognition of
acoustic signal of three phase induction motor
using FFT, SMOFS-20-EXPANDED, LDA
(Linear Discriminant Analysis), NBC (Naive
Bayes classifier), CT (classification tree).

2.1. Splitting recorded soundtrack

Splitting recorded soundtrack into small samples
was implemented in the presented system. Perl lan-

guage was used for this purpose. The implemented pro-
gram split signal into samples with various length of
time (default 5 seconds).

2.2. Amplitude normalization and FFT

The amplitude normalisation was used to compare
acoustic signals of three phase induction motor. The
amplitude normalisation divided each point of signal
by the maximum value. The obtained normalised sig-
nal was in the range [−1, 1]. The FFT method used
Hamming window with the length of 32768 (1 window
= 32768/44100 = 0.743 seconds). For this reason the
FFT spectrum had 16384 values. This number (16384)
was sufficient to represent the analysed data.

2.3. Shortened method of frequencies
selection-20-EXPANDED

Research from around the world has been de-
veloping new complex methods of feature extraction
from acoustic signals. Some of them are based on the
FFT. One of them is SMOFS-20-EXPANDED (short-
ened method of frequencies selection-20-Expanded).
This method is based on differences between ampli-
tudes of frequencies of analysed acoustic signals. Faulty
states of three phase induction motor can generate
different spectra of acoustic signals. These spectra
are analysed by the proposed method. SMOFS-20-
EXPANDED consists of 7 steps:

1. The first step is calculation of the FFT spectrum
of the acoustic signal. The following spectra of
acoustic signals of induction motor are defined by
vectors: hid = [hid1, hid2, ..., hid16384] – healthy
motor. frb = [frb1, frb2, ..., frb16384] – motor with
faulty rotor bar, frbs = [frbs1, frbs2, ..., frbs16384]
– motor with two faulty rotor bars, frsq = [frsq1,
frsq2, ..., frsq16384] – motor with faulty ring of
squirrel-cage.

2. The second step is calculation of differences of
spectra of acoustic signals: hid-frb, hid-frbs,
hid-frsq, frb-frbs, frb-frsq, frbs-frsq.

3. Calculate absolute values of obtained differences:
|hid-frb|, |hid-frbs|, |hid-frsq|, |frb-frbs|, |frb-
frsq|, |frbs-frsq|.

4. Use the following formula to obtain selected fre-
quencies:

||ASn| − |ASm|| > TSx, (1)

where TSx – threshold of selection after x itera-
tions (Formula 1), ||ASn|−|ASm|| – difference be-
tween amplitudes of frequencies for states n and
m of the analysed motor, ASn – amplitude of fre-
quency of state n of the analysed motor, ASm –
amplitude of frequency of state m of the analysed
motor.
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5. TSx is calculated for x iterations according to the
following formulas:

TSx =

NAFx∑
NAFx=1

||ASn| − |ASm||

NAFx
, (2)

NAFx ≤ 20, (3)

NAFx is a number of amplitudes of frequencies.
If the value NAFx is greater than 20, SMOFS-20-
EXPANDED used the following expression (For-
mula 2). SMOFS-20-EXPANDED stops its calcu-
lations if the value NAFx is smaller or equal to
20. NAFx is the number of frequencies after x it-
erations (initially NF1 = 16384, the FFT calcu-
lates 16384 amplitudes of frequencies for the win-
dow length 32768, see Subsec. 2.2). SMOFS-20-
EXPANDED calculates the feature vector with 1-
20 features, NAFx <= 20). The parameter NAFx
depends on the number of analysed acoustic sig-
nals. Sometimes the differences between ampli-
tudes of frequencies of states may have maximum
values at different frequencies. It can be a prob-
lem.
Let us analyse the following examples. SMOFS-
20-EXPANDED selects frequencies 130, 230, 330,
430, 530, 630, 730 Hz for states S1 and S2.
SMOFS-20-EXPANDED selects frequencies 130,
230, 330, 440, 540, 600 Hz for states S2 and S3.
SMOFS-20-EXPANDED selects frequencies 120,
220, 320, 440, 540 Hz for states S1 and S3. There
is no common frequency for states S1, S2, S3. Fre-
quencies 130, 230, 330, 440, 540 Hz are common
for two states. In this case frequencies 130, 230,
330, 440, 540 Hz are the best for analysis.
This will happen for 4 or more analysed states of
the motor. For this purpose the parameter CF is
used.

6. Set the parameter CF = (number of required com-
mon amplitudes of frequencies)/(number of all se-
lected amplitudes of frequencies). This parameter
is responsible for common frequencies. For exam-
ple, the parameter CF is equal 0.64, then 2 of 3
frequencies are required ((2/3) > 0.64) to make
decision about selection of common frequencies.
In the mentioned example 130, 230, 330, 440, 540
Hz are selected for CF = 0.64. If the parameter
CF is equal 0.67 ((2/3) < 0.67), none of the fre-
quencies will be selected. If the parameter CF is
equal 0.32 ((1/3) > 0.32), all frequencies will be
selected. Of course CF = 0.32 is not a good value
for analysis.

7. Form feature vector based on common frequencies.

The author proposed a block diagram of SMOFS-
20-EXPANDED (Fig. 3).

Fig. 3. Block diagram of SMOFS-20-EXPANDED.

The differences between the FFT spectra of the
analysed acoustic signals of three phase induction mo-
tor are presented (Figs. 4–9).

Fig. 4. Difference between the FFT spectra of acoustic sig-
nal of healthy state of three phase induction motor and
acoustic signal of three phase induction motor with faulty
rotor bar (|hid-frb|) and parameter TSx for SMOFS-20-

EXPANDED (selection of 5 frequencies).

Fig. 5. Difference between the FFT spectra of acoustic
signal of healthy state of three phase induction motor
and acoustic signal of three phase induction motor with
two faulty rotor bars (|hid-frbs|) and parameter TSx for
SMOFS-20-EXPANDED (selection of 19 frequencies).
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Fig. 6. Difference between the FFT spectra of acoustic sig-
nal of healthy state of three phase induction motor and
acoustic signal of three phase induction motor with faulty
ring of squirrel-cage (|hid-frsq|) and parameter TSx for
SMOFS-20-EXPANDED (selection of 9 frequencies).

Fig. 7. Difference between the FFT spectra of acoustic sig-
nal of three phase induction motor with faulty rotor bar
and acoustic signal of three phase induction motor with
two faulty rotor bars (|frb-frbs|) and parameter TSx for
SMOFS-20-EXPANDED (selection of 10 frequencies).

Fig. 8. Difference between the FFT spectra of acoustic sig-
nal of three phase induction motor with faulty rotor bar
and acoustic signal of three phase induction motor with
faulty ring of squirrel-cage (|frb- frsq|) and parameter TSx
for SMOFS-20-EXPANDED (selection of 16 frequencies).

Fig. 9. Difference between the FFT spectra of acoustic sig-
nal of three phase induction motor with two faulty rotor
bars and acoustic signal of three phase induction motor
with faulty ring of squirrel-cage (|frbs-frsq|) and parameter
TSx for SMOFS-20-EXPANDED (selection of 17 frequen-

cies).

Five training sets were analysed to select the best
frequencies. Each of them had 4 training samples.
Selection of common frequencies of 4 states of three-
phase induction motor for training set 1 was presented
in Table 1.

Table 1. Selection of common frequencies of 4 states
of three-phase induction motor for training set 1.

Common Frequencies [Hz]

hid-frb hid-frbs hid-frsq frb-frbs frb- frsq frbs-frsq

300 300 300 300

301 301 301 301

462 462 462

486 486 486

487 487 487

670 670 670 670 670

672 672 672 672 672

673 673 673

696 696 696 696

720 720 720 720

721 721 721 721

723 723 723

795 795 795

Table 2. Selection of common frequencies of 4 states
of three-phase induction motor depending on the

parameter CF and training sets.

CF = 0.95
(6 common frequencies)

Frequency [Hz]

Training set 1 –

Training set 2 –

Training set 3 –

Training set 4 –

Training set 5 –

Common frequencies –

CF = 0.82
(5 common frequencies)

Frequency [Hz]

Training set 1 670, 672

Training set 2 696, 697, 721

Training set 3 301, 672, 696

Training set 4 –

Training set 5 672, 721

Common frequencies –

CF = 0.64
(4 common frequencies)

Frequency [Hz]

Training set 1 300, 301, 670, 672, 696, 721

Training set 2 301, 696, 697, 721

Training set 3 301, 672, 696, 721, 797

Training set 4 696, 697, 720, 721, 797

Training set 5 275, 276, 672, 696, 697, 721, 797

Common frequencies 696, 721
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For recognition of 4 states of a motor, we need 2
frequencies at least (Table 1 – there is no common fre-
quency). Selection of common frequencies of 4 states of
three-phase induction motor depending on the param-
eter CF and training sets was presented in Table 2.
Amplitudes of frequencies 696, 721 Hz (hid =

[hid517, hid536], frb = [frb517, frb536], frbs = [frbs517,
frbs536], frsq = [frsq517, frsq536]) formed feature vec-
tors for CF = 0.64. Next, the feature vectors were
classified by LDA, NBC, CT.

2.4. Classification

Special methods were developed to classify fea-
ture vectors. They were called classifiers. In the liter-
ature many various classifiers are described (Gorny
et al., 2015; Hachaj, 2012; Izadbakhsh et al.,
2015; Jun, Kochan, 2014; Kantoch et al., 2014;
Kozielski et al., 2016; Ma, Chen, 2015; Roj, Ci-
chy, 2015; Valis, Pietrucha-Urbanik; 2014; Vet-
richelvan et al., 2015). Some of them are used
for linearly separable patterns, for example, Linear
Discriminant Analysis or Support Vector Machine
(Jaworek-Korjakowska, Kleczek, 2016; Yagami
et al., 2015). Other classifiers such as: Nearest Neigh-
bor (Marzec et al., 2015; Stolinski, Ziolko, 2015),
Gaussian Mixture Model (Hachaj et al., 2015; Pri-
bil, Pribilova, 2014), Naive Bayes classifier, neural
networks (Dudek-Dyduch et al., 2009; Jun et al.,
2016; Kalafat, Sause, 2015; Ma, Chen, 2015;
Panek et al., 2015; Zhang et al., 2015), classification
tree are used for linearly and non-linearly separable
patterns.

2.5. Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) was used to
classify the feature vectors. This method is based on
training and test sets. There was a training set of
P-dimensional samples x1, x2, x3, . . . , xN . These sam-
ples belonged to classes w1, w2, . . . , wi. Next, a scalar
y was obtained by projecting these samples x onto line
y = wTx. Next, the method selected one line that max-
imises the separability of the scalars y. After that LDA
calculated the mean vector of each class in x-space and
y-space:

ui =
1

N

∑
x∈wi

x,

ũi =
1

N

∑
y∈wi

y = wTui.

(4)

LDA maximised the difference between the means,
normalised by a measure of the within-class scatter.
The scatter was expressed by the following formula (5):

s̃2i =
∑
y∈wi

(y − ũi)
2
. (5)

The within-class scatter was expressed by following
formula (6):

s̃21 + s̃22. (6)

LDA was defined as a linear function wTx, that max-
imised the criterion function J(w) defined as (7):

J(w) =
|ũ1 − ũ2|
s̃21 + s̃22

. (7)

After performance of the pattern creation process test
samples were identified depending on their positions
with respect to the calculated hyperplane. More in-
formation about LDA can be found in the literature
(Sharma, Paliwal, 2015).

2.6. Naive Bayes classifier

Naive Bayes classifier can often perform better and
faster than other classification methods. This classifier
was used for high-dimensional feature vectors. It was
based on statistical parameters such as posterior and
prior probabilities. The posterior probability was ex-
pressed by the following formula:

p(xi|y) =
p(y|xi)p(xi)

p(y)
, (8)

where p(xi|y) is the probability of instance y being in
class xi (posterior probability); p(y|xi) is the proba-
bility of generating instance y given class xi; p(xi) is
the probability of occurrence of class xi; p(y) is the
probability of instance y occurring.
Naive Bayes classifier used training and test sets.

The training set was used for training step to estimate
a probability distribution. The test set was used for
classification step to classify test samples. Test samples
were classified depending on the posterior probabil-
ity (Karandikar et al., 2015; Glowacz, Glowacz,
2015).

2.7. Classification tree

Classification tree (CT) predicted the output data
based on input data (feature vectors). The classifier
used root node and leaf nodes to predict the output
data. The last leaf nodes contained the output data.
The result of classification tree was “true” or “false”.
Classification tree performed the following steps:

• Start with all input feature vectors and examine
all possible binary splits.

• Select a split with the best optimisation criterion.
• Repeat for the two obtained nodes.
• Stop splitting when a node contains only observa-
tions of one class.

More information about classification tree (CT)
can be found in the literature (Wickramarachchi
et al., 2016).
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3. Analysis of acoustic signals of three-phase
induction motor

Four identical induction motors were analysed.
The parameters of the motors were the following:
UNSV = 220/380 V (∆/Y ), INSC = 2.52/1.47 A
(∆/Y ), PMotor = 0.55 kW, nRS = 1400 rpm, where
UNSV is the nominal stator voltage, INSC is the nom-
inal stator current, PMotor is the motor power, nRS is
the rotor speed. The motor operated under open loop
control.
The analysis was carried out for incipient states of

three-phase induction motors measured under labora-
tory conditions. The author measured and analysed
the following states of motors: healthy motor, motor
with one faulty rotor bar (Fig. 10), motor with two
faulty rotor bars, motor with faulty ring of squirrel-
cage (Fig. 11). Measured and analysed states were
caused by natural degradation of parts of the mo-
tors.

Fig. 10. Rotor of three-phase induction
motor with one faulty rotor bar.

Fig. 11. Rotor of three-phase induction
motor with faulty ring of squirrel-cage.

In the pattern creation process 40 five-second train-
ing samples were analysed. Patterns were calculated
(amplitudes of frequencies 696, 721 Hz). Next, in the
identification process 60 test samples were analysed
(15 samples for each state of the motor). These 60 test
samples were used to evaluate efficiency of recognition
of the proposed techniques. The efficiency of recogni-
tion was expressed by the following formula:

ER =
NPRTS

NATS
100%, (9)

where ER is the efficiency of recognition of acoustic
signal, NPRTS is the number of the recognised test
samples, NATS is the number of test samples in the
test set.

The total efficiency of recognition of acoustic signal
(TER) was expressed by the formula (10):

TER =
ERH+ERFRB+ERFRBS+ERFRSC

4
, (10)

where TER is the total efficiency of recognition of
acoustic signal, ERH is the efficiency of recognition
of acoustic signal of a healthy motor, ERFRB is the
efficiency of recognition of acoustic signal of a motor
with one faulty rotor bar, ERFRBS is the efficiency
of recognition of acoustic signal of a motor with two
faulty rotor bars, ERFRSC is the efficiency of recogni-
tion of acoustic signal of a motor with a faulty ring of
squirrel-cage.
The analysis of recognition of acoustic signals of

three-phase induction motors was carried out. The ob-
tained results of recognition are shown in Tables 3–5.
The analysed efficiency of recognition of acoustic

signal (ER) was in the range of 53.33–100% for CF =
0.64 (Table 3). The total efficiency of recognition of
acoustic signal (TER) was equal 76.65% for SMOFS-
20-EXPANDED and Linear Discriminant Analysis.

Table 3. Results of recognition of acoustic signal of three
phase induction motor using SMOFS-20-EXPANDED and

LDA.

State of three-phase induction motor
CF = 0.64

ER [%]

Healthy three-phase induction motor 53.33

Three-phase induction motor with one
faulty rotor bar 100

Three-phase induction motor with two
faulty rotor bars 100

Three-phase induction motor with
faulty ring of squirrel-cage 53.33

TER [%]

4 analyzed states of three-phase induc-
tion motor 76.65

Table 4. Results of recognition of acoustic signal of three
phase induction motor using SMOFS-20-EXPANDED and

NBC.

State of three-phase induction motor
CF = 0.64

ER [%]

Healthy three-phase induction motor 93.33

Three-phase induction motor with one
faulty rotor bar 100

Three-phase induction motor with two
faulty rotor bars 100

Three-phase induction motor with
faulty ring of squirrel-cage 86.66

TER [%]

4 analyzed states of three-phase induc-
tion motor 94.99



A. Glowacz – Diagnostics of Rotor Damages of Three-Phase Induction Motors. . . 513

Table 5. Results of recognition of acoustic signal of three
phase induction motor using SMOFS-20-EXPANDED and

CT.

State of three-phase induction motor
CF = 0.64

ER [%]

Healthy three-phase induction motor 73.33

Three-phase induction motor with one
faulty rotor bar 100

Three-phase induction motor with two
faulty rotor bars 53.33

Three-phase induction motor with
faulty ring of squirrel-cage 80

TER [%]

4 analyzed states of three-phase induc-
tion motor 76.65

ER was in the range of 86.66–100% for CF = 0.64
(Table 4). TER was equal 94.99% for SMOFS-20-
EXPANDED and Naive Bayes classifier.
ER was in the range of 73.33-100% for CF = 0.64

(Table 5). TER was equal 76.65% for SMOFS-20-
EXPANDED and classification tree.
The best results were obtained for CF = 0.64,

SMOFS-20-EXPANDED and Naive Bayes classifier
(Table 4).

4. Conclusions

The article presented a fault diagnostics system of
three-phase induction motors. The presented system
was based on acoustic signals of three-phase induction
motors.
In this article the feature extraction method

SMOFS-20-EXPANDED was described. The proposed
method was used to diagnose incipient states of three-
phase induction motors such as: healthy motor, motor
with one faulty rotor bar, motor with two faulty ro-
tor bars, motor with faulty ring of squirrel-cage. The
classification step was performed using 3 classifiers:
Linear Discriminant Analysis, Naive Bayes Classifier,
Classification Tree. The best results were obtained for
Naive Bayes classifier (Table 4). ER was in the range
of 86.66–100% and TER was equal 94.99%.
The presented approach using acoustic signals is

non-invasive and inexpensive. This approach can be
used to diagnose three-phase induction motors with
the same sizes and operational parameters. The pre-
sented approach can also find similar application
for fault diagnostics of other types of electric mo-
tors and large-sized rotating machines (Glowacz,
Kozik, 2012; Kupiec, Przyborowski, 2015; Smol-
nicki et al., 2010). In the future, acoustic, electric, and
thermal signals should be used together to improve
fault diagnostics of electric motors.
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